
Deep Continuous Networks - Supplementary Material

ICML 2021 Submission

Paper ID: 3234

A Appendix

A.1 Gaussian multiscale local N-jet

Based on the Schwartz theory of smooth test functions, the Gaussian scale-space paradigm states
that the derivatives Li1...in(~x;σ) of a function L0(~x) with respect to the spatial variables xi, with
i = 1 . . . d, and at scale σ is given by the convolution

Li1...in(~x;σ) = L0 ∗ ∂i1...inG(~x;σ) (A.1)

where ∂i1...in is the n-th order partial derivative and G(~x;σ) is the normalized, isotropic Gaussian
kernel with standard deviation σi = σ and mean µi = 0 (Florack et al., 1996). Note that L0(~x) does
not need to be a smooth function, and therefore the Gaussian scale-space paradigm can be applied
to obtain local image derivatives in different scales, where ~x denote the spatial coordinates and σ can
be interpreted as the coordinate in the scale dimension.

We build upon this definition of local image derivatives to build our structured receptive fields
(SRFs), similar to Jacobsen et al. (2016). The main idea we leverage is that using a Taylor
approximation, one can decompose an input image into a superimposition of its local derivatives.
This decomposition can then be performed by local convolution kernels in CNNs, where the relative
weight of each derivative order can be learned during training. In order to show this, we observe that
the N -th order Taylor expansion of an image L : R2 → R around a point (a, b) is given by

L(x, y) =

N∑
l=0

N−l∑
k=0

(x− a)l(y − b)k

l!k!

∂l+k

∂xl∂yk
L(a, b) (A.2)

where the partial derivatives of L with respect to x and y can be interpreted as L11...1n(x, y;σ0) and
L21...2n(x, y;σ0) from equation A.1 at some original scale σ0. This means that, via the linearity of
convolution, and under the assumption that L(x, y;σ) does not diverge, it is equivalent to either use
the N -th order derivatives of the input image, or use the N -th order derivatives of the Gaussian
function G(~x;σ), to perform the image decomposition at scale σ. The local N-jets can thus be seen
to be parametrized by the coefficients in the expansion given in equation A.2. By definition, we
consider the Taylor expansion coefficients to be covariant derivatives of the image L(x, y;σ), which
are independent of the local coordinate system, to reach the filter approximations given in equation 1
in the paper, where the coefficients take the form αl,k.

In short, the multiscale local N-jet provides a natural decomposition of an image in a local
neighborhood in the spatial and scale dimensions. Under convolution with G(~x;σ), this decomposition
provides a framework for defining convolutional filters in a CNN using N -th order Taylor polynomials.
The SRF filters we use are based on this N-jet definition and allow us to learn the scale, spatial
frequency and orientation of the filters during training, which are fundamental properties of biological
receptive fields (Jones & Palmer, 1987; Lindeberg, 1993).

In addition, the Gaussian scale-space formulation of SRFs (Jacobsen et al., 2016) lead to the-
oretically interesting properties which strengthen the motivation for our choice of filters based on

1



the Gaussian N-jet. For example, the semi-group property of Gaussian scale-spaces indicates for a
Gaussian derivative kernel Gl,k(x, y; t) parametrized by the variance t = σ2

Gl,k(x, y; t+ t′) = Gl,k(x, y; t) ∗G(x, y; t′) (A.3)

where the superscripts (l, k) denote the partial derivatives with respect to x and y. This means that
a translation in scale dimension can be simply achieved through convolution with a (0-th order)
Gaussian kernel G. For DCNs, this means that we have a solid understanding of the scale of the
feature maps (in the sense of the Gaussian scale-space) at every layer m in the network, as we
know the value of σm after training. In the absence of SRFs with an explicit scale parameter, this
information is lost.

Similarly, SRF filters based on Gaussian derivatives are steerable by the coefficients al,k. For
example, a second order filter with orientation θ can be described as a sum of basis functions

G2,0
θ = a2,0G

2,0 + a1,1G
1,1 + a0,2G

0,2 (A.4)

= cos2(θ)G2,0 − 2 cos(θ) sin(θ)G1,1 + sin2(θ)G0,2.

Finally, the set of Gaussian derivative basis functions Gl,k(x, y;σ) are spatially separable

Gl,k(x, y;σ) = Gl(x;σ)Gk(y;σ) (A.5)

which is useful for computational efficiency in numerical applications.

A.2 Training procedure

The basic architecture of all our models is given in figure 2 of the paper. Unless otherwise stated,
in all models we use group normalization (Wu & He, 2018) with 32 groups in every layer as the
normalization function. As the nonlinear activation, we use continuously differentiable exponential
linear units (Barron, 2017), or CELU for DCN models. Based on the original ODE-Net implemen-
tation (Chen et al., 2018), for ODE-Net models and ResNet-block models, we use rectified linear
units (ReLU). Likewise, when defining the integration time interval T , we stick to the original
implementation, with T = 1 for ODE-Net models, whereas we use T = 2 for DCN models. Otherwise,
all the hyperparameters are kept constant between models. For a brief overview of hyperparameter
optimization, see appendix A.3.

All models are trained for 100 epochs on the standard CIFAR-10 training set (Krizhevsky, 2009)
using cross-entropy loss. As data augmentation, we use random translations up to 4 pixels in
each spatial dimension and random horizontal flips. Optimization is performed using SGD with a
mini-batch size of 128, initial learning rate 10−1, momentum 0.9, and a learning rate decay by a
factor of 0.1 at epochs 40 and 70. For continuous time models based on neural ODEs, we use the
adjoint method for backpropagating the losses and ODE solvers with error tolerance set to 10−3.

For convolutional layers with pixel-based k×k filters, the weights are initialized using the standard
Kaiming uniform initialization (He et al., 2015). For layers using SRF filters, the initial α values are
randomly sampled from a normal distribution with mean 0 and standard deviation 0.1, and initial σ
values are sampled from a normal distribution with mean 0 and standard deviation 2/3.

For the restricted CIFAR-10 experiments (small-data regime), we pick the total number of training
images to be a multiple of our mini-batch size of 128, or otherwise have a minimal number of samples
in the final batch (which is dropped in each epoch). For comparisons with the baseline results
from Arora et al. (2020), we used exactly the same number of training images as in Table 2 of Arora
et al. (2020). In order to confirm convergence, for the training set sizes [520, 1030, 5120], we increased
the number of training epochs by a factor of [10, 5, 2] respectively.

2



For meta-parametrized models the initial values for the learnable parameters follow normal
distributions N (µ, σN ): a ∼ N (0, 2/3), b ∼ N (0, 0.1), for the DCN σ(t) model; a ∼ N (0, 2/3),
b ∼ N (0, 2/3), c ∼ N (0, 0.1) for the DCN σ(t2) model; and as ∼ N (0, 2/3), bs ∼ N (0, 0.1),
aα ∼ N (0, 0.1) and bα ∼ N (0, 0.05) for the DCN σ(t), α(t) model.

For all our models using SRF filters, except for the DCN σji model, we use scale sharing within a
convolutional layer such that σjim = σm for all convolutional layers m, with input channel i and output
channel j. This makes the GPU implementation trivial, as all filters within a layer are sampled
in the interval [−2σm, 2σm], and hence the convolutional kernel sizes within a layer are uniform.
However, for the DCN σji model, a GPU implementation would be highly inefficient if we truncated
the kernels at a fixed factor of σji, independently for each input and output channel i, j. Therefore
for the DCN σji model we fix the kernel size at 7 × 7, but we still learn the shape and the scale
(bandwidth) of the filters during training.

We use the Dormand–Prince (DOPRI) method (Dormand & Prince, 1980) as the numerical ODE
solver. The DOPRI method is an explicit, adaptive solver of the Runge-Kutta family, which uses 6
function evaluations to compute fourth- and fifth-order accurate solutions to ODEs, along with an
error estimate. The size of the adaptive steps taken by the solver can be regulated by specifying an
error tolerance on this error estimate.

As is the case with most modern ODE solvers, the GPU implementation of the DOPRI solver that
we use (Chen et al., 2018) considers the input arguments for the integration time interval t ∈ [0, T ]
(or t ∈ [0, 2] in the case of all DCN models) as soft bounds. This means that the DOPRI algorithm
may explore time points outside of this interval, based on its internal error estimation, and may
then employ interpolation to return solutions within the specified bounds. In the meta-parametrized
models, where for example σ is an explicit function of t, this may lead to very large or very small
kernel sizes, ordinarily unexpected within the integration time interval. In order to avoid numerical
instability and memory issues in the meta-parametrized models, we scale down and clip the integration
time t when passing it into the parameter definitions as σ(τtclip) and α(τtclip). We clip the t values
in the interval [−0.5, 2.5] and use τ = 0.5.

A.3 Hyperparameter tuning

As mentioned in appendix A.2, we share all the design choices and hyperparameters between all
DCN and baseline ODE-Net models, except for the nonlinear activation function and integration
time interval T .

Table A.1: CIFAR-10 validation accuracy (aver-
aged over 3 runs) in the control experiments testing
the effect of DCN model design choices on the base-
line ODE-Net.

Model Accuracy (%)

DCN-ODE 89.46 ± 0.16
ODE-Net (baseline) 89.60 ± 0.28
ODE-Net with T = 2 89.50 ± 0.07
ODE-Net with CELU 89.33 ± 0.16
ODE-Net with CELU and T = 2 89.25 ± 0.30

This difference in design choices arises since for the ODE-Net baseline we stay faithful to the

3



original ODE-Net implementation, where ReLU is the nonlinear activation function and T = 1,
whereas for DCN models we use CELU as the activation function, due to its generalized compatibility
with the adjoint method, and T = 2. In order to verify that our design choices do not provide an
unfair advantage over the ODE-Net baseline, we run some control experiments, where we vary the
activation function and T in the ODE-Net baseline.

We find that the change of activation functions or integration interval T do not provide a significant
increase to the CIFAR-10 classification performance in the ODE-Net baseline (Table A.1).

A.4 CIFAR-10 image reconstruction

For the reconstruction task, we use an encoder with 3 DCN-ODE blocks and a decoder with 3
DCN-ODE blocks (as shown in figure 2 of the paper). For the baseline networks we replace the 3
DCN-ODE blocks with ODE-Net or ResNet-blocks. The encoder is pre-trained on the CIFAR-10
classification task. We use the feature maps at the end of ODE Block 3 as the input to the decoder
network. The decoder DCN network is made up of 2 ODE blocks separated by bilinear upscaling,
1× 1 convolutions to reduce the number of channels, normalization, non-linear activation and a final
1× 1 convolution to generate the output in RGB space.

We implement reconstruction as a regression task and use the mean squred error (MSE) as the
loss function. Otherwise, the training parameters are the same as the classification experiments: We
use the SGD optimizer with a mini-batch size of 128, learning rate 10−1 and momentum 0.9, together
with the adjoint method and an error tolerance of 10−3.

Some example image reconstructions (randomly selected) from the CIFAR-10 validation set by
the DCN and baseline networks are shown in figure A.1.

A.5 Pattern completion in feature maps

In figure A.2, we show the feature map evolution within the first ODE block (or ResNet block) of
different models with and without masking of some example input images. Size of the mask depicted
here is 6× 6 pixels and the example images were chosen so as to have the mask located close to the
middle of the object. We picked some channels with visible mask-related artifacts in the input feature
maps to the first ODE (ResNet) block. Since there is no feature map trajectory in the ResNet-blocks
model, but only one input and one output feature map, the difference between the feature maps of
the intact and masked image is given as a scatter plot of two data points connected by a red line.

Figure A.3 depicts the average difference of intact and masked feature maps D(t) averaged over
1000 images and the standard deviation for the DCN and baseline networks.

4



Input
Image DCN-ODE ODE-Net

ResNet-
Blocks

Figure A.1: Example CIFAR-10 validation images and their reconstruction by the DCN-ODE model
as compared to baseline models.

5



input image him(0) him(T)

0 2
integration time t

0.2

0.4

0.6 D(t)

masked image him_masked(0) him_masked(T)DC
N

input image him(0) him(T)

0 2
integration time t

0.5

1.0

D(t)

masked image him_masked(0) him_masked(T)DC
N

input image him(0) him(T)

0 10.2

0.4

0.6 D(t)

masked image him_masked(0) him_masked(T)

OD
E-

Ne
t

input image him(0) him(T)

0 1

0.5

1.0

D(t)

masked image him_masked(0) him_masked(T)

OD
E-

Ne
t

input image him(0) him(T)

0 10.2

0.4

0.6 D(t)

masked image him_masked(0) him_masked(T)

Re
sN

et
-b

lo
ck

s

input image him(0) him(T)

0 1

0.5

1.0

D(t)

masked image him_masked(0) him_masked(T)

Re
sN

et
-b

lo
ck

s

Figure A.2: Feature map evolution within the first ODE block (or ResNet block) of different models.

0 2
integration time t

0.0

0.5

1.0

D
(t)

DCN

0 1
integration time t

0.0

0.5

1.0

D
(t)

ODE-Net

0 1
integration time t

0.0

0.5

1.0

D
(t)

ResNet-Blocks

Figure A.3: Evolution of the mean difference D(t) between feature maps of an intact input image
and a masked input image, averaged over 1000 images in the CIFAR-10 validation set. The shaded
areas (or in the case of ResNet, the errorbars) show the standard deviation.

6



References

Arora, S., Du, S. S., Li, Z., Salakhutdinov, R., Wang, R., and Yu, D. Harnessing the power of infinitely
wide deep nets on small-data tasks. In International Conference on Learning Representations
(ICLR), 2020.

Barron, J. T. Continuously differentiable exponential linear units. arXiv preprint arXiv:1704.07483,
2017.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. Neural ordinary differential
equations. NeurIPS, 2018.

Dormand, J. R. and Prince, P. J. A family of embedded runge-kutta formulae. Journal of Computa-
tional and Applied Mathematics, 6(1):19–26, 1980.

Florack, L., Romeny, B. T. H., Viergever, M., and Koenderink, J. The gaussian scale-space paradigm
and the multiscale local jet. IJCV, 18(1):61–75, 1996.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In IEEE International Conference on Computer Vision
(ICCV), pp. 1026–1034, 2015.

Jacobsen, J.-H., van Gemert, J., Lou, Z., and Smeulders, A. W. Structured receptive fields in CNNs.
In CVPR, pp. 2610–2619, 2016.

Jones, J. P. and Palmer, L. A. An evaluation of the two-dimensional gabor filter model of simple
receptive fields in cat striate cortex. Journal of Neurophysiology, 58(6):1233–1258, 1987.

Krizhevsky, A. Learning multiple layers of features from tiny images. Technical report, University of
Toronto, Department of Computer Science, 04 2009.

Lindeberg, T. Discrete derivative approximations with scale-space properties: A basis for low-level
feature extraction. Journal of Mathematical Imaging and Vision, 3(4):349–376, 1993.

Wu, Y. and He, K. Group normalization. In ECCV, pp. 3–19, 2018.

7


	Appendix
	Gaussian multiscale local N-jet
	Training procedure
	Hyperparameter tuning
	CIFAR-10 image reconstruction
	Pattern completion in feature maps


