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A. Measure-Theoretic Formalization of

Stochastic Conditioning

Although stochastic conditioning is defined in terms of the

density q of the distribution D, its key idea does not depend

on q. In fact, we have already explained informally how

stochastic conditioning and our results can be developed

even when the density q does not exist, as in the case of

Dirac distributions. Also, Proposition 2 assumes this general

development. In this section, we spell out this informal ex-

planation, and describe the measure-theoretic formalization

of stochastic conditioning.

We start by changing Definitions 1 and 2 such that D is

not required to have a density with respect to the Lebesgue

measure, and the conditional density p(y∼D|x) is defined

for such D.

Definition 3. A probabilistic model with stochastic condi-

tioning is a tuple (p(x, y), D) where

• p(x, y) is the joint probability density of random vari-

able x and observation y, and it is factored into the

product of the prior p(x) and the conditional probabil-

ity p(y|x) (i.e., p(x, y) = p(x)p(y|x));

• D is the distribution (i.e., probability measure) from

which observation y is sampled.

Definition 4. The conditional density p(y∼D|x) of D given

x is

p(y∼D|x) = exp

(∫

Y

(log p(y|x))D(dy)

)

(19)

where D(dy) indicates that the integral over Y is taken with

respect to the distribution D.

To explain where the term “density” in Definition 4 comes

from, we recall the standard setup of the work on random

distributions, which studies distributions over distributions.2

The setup over random distributions on Y ⊆ R
m is the

measurable space (D,Σ) where D is the set of distributions

over Y and Σ is the smallest σ-field generated by the family

{

{D | D(A) < r}
∣

∣

∣ measurable A ⊆ Y and r ∈ R

}

.

The next theorem generalizes Theorem 1. In a setting that

covers both continuous and discrete cases, with or without

densities, the theorem describes when p(y∼D|x) has a finite

normalization constant.

Theorem 2. Assume that we are given a distribution Dθ

parameterized by θ ∈ Θ ⊆ R
p such that D is a probability

kernel from Θ to Y , and the following µx is a well-defined

2A brief yet good exposition on this topic can be found in
Appendix A of Ghosal & van der Vaart (2017).

unnormalized distribution (i.e., measure) over Θ: for all

measurable subsets B of Θ,

µx(B) =

∫

B

p(y∼Dθ|x) dθ

=

∫

B

exp

(∫

Y

(log p(y|x))Dθ(dy)

)

dθ.

Let νx be the push-forward of µx along the function θ 7−→
Dθ from Θ to D. The unnormalized distribution νx has a

finite normalization constant C (i.e., νx(D) = C < ∞) if

there exists C ′ < ∞ such that for all measurable subsets A

of Y ,
∫

Θ

Dθ(A) dθ ≤

(

C ′ ·

∫

A

dy

)

. (20)

Before proving the theorem, we make two comments. First,

when Dθ is defined in terms of a density qθ, the condition

(20) in the theorem is implied by the condition in Theorem 1:

sup
y∈Y

∫

Θ

qθ(y)dθ ≤ C ′.

The implication is shown below:

∫

Θ

Dθ(A) dθ =

∫

Θ

∫

A

qθ(y)dydθ =

∫

A

∫

Θ

qθ(y)dθdy

≤

∫

A

sup
y′∈Y

(∫

Θ

qθ(y
′)dθ

)

dy ≤

(

C ′ ·

∫

A

dy

)

.

Second, when λx is the push-forward of the Lebesgue mea-

sure along θ 7−→ Dθ, our p(y∼D|x) is the density of νx
with respect to λx. This is why we called p(y∼D|x) condi-

tional density.

Proof. The theorem claims that C = νx(D) is finite. But

C = µx(Θ) by the definition of the push-forward measure,

and so it suffices to show the finiteness of µx(Θ). Note

µx(Θ) =

∫

Θ

exp

(∫

Y

(log p(y|x))Dθ(dy)

)

dθ. (21)

We compute a finite bound of C = µx(Θ) as follows:

C ≤1

∫

Θ

∫

Y

(

exp(log p(y|x))
)

Dθ(dy)dθ

=

∫

Θ

∫

Y

p(y|x)Dθ(dy)dθ

=2

(

C ′ ·

∫

Y

p(y|x) dy

)

= C ′ < ∞

(22)

where ≤1 is by Jensen’s inequality and =2 uses the assump-

tion of the theorem.
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Besides {Normal(θ, 1) | θ ∈ R} that we discussed already

after Theorem 1, the set {Dirac(θ) | θ ∈ R} satisfies the

condition (20) in Theorem 2. Thus, p(y∼D|x) can be nor-

malized to a distribution (i.e., a probability measure) in both

cases. However, p(y∼D|x) cannot be normalized over the

space {β · Dirac(0) + (1 − β) · Dirac(θ) | θ ∈ R} for

β ∈ (0, 1), which consists of the mixtures of two Dirac

distributions. The condition (20) in Theorem 2 does not

hold. In fact, if p(0|x) > 0, the normalization constant of

νx in the theorem is infinite.

B. Inference algorithms

A simple bias-adjusted likelihood estimate p̂(x, y∼D),
required for the computation of the weights in importance

sampling as well as of the acceptance ratio in pseudo-

marginal Markov chain Monte Carlo (Andrieu & Roberts,

2009), can be computed based on (9) as follows (Ceper-

ley & Dewing, 1999; Nicholls et al., 2012; Quiroz et al.,

2018). Under the conditions of the central limit theorem,

the distribution of

1

N

N
∑

j=1

log p(x, yj)

becomes similar to the normal distribution

Normal
(

µ= E
y∼D

[log p(x, y)], σ2 =
1

N
Var
y∼D

[log p(x, y)]
)

as N → ∞. Correspondingly, the distribution of

exp





1

N

N
∑

j=1

log p(x, yj)





and the log-normal distribution with the same parameters

become similar under the same asymptotics. But the mean

of the log-normal distribution is exp(µ+ σ2

2 ). Thus, we can

construct a bias-adjusted estimate as

m =
1

N

N
∑

j=1

log p(x, yj),

s2 =
1

N−1

N
∑

j=1

(log p(x, yj)−m)2,

p̂(x, y∼D) = exp(µ) (23)

≈ Ey1:N∼Dn

[

exp

(

1

N

∑N

j=1
log p(x, yj)

)]

× exp

(

−
σ2

2

)

≈ exp

(

m−
s2

2N

)

.

In importance sampling, xi’s are drawn from a proposal

distribution U with probability mass or density u(x) and

weighted by the joint probability mass or density of x and

observations. In the case of stochastic conditioning, the

weight wi of xi is approximated as ŵi using an unbiased

estimate p̂(xi, D) such as (23).

ŵi =
p̂(xi, D)

u(xi)
=

1

u(xi)
exp

(

mi −
s2i
2N

)

. (24)

Markov chain Monte Carlo algorithms are broadly

applied to inference in probabilistic programs, with

Lightweight Metropolis-Hastings (Wingate et al., 2011b)

as the simplest and universally applicable variant. Many

MCMC variants involve proposing a new state x′ from a

proposal distribution U with probability mass or density

u(x′|x) and then either accepting x′ or retaining x, with

Metropolis-Hastings acceptance ratio α based on the joint

probability of x′ and observations:

α = min

{

1,
u(x|x′)

u(x′|x)
×

p(x′, y∼D)

p(x, y∼D)

}

. (25)

Just like with importance sampling, p(x, y∼D) cannot be

computed exactly for probabilistic programs with stochastic

conditioning. However, Andrieu & Roberts (2009) estab-

lish that the joint probability can be replaced with an unbi-

ased estimate without affecting the stationary distribution

of the Markov chain, resulting in pseudo-marginal MCMC.

Pseudo-marginal MCMC allows speeding up Monte Carlo

inference by subsampling (Bardenet et al., 2017; Quiroz

et al., 2019; Dang et al., 2019; Quiroz et al., 2018) and can

be applied to stochastic conditioning as well. The main

challenge in designing an efficient MCMC algorithm, for

both subsampling and stochastic conditiong, is constructing

an unbiased low-variance estimate of the joint probability.

In a basic case, (23) can be used as a bias-adjusted estimate,

resulting in the acceptance ratio α̂:

α̂ = min

{

1,
u(x|x′)

u(x′|x)
×

p̂(x′, D)

p̂(x, y∼D)

}

= min

{

1,
u(x|x′)

u(x′|x)
× exp

(

m′ −m−
s′2 − s2

2N

)}

.

(26)

Note that the same samples y1, y2, ..., yN should be used

for estimating both m, s2 and m′, s′2 (Andrieu & Roberts,

2009).

Stochastic gradient Markov chain Monte Carlo (sgM-

CMC) (Ma et al., 2015) can be used unmodified when the

log probability is differentiable with respect to x. sgM-

CMC uses an unbiased stochastic estimate of the gradient of

log probability density. Such estimate is trivially obtained

by drawing a single sample y1 from D and computing the
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gradient of the log joint density of x and y:

∇x log p(x, y∼D) = ∇x

(

log
(

p(x)
∏

y∈Y

p(y|x)q(y)dy
))

= ∇x

(

log
(

∏

y∈Y

p(x, y)q(y)dy
))

= ∇x

∫

y∈Y

q(y) log p(x, y)dy

=

∫

y∈Y

q(y)
(

∇x log p(x, y)
)

dy

≈ ∇x log p(x, y1).
(27)

Stochastic variational inference (Hoffman et al., 2013;

Ranganath et al., 2014; Kucukelbir et al., 2017) requires a

noisy estimate of the gradient of the evidence lower bound

(ELBO) L. The most basic approach is to use the score

estimator that is derived from the following equation:

∇λL = Ex∼q(x|λ)

[

(∇λ log q(x|λ))

(

log
p(x, y∼D)

q(x|λ)

)]

.

(28)

As in the standard posterior inference setting, maximizing

ELBO is equivalent to minimizing the KL divergence from

q(x|λ) to p(x|D). Substituting (3) into (28), we obtain

∇λL = Ex∼q(x|λ)

[

∇λ log q(x|λ)
(

log p(x) +

∫

y∈Y

q(y) log p(y|x)dy − log q(x|λ)
)

]

= Ex∼q(x|λ)

[ ∫

y∈Y

∇λ log q(x|λ)
(

log p(x) +

log p(y|x)− log q(x|λ)
)

q(y)dy

]

= E(x,y)∼q(x|λ)×D

[

∇λ log q(x|λ)
(

log p(x) +

log p(y|x)− log q(x|λ)
)

]

.

(29)

Thus, ∇λL can be estimated using Monte Carlo samples

xs, ys ∼ q(x|λ)×D:

∇λL ≈
1

S

S
∑

s=1

∇λ log q(xs|λ)
(

log p(xs) +

log p(ys|xs)− log q(xs|λ)
)

,

(30)

and stochastic variational inference can be directly applied.

In fact, van de Meent et al. (2016) use black-box variational

inference (Ranganath et al., 2014) for a special case of

stochastic conditioning arising in policy search.
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