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Abstract

We study online learning in unknown Markov
games, a problem that arises in episodic multi-
agent reinforcement learning where the actions
of the opponents are unobservable. We show that
in this challenging setting, achieving sublinear
regret against the best response in hindsight is sta-
tistically hard. We then consider a weaker notion
of regret by competing with the minimax value of
the game, and present an algorithm that achieves
a sublinear Õ(K2/3) regret afterK episodes. This
is the first sublinear regret bound (to our knowl-
edge) for online learning in unknown Markov
games. Importantly, our regret bound is indepen-
dent of the size of the opponents’ action spaces.
As a result, even when the opponents’ actions are
fully observable, our regret bound improves upon
existing analysis (e.g., (Xie et al., 2020)) by an
exponential factor in the number of opponents.

1. Introduction
Multi-agent reinforcement learning (MARL) helps us model
strategic decision making problems in an interactive envi-
ronment with multiple players. It has witnessed notable
recent success (with two or more agents), e.g., in Go (Silver
et al., 2016; 2017), video games (Vinyals et al., 2019), Poker
(Brown & Sandholm, 2018; 2019), and autonomous driving
(Shalev-Shwartz et al., 2016).

When studying MARL, often Markov games (MGs) (Shap-
ley, 1953) are used as the computational model. Compared
with Markov decision processes (MDPs) (Puterman, 2014),
Markov games allow the players to influence the state tran-
sition and returns, and are thus capable of modeling compet-
itive and collaborative behaviors that arise in MARL.

A fundamental problem in MGs is sample efficiency. Unlike
MDPs, there are at least two key ways to measure perfor-
mance in MGs: (1) the offline (self-play) setting, where we
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control both/all players and aim to minimize the number of
episodes required to find a good policy; and (2) the online
setting, where we can only control one player (which we
refer to as our player), treat other players as opponents, and
judge how our player performs in the whole process using
regret. The offline setting is more useful when training play-
ers in a controllable environment (e.g., a simulator) and the
online setting is more favorable for life-long learning.

When ensuring sample efficiency for MARL, key challenges
arise from the observation model. We distinguish between
two online settings. When learning in informed MGs, our
player can observe the actions taken by the opponents. For
learning in unknown MGs (Cesa-Bianchi & Lugosi, 2006),
such observations are unavailable; information flows to our
player only through the revealed returns and state transi-
tions. We emphasize that both informed games and unknown
games are describing the observation process instead of our
prior knowledge of the parameters: We always assume zero
knowledge of the transition function of the MG.

Learning in unknown MGs is harder, more general, and
potentially of greater practical relevance than informed MGs.
It is thus important to discover algorithms that can guarantee
low regret. However, theoretical understanding for unknown
MGs is rather limited. Even the following fundamental
question for analyzing online learning in unknown MGs
is open:

Q1. Is sublinear regret achievable?

To see why learning in unknown MGs is challenging, notice
that without observing an opponents’ actions, we cannot
learn the transition function of the MG, even with infinitely
many episodes to collect data. Therefore, explore-then-
commit type of algorithms cannot achieve sublinear regret.

Another concern arises when the number of players involved
increases, as then the effective size of the opponents’ action
space grows exponentially in it. Therefore, the following
question is also crucial, even in (easier) informed MGs:

Q2. Can the regret be independent of the size of the
opponents’ action space?

Contributions. We answer both questions Q1 and Q2 affir-
matively in this paper. At the heart of our answers lies an
Optimistic Nash V-learning algorithm for online learning
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(V-OL) that we develop. This algorithm is significant in the
following aspects:

• It achieves Õ(K2/3) regret, the first sublinear regret
bound for online learning in unknown MGs. This bound
is nontrivial because without observing opponents’ ac-
tions, we cannot learn the transition function of the MG,
even with infinitely many episodes to collect data.

• Its regret does not depend on the size of the opponents’
action space. This regret bound is also the first of this
kind in the online setting, even for the (easier) informed
MG setting. For m-player MGs, the effective size of
the opponents’ action space is Am−1 with A the size
of each player’s action space. Therefore, compared
with existing algorithms (Xie et al., 2020) even in the
informed setting, we save an exponential factor.

• It is computationally efficient. The computational com-
plexity does not scale up as the number of players m
increases; existing algorithms such as (Xie et al., 2020)
suffer space and time complexities exponential in m.
Also, in existing algorithms, a subprocedure to find
a Nash equilibrium in two-player zero-sum games is
called in each step, which becomes the computational
bottleneck. In sharp contrast, our algorithm does not
require calling any such subprocedures.

The idea of Nash V-learning first appears in (Bai et al., 2020).
We denote their original Nash V-learning algorithm by V-SP
(SP is an acronym for self-play) to distinguish it from our
algorithm V-OL. See the discussion at the end of Section 4
for a detailed comparison of the two algorithms.

Furthermore, although the weaker notion of regret (see Sec-
tion 2) that we use has appeared in prior works (Brafman &
Tennenholtz, 2002; Xie et al., 2020), it is not clear why this
choice is statistically reasonable. We justify this notion of
regret by showing that competing with the best response in
hindsight is statistically hard (Section 3). Specifically, the
regret can be exponential in the horizon H . This result also
strengthens the computational lower bound in (Bai et al.,
2020) for online learning in unknown MGs. As an interme-
diate step, we prove that competing with the optimal policy
in hindsight is also statistically hard in MDPs with adversar-
ial transitions under bandit feedback, which strengthens the
computational lower bound in (Yadkori et al., 2013) under
bandit feedback and is a result of independent interest.

1.1. Related work

Learning in MGs without strategic exploration. A large
body of literature focuses on solving known MGs (Littman,
1994; Hansen et al., 2013) or learning with a generative
model (Jia et al., 2019; Sidford et al., 2020; Zhang et al.,
2020a), using which we can sample transitions and returns
for arbitrary state-action pairs. Littman (2001); Hu & Well-

man (2003); Wei et al. (2017) do not assume a generative
model, but their results only apply to communicating MGs.

Online MGs. Brafman & Tennenholtz (2002) propose R-
max, which does not provide a regret guarantee in general.
Xie et al. (2020) study this setting for two-player zero-sum
games with linear function approximation using the same
weaker definition of regret. They use a value iteration (VI)
based algorithm and achieve Õ(

√
H4A3B3S3K) regret

when translated into the tabular language, where A and B
are number of actions for the two players, S is the number
of states and H is the horizon. In Appendix C, we adapt
the Optimistic Nash Q-learning algorithm (Q-SP) (Bai et al.,
2020) to the online setting (Q-OL, Algorithm 3) and prove
for Q-OL a Õ(

√
H5ABSK) regret (Theorem 4). All the

three algorithms require observing the opponents’ actions
and thus cannot be applied to learning in unknown MGs.

Self-play. There is a recent line of work focusing on achiev-
ing near-optimal sample complexity in offline two-player
zero-sum MGs (Bai & Jin, 2020; Xie et al., 2020; Bai
et al., 2020; Liu et al., 2020). The goal is to find an
ε-approximate Nash equilibrium within K episodes. VI-
based methods (Bai & Jin, 2020; Xie et al., 2020) achieve
K = Õ(S2AB/ε2). Q-SP (Bai et al., 2020) achieves
K = Õ(SAB/ε2), and the V-SP algorithm (Bai et al., 2020)
achieves the best existing result K = Õ(S(A + B)/ε2),
matching the lower bound w.r.t. the dependence on S, A,
B and ε. Note that in the self-play setting, we need to find
good policies for both players, so the dependence on B is
inevitable. Extensions to multi-player general-sum games
are discussed in (Liu et al., 2020) but the dependence on the
number of players is exponential.

MDPs with adversarial transitions. Online MGs are
closely related to adversarial MDPs. In general, competing
with the optimal policy in hindsight in MDPs with adver-
sarial transitions is intractable. With full-information feed-
back, the problem is computationally hard (Yadkori et al.,
2013). With bandit feedback, the problem is statistically
hard (Lemma 1). However, under additional structural as-
sumptions, one can achieve low regret (Cheung et al., 2019).

MDPs with adversarial rewards. We can ensure sublinear
regret if the transition is fixed (but unknown) and only the
reward is chosen adversarially (Zimin & Neu, 2013; Rosen-
berg & Mansour, 2019; Jin et al., 2019). This yields another
useful model for adversarial MDPs. The best existing re-
sult in adversarial episodic MDPs with bandit feedback and
unknown transition is achieved in (Jin et al., 2019) with
Õ(
√
H3S2AK) regret, where H is the horizon.

Single-agent RL. Finally, there is an abundance of works
on sample efficient learning in MDPs. Jaksch et al. (2010)
first adopt optimism to achieve efficient exploration in
MDPs and Jin et al. (2018) extend this idea to model-free
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methods. Azar et al. (2017) and Zhang et al. (2020b) achieve
minimax regret bounds (up to log-factors) Õ(

√
H3SAK)

for model-based and model-free methods, respectively.

2. Background and problem setup
For simplicity, we formulate the problem of two-player
zero-sum MGs in this section and provide our algorithmic
solution in Section 4. Please see Section 5 for extensions to
multi-player general-sum MGs.

2.1. Markov games: setup and notation

Model. We consider episodic two-player zero-sum MGs,
where the max-player (min-player) aims to maximize (mini-
mize) its cumulative return. Let [H] := {1, 2, . . . ,H} for
positive integer H , and let ∆(X ) be the set of probability
distributions on set X . Then such an MG is denoted by
MG(S,A,B,P, r,H), where

– H ∈ N+ is the number of steps in each episode,

– S =
⋃
h∈[H+1] Sh is the state space,

– A =
⋃
h∈[H]Ah (B =

⋃
h∈[H] Bh) is the action space

of the max-player (min-player, resp.).

– P is a collection of unknown transition functions {Ph :
Sh ×Ah × Bh → ∆(Sh+1)}h∈[H], and

– r is a collection of return functions {rh : Sh × Ah ×
Bh → [0, 1]}h∈[H].

The return r is usually called reward in MDPs, which a
player aims to maximize. We will use the term “return” for
MGs and reserve the term “reward” for (adversarial) MDPs.

With a subscript h let Sh,Ah,Bh,Ph, rh denote the corre-
sponding objects at step h. Let | · | denote cardinality of a
set; then define the following terms:

S := sup
h∈[H]

|Sh|, A := sup
h∈[H]

|Ah|, B := sup
h∈[H]

|Bh|.

Interaction protocol. In each episode, the MG starts at
an adversarially chosen initial state s1 ∈ S1. At each step
h ∈ [H], the two players observe the state sh ∈ Sh and si-
multaneously take actions ah ∈ Ah, bh ∈ Bh; then the envi-
ronment transitions to the next state sh+1 ∼ Ph(·|sh, ah, bh)
and outputs the return rh(sh, ah, bh). The max-player’s pol-
icy µ specifies a distribution on Ah at each step h. Con-
cretely, µ = {µh}h∈[H] where µh : Sh → ∆(Ah). Simi-
larly we define the min-player’s policy ν.

Value functions. Analogously to MDPs, for a policy pair
(µ, ν), step h ∈ [H], state s ∈ Sh, and actions a ∈ Ah, b ∈
Bh, define the state value function and Q-value function as:

V µ,νh (s) := Eµ,ν [
∑H

h′=h
rh′(sh′ , ah′ , bh′)|sh = s],

Qµ,νh (s, a, b)

:= Eµ,ν [
∑H

h′=h
rh′(sh′ , ah′ , bh′)|sh = s, ah = a, bh = b].

For compactness of notation, define the operators:

PhV (s, a, b) := Es′∼Ph(·|s,a,b)[V (s′)],

Dµ,ν [Q](s) := Ea∼µ(·|s),b∼ν(·|s)[Q(s, a, b)].

Then we have the following Bellman equations:

V µ,νh (s) = Dµh,νh [Qµ,νh ](s),

Qµ,νh (s, a, b) = (rh + PhV µ,νh+1)(s, a, b).

For convenience define V µ,νH+1(s) := 0 for s ∈ SH+1.

Optimality. For a given min-player’s policy ν, there exists
a best response µ†(ν) to it, such that for any step h ∈ [H]
and state s ∈ Sh,

V †,νh (s) ≡ V µ
†(ν),ν

h (s) := sup
µ
V µ,νh (s).

Again, a symmetric discussion applies to the best response
to a max-player’s policy. The following minimax theorem
holds for two-player zero-sum MGs: for any step h ∈ [H]
and state s ∈ Sh,

max
µ

min
ν
V µ,νh (s) = min

ν
max
µ

V µ,νh (s).

Moreover, the best policies against the best responses

µ∗ ∈ argmax
µ∈M

V µ,†1 , ν∗ ∈ argmin
ν∈N

V †,ν1

attain the minimax value. Such a policy pair is known as
a Nash equilibrium (NE). We use V ∗h (s) := V µ

∗,ν∗

h (s) to
denote the value at the NE, which is unique for the MG and
we call the minimax value of the MG.

2.2. Problem setup

We are now ready to formally define the problem of online
learning in an unknown MG: we control the max-player and
in each step, only the state sh and return rh are revealed,
but not the action of the min-player bh. Recall that if bh is
also accessible, we call it the informed setting.

Our goal is to maximize the expected cumulative return,
or equivalently, to minimize the regret. The conventional
definition of regret is to compete against the best fixed policy
in hindsight:

Regret′(K) := sup
µ

K∑
k=1

(
V µ,ν

k

1 (sk1)− V µ
k,νk

1 (sk1)
)
, (1)

where the superscript k denotes the corresponding objects
in the kth episode. Although we use this compact notation,
the regret depends on both µk and νk.
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Figure 1. Illustration of the MDP MX,Y . For y ∈ {0, 1}, y′ stands for 1− y.

However, even in the informed setting, achieving sublinear
regret in this form is computationally hard (Bai et al., 2020).
For online learning in unknown MGs, the problem is statis-
tically hard (Section 3), thus is still intractable even if we
have infinite computational power.

Therefore, by noting

max
µ∈M

V µ,ν
k

1 (sk1) ≥ V µ
∗,νk

1 (sk1) ≥ V ∗1 (sk1),

we consider a more modest goal. That is, to compete against
the minimax value of the game, which has appeared in (Braf-
man & Tennenholtz, 2002). Specifically, we define the fol-
lowing regret (as used by Xie et al. (2020)):

Regret(K) :=
∑K

k=1

(
V ∗1 (sk1)− V µ

k,νk

1 (sk1)
)
. (2)

As a special case, if the opponent is omniscient and plays
the best response νk = ν†(µk), then a sublinear regret
guarantee for (2) implies a sample complexity guarantee to
approximate a Nash equilibrium policy.

3. Statistical hardness of online learning in
unknown MGs

As mentioned above, we use the minimax value of the game
as the benchmark for online learning in unknown MGs. In
contrast, in adversarial MDPs (Jin et al., 2019), it is more
common to compete against the best policy in hindsight
(using regret (1)). In this section, we justify our usage of
the weaker notion of regret (2) by showing that, in general,
competing against the best policy in hindsight is statistically
intractable. In particular, we show that in this case, the
regret has to be either linear in K or exponential in H .

Theorem 1 (Statistical hardness for online learning in un-
known MGs). For any H ≥ 2 and K ≥ 1, there exists
a two-player zero-sum MG with horizon H , |Sh| ≤ 2,
|Ah| ≤ 2, |Bh| ≤ 4 such that any algorithm for unknown
MGs suffers the following worst-case one-sided regret:

sup
µ

∑K

k=1

(
V µ,ν

k

1 (s1)− EµkV µ
k,νk

1 (s1)
)

≥Ω
(
min

{√
2HK,K

})
.

In particular, any algorithm has to suffer linear regret unless
K ≥ Ω(2H).

Here we give a sketch of our proof, while the full proof is
deferred to Appendix A.

We start by considering online learning in (single-agent)
MDPs, where the reward and transition function in each
episode are adversarially determined, and the goal is to
compete against the best (fixed) policy in hindsight. In the
following lemma we show that this problem is statistically
hard; see Lemma 1 in the appendix for its formal statement.

Lemma (informal). For any algorithm, there exists a se-
quence of single agent MDPs with horizon H , S = O(H)
states and A = O(1) actions, such that the regret defined
against the best policy in hindsight is Ω(min{

√
2HK,K}).

Remark 1. The above lemma is different from a previous
hardness result in (Yadkori et al., 2013), which states that
this problem is computationally hard.

We now briefly explain how this family of hard MDPs is
constructed, which is inspired by the “combination lock”
MDP (Du et al., 2019). Every MDP MX,Y is specified
by two H-bit strings: X,Y ∈ {0, 1}H . The states are
{s0,0, s0,1, s1,1, · · · , s0,H , s1,H}. As shown in Figure 1,
MX,Y has a layered structure, and the reward is nonzero
only at the final layer. The only way to achieve the high
reward is to follow the path s0,0 → sy1,1 → · · · syH ,H .
Thus, the corresponding optimal policy is π(sw,h) = xh⊕w,
which is only a function of X . Here, ⊕ denotes the bitwise
exclusive or operator.

Now, in each episode, Y is chosen from a uniform distri-
bution over {0, 1}H while X is fixed. When the player
interacts with MX,Y , since Y is uniformly random, it gets
no effective feedback from the observed transitions, and the
only informative feedback is the reward at the end. However,
achieving the high reward requires guessing every bit of X
correctly. This “needle in a haystack” situation makes the
problem as hard as a multi-armed bandit problem with 2H

arms. The regret lower bound immediately follows.

Next, we use the hard family of MDPs in Lemma 1 to
prove Theorem 1 by reducing the adversarial MDP problem
to online learning in unknown MGs. The construction is
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straightforward. The state space and the action space for the
max-player are the same as that in the original MDP family.
The min-player has control over the transition function and
reward at each step, and executes a policy such that the
induced MDP for the max-player is the same as MX,Y .
This is possible using only B = O(1) actions as MX,Y

has a layered structure. Online learning in unknown MGs
then simulates the online learning in the adversarial MDP
problem, and thus has the same regret lower bound.

Classes of policies. In Section 2, we define the policy µ by
mappings from Sh to a distribution on Ah at each step h.
Such policies are called Markov policies (Bai et al., 2020).
The policies induced by the algorithms in the remaining
part of this paper are always Markov policies. However,
our lower bound also holds for general policies (Bai et al.,
2020). Here, for an informed max-player the input of µh
can be the history (s1, a1, b1, r1, · · · , sh), while for a max-
player in an unknown MG the input of µh can be the history
(s1, a1, r1, · · · , sh). In words, the lower bound holds even
for policies that depend on histories.

Regret minimization in self-play. We emphasize that
our lower bound applies to online learning in unknown
MGs. For the self-play setting, people indeed minimize
the strong regret (1) as an intermediate step toward PAC
guarantees (Bai & Jin, 2020; Bai et al., 2020; Xie et al.,
2020). This is possible because in self-play both players
are running the policies specified by the algorithm designer.
Therefore, they do not need to worry about the adversarial
scenario described in the lower bound here.

We emphasize that our lower bound applies to online learn-
ing in unknown MGs. In self-play, as an intermediate step
toward PAC guarantees, people indeed minimize an even
stronger notion called duality gap (Bai & Jin, 2020; Bai
et al., 2020; Xie et al., 2020), which is defined as

Gap(K) :=
∑K

k=1

(
V †,ν

k

1 (sk1)− V µ
k,†

1 (sk1)
)

=
∑K

k=1

(
V †,ν

k

1 (sk1)− V µ
k,νk

1 (sk1)
)

+
∑K

k=1

(
V µ

k,νk

1 (sk1)− V µ
k,†

1 (sk1)
)
,

where the two terms in the last equality are no smaller than
the stronger regrets (1) of the two players respectively. This
is possible because in self-play both players are running the
policies specified by the algorithm. Therefore, they do not
need to worry about the adversarial scenario described in
the lower bound here.

4. The V-OL algorithm
In this section, we introduce the V-OL algorithm and its
regret guarantees for online learning in two-player zero-
sum unknown Markov games. We show that not only can

Algorithm 1 Optimistic Nash V-learning for Online Learn-
ing (V-OL)

1: Require: Learning rate {αt}t≥1, exploration bonus
{βt}t≥1, policy update parameter {ηt}t≥1

2: Initialize: for any h ∈ [H], s ∈ Sh, a ∈ Ah, Vh(s)←
H , Lh(s, a)← 0, Nh(s)← 0, µh(a|s)← 1/|Ah|.

3: for episode k = 1, . . . ,K do
4: Receive s1

5: for step h = 1, . . . ,H do
6: Take action ah ∼ µh(·|sh)
7: Observe return rh and next state sh+1

8: Increase counter t = Nh(sh)← Nh(sh) + 1
9: Vh(sh)← (1−αt)Vh(sh)+αt(rh+Vh+1(sh+1)+

βt)
10: for all actions a ∈ Ah do
11: lh(sh, a) ← (H − rh − Vh+1(sh+1))I(ah =

a)/(µh(ah|sh) + ηt)
12: Lh(sh, a)← (1− αt)Lh(sh, a) + αtlh(sh, a)
13: end for
14: Update policy µ by

µh(·|sh)← exp{−ηtLh(sh, ·)/αt}∑
a exp{−ηtLh(sh, a)/αt}

15: end for
16: end for

we achieve a sublinear regret in this challenging setting,
but the regret bound can be independent of the size of the
opponent’s action space as well.

The V-OL algorithm. V-OL is a variant of V-learning
algorithms. Bai et al. (2020) first propose V-SP as a near-
optimal algorithm for the self-play setting of two-player
zero-sum MGs. See the discussion at the end of this section
for a detailed comparison between V-OL and V-SP.

In V-OL (Algorithm 1), at each time step h, the player
interacts with the environment, performs an incremental
update to Vh, and updates its policy µh. Note that the
estimated value function Vh is only used for the intermediate
loss lh(sh, ·) in this time step, but not used in decision
making. To encourage exploration in less visited states, we
add a bonus term βt. As we will see in Section 6, this update
rule is optimistic, i.e., Vh is an upper confidence bound
(UCB) on the minimax value V ∗h of the MG. Then the player
samples the action according to the exponentially weighted
averaged loss Lh(sh, ·), which is a popular decision rule in
adversarial environments (Auer et al., 1995).

Intuition behind V-learning. Most existing provably effi-
cient tabular RL algorithms learn a Q-table (table consisting
of Q-values). However, since state-action pairs are neces-
sary for updating the Q-table, for online learning in MGs,
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algorithms based on it inevitably require observing the op-
ponent’s actions and are thus inapplicable to unknown MGs.
By contrast, V-OL does not need to maintain the Q-table at
all and bypasses this challenge naturally.

Moreover, learning a Q-value function in two-player Markov
games usually results in a regret or sample complexity that
depends on its size SAB, whether in the self-play setting,
such as VI-ULCB (Bai & Jin, 2020) and Q-SP (Bai et al.,
2020), OMNI-VI-offline (Xie et al., 2020), or in the online
setting, such as OMNI-VI-online (Xie et al., 2020) and
Q-OL (Appendix C). By contrast, V-learning removes the
dependence on B, as formalized in Theorem 2.

Note that we analyze Q-OL in Appendix C to more clearly
demonstrate V-OL’s advantage of avoiding learning a Q-
table. Q-OL is a Q-learning-type algorithm for online MGs
adapted from Q-SP. It updates the Q-values by a termporal
difference method like V-OL but makes decisions based on
the Q-values instead. Therefore, Q-OL applies only to the
informed setting and its regret depends on AB (Theorem 4).

Favoring more recent samples. Despite the above noted
advantages of V-learning, the V-SP algorithm (Bai et al.,
2020) may have a regret bound that is linear in K, as in-
dicated by (4) in Theorem 2 and discussed in Section 6 in
more detail. To resolve this problem, we adopt a different
set of hyperparameters to learn more aggressively by giv-
ing more weight to more recent samples. Concretely, for
the self-play setting, Bai et al. (2020) specify the following
hyperparameters for V-SP:

αt = H+1
H+t , βt = c

√
H4Aι
t , ηt =

√
logA
At ,

where ι is a log factor defined later and c > 0 is a constant.
For the online setting, we set these hyperparameters as:

αt = GH+1
GH+t , βt = c(

√
GH3Aι

t + GH2ι
t ), ηt =

√
GHι
At ,

(3)

where G ≥ 1 is a quantity that we tune and c > 0 is a
constant. Ostensibly, these changes may appear small, but
they are essential to attaining a sublinear regret.

Remark 2. Compared with αt = 1/t, the learning rate
αt = H+1/H+t first proposed in (Jin et al., 2018) already
favors more recent samples. Here we go one step further:
our algorithm learns even more aggressively by taking αt =
GH+1/GH+t with G ≥ 1. Moreover, we choose a larger
ηt to make our algorithm care more about more recently
incurred loss. βt is set accordingly to achieve optimism.

We call this variant of V-learning V-OL, for which we prove
the following regret guarantees.

Theorem 2 (Regret bounds). For any p ∈ (0, 1), let ι =
log(HSAK/p). If we run V-OL with our hyperparameter

specification (3) for some large constant c > 0 and G ≥ 1
in an online two-player zero-sum MG, then with probability
at least 1− p, the regret in K episodes satisfies

Regret(K) = O
(
GH3Sι2 +

√
GH5SAKι+G−1KH

)
.

(4)

In particular, by taking G = 1
H ( KSA )1/3 if K ≥ H3SA and

G = K1/3 otherwise, with probability at least 1 − p, the
regret satisfies

Regret(K) =

{
Õ
(
H2S

1
3A

1
3K

2
3

)
, if K ≥ H3SA,

Õ
(√
H5SAK

2
3 +H3SK

1
3

)
, otherwise.

Theorem 2 shows that a sublinear regret against the mini-
max value of the MG is achievable for online learning in
unknown MGs. As expected, the regret bound does not
depend on the size of the opponent’s action space B. This
independence of B is particularly significant for large B, as
is the case where our player plays with multiple opponents.
Note that although in Theorem 2 setting the parameter G
requires knowledge of K beforehand, we can use a standard
doubling trick to bypass this requirement.
Remark 3. In V-SP the parameter G is set to be 1. Then

our choice of ηt and βt become
√

Hι
At and c(

√
H3Aι
t +H2ι

t ).
If the other player also adopts the corresponding new policy
update parameter and exploration bonus, then the sample
complexity of V-SP can actually be improved upon (Bai
et al., 2020) by an H factor to Õ(H5S(A+B)/ε2).

Comparison between V-OL and V-SP. Apart from the
difference in parameter choices, we now point out other
differences between V-OL and V-SP.

1. To achieve near-optimal sample complexity in the self-
play setting, V-SP needs to construct upper and lower
confidence bounds not only for the minimax value of
the game, but also for the best response values. As a
result, it uses a complicated certified policy technique,
and must store the whole history of states and policies
in the past K episodes for resampling. By comparing
with the minimax value directly, we can make V-OL
provably efficient without extracting a certified policy.
Therefore, V-OL only needsO(HSA) space instead of
O(HSAK), and the resampling procedure is no more
necessary.

2. A key feature of the proof in (Bai et al., 2020) is to
make full use of a symmetric structure, which naturally
arises because in the self-play setting we can control
both players to follow the same learning algorithm.
However, this property no longer holds for the online
setting, and we must take a different proof route. Al-
gorithmically, V-OL learns more aggressively to be
provably efficient.
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3. V-OL also works in multi-player general-sum MGs;
see Section 5.

5. Multi-player general-sum games
In this section, we extend the regret guarantees of V-OL to
multi-player general-sum MGs, demonstrating the general-
ity of our algorithm. Notably, the result in multi-player MGs
highlights the significance of removing the dependence on
B in the regret bound, which is now an exponential factor
in the number of opponents.

Formally, consider the m-player general-sum MG

MGm(S, {Ai}mi=1,P, {ri}mi=1, H), (5)

where S, H follow from the same definition in two-player
zero-sum MGs, and

– for each i ∈ [m], player i has its own action space
Ai =

⋃
h∈[H]Ai,h and return function ri = {ri,h :

Sh ×
⊗m

i=1Ai,h → [0, 1]}mi=1, and aims to maximize
its own cumulative return (here

⊗
denotes the Cartesian

product of sets);

– P is a collection of transition functions {Ph : Sh ×⊗m
i=1Ai,h → ∆(Sh+1)}h∈[H].

Like in two-player MGs, let

S := sup
h∈[H]

|Sh|, Ai := sup
h∈[H]

|Ai,h| for all i ∈ [m].

Online learning in an unknown multi-player general-sum
MG can be reduced to that in a two-player zero-sum MG.
Concretely, suppose we are player 1, then online learning
in unknown MGs (5) is indistinguishable from that in the
two-player zero-sum MG specified by (S,A1,B,P, r1, H)
where B =

⊗m
i=2Ai, since we only observe and care about

player 1’s return. For all states s ∈ S1, define the value
function using r1 as

V µ,νh (s) := Eµ,ν [
∑H

h′=h
r1,h′(sh′ , ah′ , bh′)|sh = s],

and define the minimax value of player 1 as

V ∗1 (s) := max
µ

min
ν
V µ,ν1 (s) = min

ν
max
µ

V µ,ν1 (s),

which is no larger than the value at any Nash equilibrium
of the multi-player general-sum MG. Then we define the
regret against the minimax value of player 1 as

Regret(K) :=
∑K

k=1

(
V ∗1 (sk1)− V µ

k,νk

1 (sk1)
)
.

We argue that this notion of regret is reasonable since we
have control of only player 1 and all opponents may collude
to compromise our performance. Then immediately we
obtain the following corollary from Theorem 2.

Corollary 3 (Regret bound in multi-player MGs). For any
p ∈ (0, 1), let A = A1 and ι = log(HSAK/p). If we run V-
OL with our hyperparameter specification (3) for some large
constant c > 0 and the choice of G in Theorem 2 for player
1 in the online multi-player general-sum MG (5), then with
probability at least 1− p, the regret in K episodes satisfies

Regret(K) =

{
Õ
(
H2S

1
3A

1
3
1 K

2
3

)
, if K ≥ H3SA1,

Õ
(√
H5SA1K

2
3 +H3SK

1
3

)
, otherwise.

In a multi-player MG, the size of the opponents’ joint action
space B grows exponentially in the number of opponents.
Corollary 3 shows that the regret of V-OL only depends on
the size of our player’s action space A1. The savings arise
because V-OL bypasses the need to learn Q-tables, and the
multi-player setting makes no real difference in our analysis.

In the online informed setting, the same equivalence to a
two-player zero-sum MG holds, since the other players’
actions we observe can be seen as a single action (ai)

m
i=2,

and whether we observe the other players’ returns does not
help us decide our policies to maximize our own cumulative
return. In this setting, the regret bound in (Xie et al., 2020)
becomes Õ(

√
H4S3

∏m
i=1A

3
iK), which depends exponen-

tially on m. On the other hand, since the online informed
setting has stronger assumptions than online learning in
unknown MGs, the Õ(H2S1/3A

1/3
1 K2/3) regret bound of

V-OL carries over, which has no dependence on m. This
sharp contrast highlights the importance of achieving a re-
gret independent of the size of the opponent’s action space.

Furthermore, since in V-OL we only need to update the
value function (which has HS entries), rather than update
the Q-table (which hasHS

∏m
i=1Ai entries) as in (Xie et al.,

2020), we can also improve the time and space complexity
by an exponential factor in m.

6. Proof sketch of Theorem 2
In this section, we sketch the proof of Theorem 2. We
also highlight an observation that V-OL can perform much
better than claimed in Theorem 2. Moreover, we expose
the problem with V-SP in the online setting, which explains
why we favor more recent samples in V-OL.

In the analysis below, we use a superscript k to signify the
corresponding quantities at the beginning of the kth episode.
To express V kh in Algorithm 1 compactly, we introduce the
following quantities.

α0
t :=

∏t

j=1
(1− αj), αit := αi

∏t

j=i+1
(1− αj).

Let t := Nk
h (s) and suppose s is previously visited at

episodes k1, . . . , kt ≤ k. Then we can express V kh (s) as

α0
tH +

∑t

i=1
αit
(
rh(s, ak

i

h , b
ki

h ) + V k
i

h+1(sk
i

h+1) + βi
)
.
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It is easy to verify that {αit}ti=1 satisfies the normalization
property that

∑t
i=1 α

i
t = 1 for any sequence {αt}t≥1 and

any t ≥ 1. Moreover, for {αt}t≥1 specified in (3), {αit}
has several other desirable properties (Lemma 2), resem-
bling (Jin et al., 2018, Lemma 4.1).

Upper confidence bound (UCB). In Algorithm 1, by
bonus βt we ensure that V kh is an entrywise UCB on V ∗h
using standard techniques (Bai et al., 2020), building on the
normalization property of {αit}ti=1 and the key V-learning
lemma (Lemma 3) based on the regret bound of the adver-
sarial bandit problem we solve to derive the policy update.
Remark 4. A main difference from the previous UCB frame-
work (e.g., Azar et al. (2017)) is that here the gap between
V kh and V ∗h is not necessarily diminishing, which partially
explains why we do not achieve the conventional Õ(

√
T ) re-

gret. Concretely, by taking µ = µ∗ in the V-learning lemma
(Lemma 3), we have

V kh (s)− V ∗h (s)

≥
∑t

i=1
αitDµ∗h,νki

h
[rh + PhV k

i

h+1](s)

− Dµ∗h,ν∗h [rh + PhV ∗h+1](s)

=
∑t

i=1
αitDµ∗h,νki

h
[Ph(V k

i

h+1 − V ∗h+1)](s)

+
∑t

i=1
αit(Dµ∗h,νki

h
− Dµ∗h,ν∗h)[rh + PhV ∗h+1](s)

(i)

≥
∑t

i=1
αit(Dµ∗h,νki

h
− Dµ∗h,ν∗h)[rh + PhV ∗h+1](s),

where (i) follows from the above UCB. If the opponent
is weak at some step h ∈ [H] such that for all episodes
k ∈ [K],

(Dµ∗h,νk
h
− Dµ∗h,ν∗h)[rh + PhV ∗h+1](s) ≥ C,

then
∑K
k=1(V kh (s) − V ∗h (s)) ≥ CK. This indicates that

the gap between the sum of the UCBs and that of the mini-
max values can be linear in K. As proved below, we actu-
ally show that

∑K
k=1(V k1 − V

µk,νk

1 )(skh) is sublinear in K,
which is much stronger than that merely the regret is sublin-
ear if the opponent is weak. In words, V-OL performs much
better than claimed in Theorem 2 against a weak opponent.

Regret bounds. Note that the above proof of the UCB
holds for any G > 0. We now illustrate what problem
appears if G = 1 and where the constraint G ≥ 1 comes
from. Let “.” denote “≤” up to multiplicative constants.
Define δkh := (V kh − V µ

k,νk

h )(skh). Then by the UCB,
Regret(K) ≤

∑K
k=1 δ

k
1 . It then suffices to bound

∑K
k=1 δ

k
1 .

By the decomposition of V kh , the standard concentration
inequality and our choice of βt, we have (with some lower-
order terms hidden)

δkh .
√

GH3Aι
t + GH2ι

t − Dµk
h,ν

k
h
[rh + PhV µ

k,νk

h+1 ](skh)

+
∑t

i=1
αitDµki ,νki [rh + PhV k

i

h+1](skh).

To treat the last term, we need the regrouping technique
(see, e.g., (Jin et al., 2018)): for any quantity fk indexed by
k ∈ [K],∑K

k=1

∑t

i=1
αitf

ki ≤
∑K

k′=1
fk
′∑∞

t=nk′
h

α
nk′
h
t

≤ (1 + 1
GH )

∑K

k=1
fk.

Taking Dµki ,νki [rh + PhV k
i

h+1](skh) as f i yields (with some
lower-order terms hidden)∑K

k=1
δkh .

∑K

k=1

(
(1 + 1

GH )δkh+1

+

√
GH3Aι

t + GH2ι
t + 1

G

)
,

where 1
G (not arising in the proof of V-SP) results from

1
GHDµk

h,ν
k
h
[rh + PhV µ

k,νk

h+1 ](skh) ≤ 1
GH ·H = 1

G .

Since
∑K
k=1 δ

k
H+1 = 0, a recursion over h ∈ [H] for∑K

k=1 δ
k
h yields

K∑
k=1

δk1 . (1 + 1
GH )H

K∑
k=1

H∑
h=1

(√
GH3Aι

t + GH2ι
t + 1

G

)
.

To bound the coefficient (1 + 1
GH )H ≤ e, we need G ≥ 1.

By standard pigeonhole arguments,∑K

k=1

√
1
t =

∑
s∈Sh

∑nK
h (s)

n=1

√
1
n .
√
SK,∑K

k=1

1
t =

∑
s∈Sh

∑nK
h (s)

n=1

1
n . S logK ≤ Sι.

Hence, we obtain

K∑
k=1

δk1 . GH3Sι2 +
√
GH5SAKι+G−1KH.

If we take G = 1 as in V-SP, the regret is linear in K and
therefore useless. To address this problem, we introduced
the tunable parameter G ≥ 1 that balances the

√
K and K

terms in the above bound to yield a sublinear regret.

7. Conclusion and Future Work
In this paper, we study online learning in unknown Markov
games using V-OL, which is based on the V-SP algorithm
of Bai et al. (2020). V-OL achieves Õ(K2/3) regret after
K episodes. Furthermore, the regret bound is independent
of the size of opponents’ action space. It is still unclear
whether one can achieve a sharper regret bound, which is
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a question worthy of future study. We briefly comment on
two other future directions.

Toward Õ(K1/2) regret in MDPs. A key reason why we
need to learn more aggressively in online learning is that a
symmetric structure (like that in the proof of V-SP) is absent.
However, it exists if the opponent plays a fixed policy, in
which case the Markov game becomes an MDP. To see why,
we can imagine the opponent is also executing V-OL, which
makes no difference since B = 1. However, even in that
case, a gap remains: we can only upper and lower bound
V ∗h but not V µ

k,νk

h . Figuring out how to fill this gap will
make V-OL become the first policy-based algorithm without
an estimation of Q-value functions that achieves Õ(K1/2)
regret for tabular RL.

Strong regret for MDPs with adversarial rewards. An-
other special case is MDPs with adversarial rewards, where
the transitions are fixed across episodes. In this case, achiev-
ing sublinear regret using strong regret (1) is possible (Jin
et al., 2019). A question is then: does V-OL (or its variants)
achieve sublinear regret using the strong regret? Given the
many technical differences between MDPs with adversarial
rewards and online Markov games, it is desirable to resolve
these problems in a unified manner. In addition, the form
of the model-free update in V-OL should be of independent
interest for MDPs with adversarial rewards.
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A. Proof of the lower bound
The lower bound builds on the following lower bound for adversarial MDPs where both the transition and the reward
function of each episode are chosen adversarially. Note that in our proof of Lemma 1, the optimal policies for Mk are the
same, so Lemma 1 indeed implies a lower bound on the regret defined against the best stationary policy in hindsight.

Lemma 1 (Lower bound for adversarial MDPs). For any horizon H ≥ 2 and K ≥ 1, there exists a family of MDPsM
with horizon H , state space {Sh}h≤H with |Sh| ≤ 2, action space {Ah}h≤H with |Ah| ≤ 2, and reward rh ∈ [0, 1] such
that the following is true: for any algorithm that deploys policy µk in episode k, we have

sup
M1,··· ,MK∈M

sup
µ

K∑
k=1

(
V µMk

(s0)− Eµk
V µ

k

Mk
(s0)

)
≥ Ω(min

{√
2HK,K

}
),

where V ∗Mk
refers to the optimal value function of MDP Mk.

Proof. Our construction is inspired by the “combination lock” MDP (Du et al., 2019). Let us redefine the horizon length as
H + 1 (so that H ≥ 1) and let h start from 0. We now define our family of MDPs.

Definition 1 (MDP MX,Y,ε). For any pair of bit strings X = (x1, . . . , xH) ∈ {0, 1}H , Y = (y1, . . . , yH) ∈ {0, 1}H and
any ε ∈ (0, 1), the MDP MX,Y,ε is defined as follows.

1. The state space is S0 = {s0} and Sh = {s0,h, s1,h} for all 1 ≤ h ≤ H . The MDP starts at s0 deterministically and
terminates at s0,H or s1,H .

2. The action space is Ah = {0, 1} for all 0 ≤ h ≤ H .

3. The transition is defined as follows:

• s0 transitions to s0,1 or s1,1 with probability at least 1/2 each, regardless of the action taken.
• For any 1 ≤ h ≤ H − 1, syh,h transitions to syh+1,h+1 deterministically if ah = xh ⊕ yh (“correct state” in

combination lock), and transitions to s1−yh+1,h+1 deterministically if ah = 1− xh ⊕ yh.
• For any 1 ≤ h ≤ H − 1, s1−yh,h transitions to s1−yh+1,h+1 deterministically regardless of the action taken

(“wrong state” in combination lock).

4. The reward is rh ≡ 0 for all 0 ≤ h ≤ H − 1. At step H , we have

• rH(syH ,H) ∼ Ber(1/2 + ε),
• rH(s1−yH ,H) ∼ Ber(1/2− ε).

A visualization for the MDP specified by X , Y and ε is shown in Figure 2.

...

Figure 2. M(X,Y ): “Combination lock” MDP specified by X and Y . For y ∈ {0, 1}, y′ stands for 1− y.

It is straightforward to see that the optimal value function of this MDP is 1/2(1/2 + ε) + 1/2(1/2− ε) = 1/2, and the only
way to achieve higher reward than 1/2 − ε is by following the path of “good states”: (s0, sy1,1, · · · , syh,h, · · · , syH ,H).
The corresponding optimal policy is π∗(sw,h) = w ⊕ xh, which is independent of Y .



Online Learning in Unknown Markov Games

Random sequence of MDPs is as hard as a 2H -armed bandit. We now consider any fixed (but unknown) X ∈ {0, 1}H

and draw K independent samples Yk ∼ Unif({0, 1}H) for 1 ≤ k ≤ K. We argue that if we provide Mk := MX,Yk,ε in
episode k (with some appropriate choice of ε), then the problem is as hard as a 2H -armed bandit problem with (minimum)
suboptimality gap ε, and thus must have the desired regret lower bound.

Our first claim is that, on average over Yk, the trajectory seen by the algorithm is equivalent (equal in distribution) to the
following “completely random” MDP: each state s{0,1},h transitions to s{0,1},h+1 with probability at least 1/2 regardless
of the actions taken; and the reward is rH ∼ Ber(1/2) if A = X ⊕ Y and rH ∼ Ber(1/2 − ε) if A 6= X ⊕ Y , where
A = {a1, . . . , ah} are the actions taken in steps 1 through H . Indeed, consider the transition starting from syh,h. Since
yh+1 ∼ Ber(1/2), the transition probability to s0,h+1 and s1,h+1 must be 1/2 each, regardless of the action taken. The
claim about the reward follows from the definition of the MDP.

We now construct a bandit instance, and show that solving this bandit problem can be reduced to online learning in the
sequence of MDPs above. The bandit instance has 2H arms indexed by {0, 1}H . The arm indexed by X gives reward
Ber(1/2), and otherwise the reward is Ber(1/2− ε). Now, for any algorithm solving the adversarial MDP problem, consider
the following induced algorithm for the bandit problem.

Algorithm 2 Reducing bandits to adversarial MDPs
1: for k = 1, . . . ,K do
2: Sample Y ∼ Unif({0, 1}H).
3: Simulate the adversarial MDP algorithm by showing the trajectory (s0, sy1,1, . . . , syH ,H).
4: Denote the action sequence by A = (a1, . . . , aH).
5: Play A⊕ Y in the bandit environment.
6: Show the received bandit reward to the adversarial MDP algorithm as the last step reward.
7: end for

We now argue that the interaction seen by the adversarial MDP algorithm is identical in distribution to the sequence MX,Yk,ε.
The trajectory is drawn from a uniform distribution, which is the same as that generated by MX,Yk,ε. The reward is high,
i.e. Ber(1/2), if and only if A⊕ Y = X , which is equivalent to A = X ⊕ Y . This is also the case in the adversarial MDP
problem, since playing the action sequence X ⊕ Y corresponds to playing the optimal policy π∗(syh,h) = xh ⊕ yh.

Therefore, the regret achieved by the induced algorithm in the bandit environment would be equal (in distribution) to the
regret achieved by this algorithm in the adversarial MDP environment. Applying classical lower bounds on stochastic
bandits (Lattimore & Szepesvári, 2020, Chapter 15) (which corresponds to taking ε = εH,K := min

{√
2H/K, 1/4

}
), we

obtain

sup
X∈{0,1}H

EY1,...,Yk∼Unif({0,1}H)

[
K∑
k=1

(
V ∗MX,Yk,εH,K

(s0)− EµkV µ
k

MX,Yk,εH,K
(s0)

)]
≥ Ω(min

{√
2HK,K

}
),

where Eµk denotes the randomness in the algorithm execution (which includes the randomness of the realized transitions and
rewards that were used by the algorithm to determine µk). Note that for the MDP MX,Yk,εH ,T , the optimal policy is dictated
by X and independent of Yk (hence independent of k). Thus, the previous lower bound can rewritten as a comparison with
the best policy in hindsight:

sup
X∈{0,1}H

sup
µ

EY1,...,Yk∼Unif({0,1}H)

[
K∑
k=1

(
V µMX,Yk,εH,K

(s0)− EµkV µ
k

MX,Yk,εH,K
(s0)

)]
≥ Ω(min

{√
2HK,K

}
).

The adversarial MDP problem is as hard as the above random sequence of MDPs. Define M :={
MX,Y,εH,K

: X,Y ∈ {0, 1}H
}

. As the minimax regret is lower bounded by the average regret over any prior distri-
bution of MDPs, the above lower bound implies the following minimax lower bound

sup
Mk∈M

sup
µ

[
K∑
k=1

(
V µMk

(s0)− EµkV µ
k

Mk
(s0)

)]
≥ Ω(min

{√
2HK,K

}
)

for any adversarial MDP algorithm.
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Proof of Theorem 1. With Lemma 1 in hand, we are in a position to prove the main theorem.

Our proof follows by defining a two-player Markov game and a set of min-player policies
{
νk
}

such that the transitions
and rewards seen by the max-player are exactly equivalent to the MDP MX,Yk,εH,K

constructed in Lemma 1. Indeed, we
augment the MDP MX,Yk,εH,K

with a set of min-player actions Bh = {1, 2, 3, 4}, and redefine the transition such that from
any si,h where i ∈ {0, 1} and 1 ≤ h ≤ H − 1, the Markov game transitions according to Table 1.

a/b 1 2 3 4
0 si,h+1 s1−i,h+1 si,h+1 s1−i,h+1

1 si,h+1 s1−i,h+1 s1−i,h+1 si,h+1

Table 1. transition function of the state si,h for the hard instance of Markov games.

Such an action set Bh is powerful enough to reproduce all the possible transitions in the original single-player MDP. We
then define νk as the policy such that the transition follows exactly MX,Yk

. The reward function is determined only by states
and thus remains the same. Therefore, Lemma 1 implies the following one-sided regret bound for the max-player:

sup
νk

sup
µ

K∑
k=1

(
V µ,ν

k

(s0)− EµkV µ
k,νk

(s0)
)
≥ Ω(min

{√
2HK,K

}
),

which is the desired result.

B. Proof for the V-OL algorithm
Throughout this section, let ι = log(HSAK/p), and we use ‘.’ to denote ‘≤’ hiding positive universal constants.

The following lemma summarizes the key properties of the choice of the learning rate αt, which are used in the proof below.
Lemma 2. The following properties hold for αit.

1. 1/
√
t ≤

∑t
i=1 α

i
t/
√
i ≤ 2/

√
t and 1/t ≤

∑t
i=1 α

i
t/i ≤ 2/t for all t ≥ 1.

2.
∑t
i=1(αit)

2 ≤ maxi∈[t] α
i
t ≤ 2GH/t for all t ≥ 1.

3.
∑∞
t=i α

i
t = 1 + 1/GH for all i ≥ 1.

Proof. The properties are copied from (Jin et al., 2018, Lemma 4.1) up to an additional parameter G, except that 1/t ≤∑t
i=1 α

i
t/i ≤ 2/t for all t ≥ 1, which we prove below by induction.

Recall that

α0
t :=

∏t

j=1
(1− αj), αit := αi

∏t

j=i+1
(1− αj).

For the base case t = 1,
∑t
i=1 α

i
t/i = α1

1 = 1; hence the statement holds. For t ≥ 2, by noticing αit = (1− αt)αit−1, we
have

t∑
i=1

αit
i

=
αt
t

+ (1− αt)
t−1∑
i=1

αit−1

i
.

Then by induction, on the one hand,
t∑
i=1

αit
i

=
αt
t

+ (1− αt)
t−1∑
i=1

αit−1

i
≥ α

t
+

1− α
t− 1

≥ α

t
+

1− α
t

=
1

t
;

on the other hand,
t∑
i=1

αit
i

=
αt
t

+ (1− αt)
t−1∑
i=1

αit−1

i
≤ αt

t
+

2(1− αt)
t

=
H + 1

t(H + t)
+

2

H + t
=
H + 1 + 2t

t(H + t)

(i)

≤ 2(H + t)

t(H + t)
=

2

t
,

where (i) holds since H ≥ 1.
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B.1. Upper confidence bound on the minimax value function

Lemma 3 (V-learning lemma). In Algorithm 1, let t = Nk
h (s) and suppose state s ∈ Sh was previously visited at episodes

k1, . . . , kt < k at the hth step. For any p ∈ (0, 1), let ι = log(HSAK/p). Choose ηt =
√
GHι/At. Then with probability at

least 1− p, for any t ∈ [K], h ∈ [H] and s ∈ Sh, there exists a constant c such that

max
µ∈∆Ah

t∑
i=1

αitDµ,νki

h

[
rh + PhV k

i

h+1

]
(s)−

t∑
i=1

αit

(
rh(s, ak

i

h , b
ki

h ) + V k
i

h+1(sk
i

h+1)
)
≤ c(

√
GH3Aι/t+GH2ι/t). (6)

Proof. By the Azuma-Hoeffding inequality and Lemma 2,

t∑
i=1

αitDµki

h ×ν
ki

h

(
rh + PhV k

i

h+1

)
(s)−

t∑
i=1

αit

[
rh

(
s, ak

i

h , b
ki

h

)
+ V k

i

h+1

(
sk

i

h+1

)]
≤ 2
√
GH3ι/t.

Hence, we only need to bound

R∗t := max
µ∈∆Ah

t∑
i=1

αitDµ×νki

h

(
rh + PhV k

i

h+1

)
(s)−

t∑
i=1

αitDµki

h ×ν
ki

h

(
rh + PhV k

i

h+1

)
(s), (7)

which is the weighted regret of an adversarial bandit problem where the loss is bounded in [0, H]. From an intermediate
result (the last but one inequality) in the proof of (Bai et al., 2020, Lemma 17), V-OL guarantees that with probability at
least 1− p, the scaled regret R∗t /H is bounded by

R∗t
H
≤ αtt logA

ηt
+
A

2

t∑
i=1

ηiα
i
t +

1

2
max
i≤t

αitι+A

t∑
i=1

ηiα
i
t +

√√√√2ι

t∑
i=1

(αit)
2 + max

i≤t

αitι

ηt
,

where for the parameters wi and γt in (Bai et al., 2020, Lemma 17), we take wi = αit and γt = ηt =
√

GHι
At . This

choice of γt satisfies the requirements in the proof of (Bai et al., 2020, Lemma 17) that ηi ≤ 2γi for all i ≤ t (Bai
et al., 2020, Lemma 19) and that γt is nondecreasing in t (Bai et al., 2020, Lemma 21). Therefore, by noticing that
maxi≤t α

i
t = αtt = GH+1

GH+t ≤ 2GH/t, we have

R∗t ≤ H
(
αtt logA

ηt
+

3A

2

∑t

i=1
ηiα

i
t +

1

2
αttι+

√
2ι
∑t

i=1

(
αit
)2

+
αttι

ηt

)
(i)

. H

(
αtt

√
Atι

GH
+
√
GHAι

∑t

i=1

αit√
i

+GHι/t+

√
ι
∑t

i=1

(
αit
)2)

(ii)

≤ H

(
2GH

t

√
Atι

GH
+ 2
√
GHAι/t+GHι/t+

√
2GHι/t

)
.
√
GH3Aι/t+GH2ι/t,

where (i) is by setting ηt =
√

GHι
At and (ii) is by Lemma 2. Taking the union bound for all (t, h, s) ∈ [K] × [H] × S

completes the proof.

Lemma 4 (Upper confidence bound). In Algorithm 1, for any p ∈ (0, 1), let ι = log(HSAK/p) and choose βt =
c(
√
GH3Aι/t+GH2ι/t) for some large constant c. Then with probability at least 1− p, V ∗h (s) ≤ V kh (s) for all k ∈ [K],

h ∈ [H] and s ∈ Sh.

Proof. The proof is similar to that of (Bai et al., 2020, Lemma 15), except that we need to deal with an extra parameter G
here.

Let kih(s) denote the index of the episode where s ∈ Sh is observed at step h for the ith time. Where there is no ambiguity,
we use ki as a shorthand for kih(s). Let skh be the state actually observed in the algorithm at step h in episode k. For our
choice of βi, we have

∑t
i=1 α

i
tβi = Θ(

√
GH3Aι/t+GH2ι/t) by Lemma 2.
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Recall that

V kh (s) := α0
tH +

t∑
i=1

αit

(
rh(s, ak

i

h , b
ki

h ) + V k
i

h+1(sk
i

h+1) + βi

)
, (8)

V ∗h (s) := Dµ∗h,ν∗h [rh + PhV ∗h+1](s).

For h = H + 1 the UCB vacuously holds. To apply backward induction, assume that V ∗h+1 ≤ V kh+1 holds entrywise. Then
by definition, for any s ∈ Sh,

V ∗h (s) = max
µ∈∆Ah

min
ν∈∆Bh

Dµ,ν [rh + PhV ∗h+1](s)

(i)
= max

µ∈∆Ah

∑t

i=1
αit min

ν∈∆Bh

Dµ,ν [rh + PhV ∗h+1](s)

≤ max
µ∈∆Ah

∑t

i=1
αitDµ,νki

h
[rh + PhV ∗h+1](s)

(ii)

≤ max
µ∈∆Ah

∑t

i=1
αitDµ,νki

h
[rh + PhV k

i

h+1](s)
(iii)

≤ V kh (s),

where (i) follows from
∑t
i=1 α

i
t = 1, in (ii) we apply the induction assumption, and (iii) holds with probability at least

1 − p by the V-learning lemma (Lemma 3) and the decomposition (8) with
∑t
i=1 α

i
tβi = Θ(

√
GH3Aι/t + GH2ι/t).

Inductively we have V ∗h (s) ≤ V kh (s) for all k ∈ [K], h ∈ [H] and s ∈ Sh.

B.2. Proof of Theorem 2

Proof. Recall that

V µ
k,νk

h (skh) = Dµk
h,ν

k
h
[rh + PhV µ

k,νk

h+1 ](skh).

Then define δkh := (V kh − V
µk,νk

h )(skh). By definition,

δkh = α0
tH +

t∑
i=1

αit

(
rh(skh, a

ki

h , b
ki

h ) + V k
i

h+1(sk
i

h+1) + βi

)
− Dµk

h,ν
k
h
[rh + PhV µ

k,νk

h+1 ](skh)

(i)
= α0

tH +

t∑
i=1

αit

(
rh(skh, a

ki

h , b
ki

h ) + V k
i

h+1(sk
i

h+1) + βi

)
−

t∑
i=1

αitDµki ,νki [rh + PhV k
i

h+1](skh)

+

t∑
i=1

αitDµki ,νki [rh + PhV k
i

h+1](skh)− Dµk
h,ν

k
h
[rh + PhV µ

k,νk

h+1 ](skh)

(ii)

. α0
tH +

√
GH3Aι

t + GH2ι
t +

t∑
i=1

αitDµki ,νki [rh + PhV k
i

h+1](skh)− Dµk
h,ν

k
h
[rh + PhV µ

k,νk

h+1 ](skh),

where in (i) we add and subtract the same term, and (ii) follows from the property of βi that
∑t
i=1 α

i
tβi = Θ(

√
GH3Aι/t+

GH2ι/t) and the fact that by the Azuma-Hoeffding inequality and Property 2 of Lemma 2,

t∑
i=1

αit

(
rh(skh, a

ki

h , b
ki

h ) + V k
i

h+1(sk
i

h+1)
)
−

t∑
i=1

αitDµki ,νki [rh + PhV k
i

h+1](skh) .
√

GH3ι
t .

By the same regrouping technique as that in (Jin et al., 2018),

K∑
k=1

t∑
i=1

αitDµki ,νki [rh + PhV k
i

h+1](skh) ≤
K∑
k′=1

Dµk′ ,νk′ [rh + PhV k
′

h+1](skh)

∞∑
t=nk′

h

α
nk′
h
t
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≤ (1 + 1
GH )

K∑
k=1

Dµk,νk [rh + PhV kh+1](skh).

Substituting the above back into the bound on δkh and taking sum over k ∈ [K], we obtain

K∑
k=1

δkh .
K∑
k=1

(
α0
tH +

√
GH3Aι

t + GH2ι
t + (1 + 1

GH )Dµk,νk [rh + PhV kh+1](skh)− Dµk
h,ν

k
h
[rh + PhV µ

k,νk

h+1 ](skh)

)
(i)
=

K∑
k=1

(
α0
tH +

√
GH3Aι

t + GH2ι
t + (1 + 1

GH )(δkh+1 + γkh) + 1
GHDµk

h,ν
k
h
[rh + PhV µ

k,νk

h+1 ](skh)

)
(ii)

≤
K∑
k=1

(
α0
tH +

√
GH3Aι

t + GH2ι
t + (1 + 1

GH )(δkh+1 + γkh) + 1
G

)
,

where in (i) we define the martingale difference term γkh := Dµk
h,ν

k
h
[Ph(V kh+1 − V

µk,νk

h+1 )](skh)− (V kh+1 − V
µk,νk

h+1 )(skh+1)

and (ii) follows from that

Dµk
h,ν

k
h
[rh + PhV µ

k,νk

h+1 ](skh) ≤ H.

Recursively,

K∑
k=1

δk1 . (1 + 1
GH )H

K∑
k=1

H∑
h=1

(
α0
tH +

√
GH3Aι

t + GH2ι
t + (1 + 1

GH )γkh + 1
G

)
.

Now we bound each term in
∑K
k=1 δ

k
1 separately by standard techniques in (Jin et al., 2018; Xie et al., 2020):

K∑
k=1

α0
nk
h
H ≤

K∑
k=1

H · I(nkh = 0) ≤ HS,

K∑
k=1

√
GH3Aι
nk
h

=
√
GH3Aι

K∑
k=1

√
1
nk
h

(i)
=
√
GH3Aι

∑
s∈Sh

nK
h (s)∑
n=1

√
1
n .
√
GH3SAKι,

K∑
k=1

GH2ι
t = GH2ι

K∑
k=1

1
nk
h

(ii)
= GH2

∑
s∈Sh

nK
h (s)∑
n=1

1
n . GH2Sι2,

K∑
k=1

H∑
h=1

γkh

(iii)

.
√
H3Kι,

where (i) and (ii) follow from a pigeonhole argument and (iii) follows from the Azuma-Hoeffding inequality. Combining
the above bounds, we obtain

Regret(K) ≤
K∑
k=1

δk1 . GH3Sι2 +
√
GH5SAKι+G−1KH.

If K ≥ H3SA then we take we take G = 1
H ( KSA )1/3; otherwise we take G = K

1
3 . Then the following regret bounds holds:

Regret(K) =

{
Õ
(
H2S

1
3A

1
3K

2
3

)
, if K ≥ H3SA,

Õ
(√
H5SAK

2
3 +H3SK

1
3

)
, otherwise.
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C. The Q-OL Algorithm
When explaining the intuition behind the V-OL in Section 4, we mentioned that learning a Q-table will result in a regret
bound depending on AB. This is clear for the algorithms we mentioned in the literature. However, the regret bounds
of Q-learning-type algorithms have not been studied to our best knowledge. In this section, we study a Q-learning-type
algorithm for online MGs. We formalize Q-OL in Algorithm 3, which is similar to the Optimistic Nash Q-learning (Q-SP)
algorithm in (Bai et al., 2020). We emphasize that since learning a Q-table requires knowing the opponents’ actions, Q-OL
only works for informed MGs, but not for unknown MGs.

Algorithm 3 Optimistic Nash Q-learning for Online Learning (Q-OL)
1: Require: Learning rate {αt}t≥1, exploration bonus {βt}t≥1

2: Initialize: for any (s, a, b, h), Qh(s, a, b)← H , Nh(s, a, b)← 0, µh(a|s)← 1/A
3: for episode k = 1, . . . ,K do
4: Receive s1

5: for step h = 1, . . . ,H do
6: Take action ah ∼ µh(·|sh)
7: Observe action bh, reward rh(sh, ah, bh) and next state sh+1

8: t = Nh(sh, ah, bh)← Nh(sh, ah, bh) + 1
9: Qh(sh, ah, bh)← (1− αt)Qh(sh, ah, bh) + αt(rh(sh, ah, bh) + Vh+1(sh+1) + βt)

10: Solve the NE (µh(·, |sh), νh(·, |sh)) of the matrix game with payoff matrix Qkh(sh, ·, ·)
11: Vh(sh)← (Dµh×νhQh)(sh)
12: end for
13: end for

In Algorithm 3, we set αt := H+1/H+t. As in the analysis of V-OL, below we use a superscript k to signify the
corresponding quantities at the beginning of the kth episode. The following lemma claims that Qkh and V kh are the entrywise
upper confidence bounds of Q∗h and V ∗h for all k ∈ [K] and h ∈ [H]; see the proof of (Bai et al., 2020, Lemma 3) for
its proof.

Lemma 5 (Upper confidence bounds). In Algorithm 3, for any p ∈ (0, 1), ι = log(HSAK/p) and choose βt = c
√
H3ι/t for

some large constant c. Then with probability at least 1− p, Q∗h(s, a, b) ≤ Qkh(s, a, b) and V ∗h (s) ≤ V kh (s) for all k ∈ [K],
h ∈ [H] and (s, a, b) ∈ Sh ×Ah × Bh.

Then for Q-OL, we have the following regret guarantees.

Theorem 4 (Regret bound of Q-OL). For any p ∈ (0, 1), let ι = log(HSAK/p) and choose βt = c
√
H3ι/t for some

large constant c > 0. If we run Q-OL in a two-player zero-sum MG, then with probability at least 1− p, the regret in K
episodes satisfies

Regret(K) = O
(
SABH2 +

√
H5SABKι

)
. (9)

Proof. Let kih(s, a, b) denote the index of the episode where (s, a, b) is observed at step h for the ith time. Where there is
no ambiguity, we use ki as a shorthand for kih(s, a, b). Let skh be the state actually observed in the algorithm at step h in
episode k.

By defining

γkh := Ea∼µk
h(skh)[Q

k
h(skh, a, b

k
h)]−Qkh(skh, a

k
h, b

k
h),

γ̂kh := Ea∼µk
h(skh),b∼ωk

h
[Qµ

k,ωk

h (skh, a, b)]−Q
µk,ωk

h (skh, a
k
h, b

k
h),

we have

V kh (skh) = min
ν∈∆Bh

Ea∼µk
h(skh),b∼ν [Qkh(skh, a, b)] ≤ Ea∼µk

h(skh)[Q
k
h(skh, a, b

k
h)] = Qkh(skh, a

k
h, b

k
h) + γkh,

V µ
k,ωk

h (skh) = Ea∼µk
h(skh),b∼ωk

h
[Qµ

k,ωk

h (skh, a, b)] = Qµ
k,ωk

h (skh, a
k
h, b

k
h) + γ̂kh.
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Define δkh := V kh (skh)− V µ
k,ωk

h (skh) and φkh := V kh (skh)− V ∗h (skh). Then

δkh ≤ Qkh(skh, a
k
h, b

k
h) + γkh −Q

µk,ωk

h (skh, a
k
h, b

k
h)− γ̂kh.

In Algorithm 3, for any k ∈ [K], h ∈ [H] and (s, a, b) ∈ Sh × Ah × Bh, let t := Nk
h (s, a, b) and suppose (s, a, b) is

previously visited at episodes k1, · · · , kt ≤ k. Then we can rewrite Qkh(s, a, b) as

Qkh(s, a, b) = α0
tH +

t∑
i=1

αit

(
rh(s, a, b) + V k

i

h+1(sk
i

h+1) + βi

)
,

and recall that

Q∗h(s, a, b) = rh(s, a, b) + PhV ∗h+1(s, a, b).

Then the difference between Qkh and Qµ
k,ωk

h at (skh, a
k
h, b

k
h) satisfies

(Qkh −Q
µk,ωk

h )(skh, a
k
h, b

k
h)

(i)
= (Qkh −Q∗h +Q∗h −Q

µk,ωk

h )(skh, a
k
h, b

k
h)

(ii)

≤ α0
tH +

t∑
i=1

αitφ
ki

h+1 + 2β̃t + Ph(V ∗h+1 − V
µk,ωk

h+1 )(skh, a
k
h, b

k
h)

(iii)
= α0

tH +

t∑
i=1

αitφ
ki

h+1 + 2β̃t + δkh+1 − φkh+1 + ζkh ,

where in (i) we add and subtract the same term, in (ii) we define β̃t :=
∑t
i=1 α

i
tβi = O(

√
H3ι/t) and by the Azuma-

Hoeffding inequality we have∣∣∣∣∣
t∑
i=1

αit
(
PhV ∗h+1(s, a, b)− V k

i

h+1(sk
i

h+1)
)∣∣∣∣∣ ≤ 2H

√√√√ι

t∑
i=1

(αit)
2 = O

(√
H3ι

t

)
choice of βi
==== β̃t,

and in (iii) we define

ζkh := Ph(V ∗h+1 − V
µk,ωk

h+1 )(skh, a
k
h, b

k
h)− (V ∗h+1 − V

µk,ωk

h+1 )(skh+1).

Therefore,

δkh ≤ δkh+1 + α0
tH +

t∑
i=1

αitφ
k
h+1 + 2β̃t − φkh+1 + ζkh + γkh − γ̂kh.

Recursively,

δk1 ≤
H∑
h=1

(
α0
tH +

t∑
i=1

αitφ
k
h+1 + 2β̃t − φkh+1 + ζkh + γkh − γ̂kh

)
. (10)

By Lemma 5, the regret that we aim to bound is upper bounded by
∑K
k=1 δ

k
1 . Let nkh := Nk(skh, a

k
h, b

k
h). By the regrouping

technique in (Jin et al., 2018),

K∑
k=1

t∑
i=1

αitφ
ki

h+1 ≤
K∑
k′=1

φk
′

h+1

∞∑
t=nk′

h

α
nk′
h
t ≤ (1 +

1

H
)

K∑
k=1

φkh+1.

Substituting the above into (10) yields

K∑
k=1

δk1 ≤
K∑
k=1

H∑
h=1

(
α0
nk
h
H +

1

H
φkh+1 + 2β̃t + ζkh + γkh − γ̂kh

)
.
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Now we bound each term in
∑K
k=1 δ

k
1 separately by standard techniques in (Jin et al., 2018; Xie et al., 2020):

K∑
k=1

α0
nk
h
H ≤

K∑
k=1

H · I(nkh = 0) ≤ SABH,

K∑
k=1

β̃nk
h
≤ O(1)

K∑
k=1

√
H3ι

nkh
≤ O(

√
H3SABKι),

K∑
k=1

H∑
h=1

(ζkh + γkh − γ̂kh) = O(
√
H3Kι) = O(

√
H3Kι).

(11)

Bounding 1
H

∑K
k=1

∑H
h=1 φ

k
h+1 requires additional efforts, since here the relationship φkh+1 ≤ δkh+1 in (Jin et al., 2018)

does not necessarily hold. Define the martingale difference sequence

γkh = Ea∼µ∗h(skh),b∼ν∗h
[Q∗h(skh, a, b)]−Q∗h(skh, a

k
h, b

k
h).

Then by noting

φkh = Qkh(skh, a
k
h, b

k
h) + γkh −Q∗h(skh, a

k
h, b

k
h)− γkh ≤ α0

tH +

t∑
i=1

αitφ
ki

h+1 + 2β̃t + γkh − γkh,

we obtain

K∑
k=1

φkh ≤ (1 +
1

H
)

K∑
k=1

φkh+1 +

K∑
k=1

(
α0
tH + 2β̃t + γkh − γkh

)
.

Recursively, for all h′ ∈ [H],

K∑
k=1

φkh′ ≤ (1 +
1

H
)H+1−h′

K∑
k=1

H∑
h=h′

(
α0
tH + 2β̃t + γkh − γkh

)
.

Then by similar arguments to those in (11),

1

H

K∑
k=1

H∑
h=1

φkh . SABH2 +
√
H5SABKι. (12)

Finally, combining the above separate bounds in (11) and (12) yields

Regret(K) . SABH2 +
√
H5SABKι.


