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Abstract
Bayesian optimisation (BO) is a well-known ef-
ficient algorithm for finding the global optimum
of expensive, black-box functions. The current
practical BO algorithms have regret bounds rang-
ing from O( logN√

N
) to O(e−

√
N ), where N is the

number of evaluations. This paper explores the
possibility of improving the regret bound in the
noiseless setting by intertwining concepts from
BO and tree-based optimistic optimisation which
are based on partitioning the search space. We pro-
pose the BOO algorithm, a first practical approach
which can achieve an exponential regret bound
with order O(N−

√
N ) under the assumption that

the objective function is sampled from a Gaussian
process with a Matérn kernel with smoothness
parameter ν > 4 + D

2 , where D is the number of
dimensions. We perform experiments on optimi-
sation of various synthetic functions and machine
learning hyperparameter tuning tasks and show
that our algorithm outperforms baselines.

1. Introduction
We consider a global optimisation problem whose goal is
to maximise f(x) subject to x ∈ X ⊂ RD, where D is
the number of dimensions and f is an expensive black-
box functions that can only be evaluated point-wise. The
performance of a global optimisation algorithm is typically
evaluated using simple regret, which is given as

rN = supx∈X f(x)−max1≤i≤Nf(xi)

where xi is the i-th sample, andN is the number of function
evaluations. In this paper, we consider the case that the
evaluation of f is noiseless.

Bayesian optimisation (BO) provides an efficient model-
based solution for global optimisation. The core idea is to
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transform a global optimisation problem into a sequence
of auxiliary optimisation problems of a surrogate function
called the acquisition function. The acquisition function
is built using a model of the function through its limited
observations and recommends the next function evaluation
location. Regret analysis has been done for many existing
BO algorithms, and typically the regret is sub-linear follow-

ing order O
(√

logN
N

)
(Srinivas et al., 2012; Russo et al.,

2018). More recently, (Vakili et al., 2020) have improved
this toO

(
1√
N

)
under the noiseless setting. However, a lim-

itation of BO is that performing such a sequence of auxiliary
optimisation problems is expensive.

De Freitas et al. (2012) introduced a Gaussian process (GP)
based scheme called δ-cover sampling as an alternative to
the acquisition function to trade-off exploration and exploita-
tion. Their method samples the objective function using a
finite lattice within a feasible region and doubles the density
of points in the lattice at each iteration. However, even in
moderate dimensions, their algorithm is impractical since
the lattice quickly becomes too large to be sampled in a
reasonable amount of time (as pointed out by (Wang et al.,
2014; Kawaguchi et al., 2016)).

An alternative practical approach for global optimisation is
to consider tree-based optimistic optimisation as in (Munos,
2011; Floudas, 2005). These algorithms partition the search
space into finer regions by building a hierarchical tree. The
key is to have efficient strategies to identify a set of nodes
that may contain the global optimum and then to succes-
sively reduce and refine the search space to reach closer
to the optimum. As example, DIRECT algorithm (Jones
et al., 1993) partitions the search space assuming a global
Lipschitz constant. Simultaneous Optimistic Optimisation
(SOO) algorithm (Munos, 2011) generalises this by using
only local Lipschitz conditions. Under certain assumptions,
this algorithm shows the possibility of achieving an ex-
ponentially diminishing regret O(e−

√
N ). An additional

advantage of such algorithms is that we do not need to per-
form an auxiliary non-convex optimisation of the acquisition
functions as in BO which may be difficult in cases that are
high-dimensional (Kandasamy, 2015; Tran-The et al., 2020)
or have unbounded search spaces (Tran-The et al., 2020).
However, these optimistic algorithms are model-free, that
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is, they do not utilise the function observations efficiently.

A natural extension to improve the sample efficiency is to
incorporate a model of the objective function into the opti-
mistic strategy. Indeed, works that do this include BaMSOO
(Wang et al., 2014) and IMGPO (Kawaguchi et al., 2016).
Using a Gaussian process (Rasmussen & Williams, 2005)
as a model of the objective function, both algorithms avoid
to evaluate the objective function for points known to be
sub-optimal with high probability. While BaMSOO has a
sub-linear regret bound, IMGPO can achieve an exponential
regret bound. However, despite this, IMGPO has not still
overcome the worst-case regret bound order O(e−

√
N ) of

SOO which does not use any model of the objective function.
A natural question is that is there a practical algorithm for
global optimisation that can break this regret bound order
O(e−

√
N ) under a mild assumption?

In this paper, we propose a novel approach, which combines
the strengths of the tree-based optimistic optimisation meth-
ods and Bayesian optimisation to achieve an improved regret
boundO(N−

√
N ) in the worst case. Our main contributions

are summarised as follows:

• A GP-based optimistic optimisation algorithm using
novel partitioning procedure and function sampling;

• Our algorithm has a worst-case regret bound of
O(N−

√
N ) in the noiseless setting under the assump-

tion that the objective function is sampled from a Gaus-
sian process with a Matérn kernel with smoothness
parameter ν > 4 + D

2 , where N is the number of
evaluations and D is the number of dimensions. Our
algorithm avoids an auxiliary optimisation step at each
iteration in BO, and avoids the δ-cover sampling in
the approach of De Freitas et al. (2012). To our best
knowledge, without using an δ-cover sampling pro-
cedure which is impractical, this is the tightest regret
bound for BO algorithms;

• To validate our algorithm in practice, we perform exper-
iments on optimisation of various synthetic functions
and machine learning hyperparameter tuning tasks and
show that our algorithm outperforms baselines.

2. Related Works
In this section, we briefly review some related work addi-
tional to the work mentioned in section 1.

In Bayesian optimisation literature, there exist some works
that use tree-structure for the search space. While Wang
et al. (2018) used a Mondrian tree to partition the search
space, a recent work by (Wang et al., 2020) used a dynamic
tree via K-means algorithm. However, these works focused
on improving BO’s performance empirically for large-scale

data sets or high-dimensions rather than to improve the
regret bound.

There are two viewpoints for BO, Bayesian and non-
Bayesian as pointed out by Scarlett et al. (2017). In the
non-Bayesian viewpoint, the function is treated as fixed
and unknown, and assumed to lie in a reproducing kernel
Hilbert space (RKHS). Under this viewpoint, Chowdhury
& Gopalan (2017); Janz et al. (2020) provided upper regret
bounds while Scarlett et al. (2017) provided lower regret
bounds for BO with Matérn kernels. These bounds all are
sub-linear. Otherwise, in the Bayesian viewpoint where we
assume that the underlying function is random according to
a GP, Kawaguchi et al. (2016) showed that BO can obtain
an exponential convergence rate. In this paper, we focus
on the Bayesian viewpoint and break the regret bound or-
der of IMGPO (Kawaguchi et al., 2016) under some mild
assumptions.

The optimistic optimisation methods have also been ex-
tended to adapt to different problem settings e.g., noisy
setting (Valko et al., 2013; Grill et al., 2015), high dimen-
sional spaces (Qian & Yu, 2016; Al-Dujaili & Suresh, 2017),
multi-objective optimisation (Al-Dujaili & Suresh, 2018),
or multi-fidelity black-box optimisation (Sen et al., 2018).
Some works (Shilton et al., 2017; Theckel Joy et al., 2019)
proposed the regret bounds for transfer learning in BO. Our
work can be complementary to these works and the integra-
tion of our solution with them may be promising to improve
their regret bounds.

3. Preliminaries
Bayesian Optimisation The standard BO routine consists
of two key steps: estimating the black-box function from
observations and maximizing an acquisition function to
suggest next function evaluation point.

Gaussian process is a popular choice for the first step. For-
mally, we have f(x) ∼ GP(m(x), k(x, x′)) where m(x)
and k(x, x′) are the mean and the covariance (or kernel)
functions. Given a set of observations D1:p = {xi, yi}pi=1

under a noiseless observation model yi = f(xi), the pre-
dictive distribution can be derived as P (f(x)|D1:p, x) =
N (µp+1(x), σ2

p+1(x)), where µp+1(x) = kTK−1y+m(x)

and σ2
p+1(x) = k(x, x) − kTK−1k. In the above ex-

pression we define k = [k(x, x1), ..., k(x, xp)]
T , K =

[k(xi, xj)]1≤i,j≤p and y = [y1, . . . , yp].

Some well-known popular acquisition functions for
the second step include upper confidence bound (GP-
UCB)(Srinivas et al., 2012), expected improvement (EI)
(Bull, 2011), Thompson sampling (TS) (Russo et al., 2018)
and predictive entropy search (PES) (Hernández-Lobato
et al., 2014). Among them, GP-UCB is given as Up(x) =
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µp(x) + β
1/2
p σp(x), where βp is the parameter balancing

between the exploration and exploitation. We will use GP-
UCB in our tree expansion scheme to determine the node to
be expanded.

In this paper, we focus on the popular class of Matérn ker-
nels for Gaussian process which is defined as

kν(x, x′) =
σ2

Γ(ν)2ν−1
(
||x− x′||2

λ
)νBν(

||x− x′||2
λ

),

where Γ denotes the Gamma function, Bν denotes the mod-
ified Bessel function of the second kind, ν is a parame-
ter controlling the smoothness of the function and σ2, λ
are hyper-parameters of the kernel. We assume that the
hyper-parameters are fixed and known in advance. How-
ever, our work can also be extended for the unknown hyper-
parameters of the Matérn kernel as in (Vakili et al., 2020)
(for Bayesian setting). Important special cases of ν in-
clude ν = 1

2 that corresponds to the exponential kernel and
ν →∞ that corresponds to the squared exponential kernel.
The Matérn kernel is of particular practical significance,
since it offers a more suitable set of assumptions for the
modeling and optimisation of physical quantities ((Stein,
1999)).

Hierarchical Partition We use the hierarchical partition
of the search space as in (Munos, 2011). Given a branch fac-
torm, for any depth h, the search spaceX is partitioned into
a set of mh sets Ah,i (called cells), where 0 ≤ i ≤ mh − 1.
This partitioning is represented as a m-ary tree structure
where each cell Ah,i corresponds to a node (h, i). A node
(h, i) has m children nodes, indexed as {(h+ 1, ij)}1≤j≤m.
The children nodes {(h+ 1, ij), 1 ≤ j ≤ m} form a parti-
tion of the parent’s node (h, i). The root of the tree corre-
sponds to the whole domain X . The center of a cell Ah,i is
denoted by ch,i where f and its upper confidence bound is
evaluated.

4. Proposed BOO algorithm
4.1. Motivation

Most of tree-based optimistic optimisation algorithms like
SOO, StoSOO (Valko et al., 2013), BaMSOO and IMGPO
face a strict negative correlation between the branch factor
m and the number of tree expansions given a fixed function
evaluation budget N . On the one hand, using a larger m
makes a tree finer, which helps to reach closer to the opti-
mum. On the other hand, having more expansions in the
tree also allows to create finer partitions in multiple regions
of the space. Thus both a larger branch factor and a larger
number of tree expansions allow an algorithm to get closer
to the optimum. However, each time a node is expanded, the
algorithms such as SOO, StoSOO spend m function evalua-
tions - one for each of them children and thus the number of

Figure 1. An illustration of partitioning procedure for m = 8: (a)
SOO methods partition a cell by dividing the longest side into m
equal parts; (b) our method sets m = ab and partitions a cell by
dividing b = 3 longest sides into a = 2 equal parts.

tree expansions is restricted to at most
⌊
N
m

⌋
. Thus when m

increases, the number of tree expansions decreases. We call
this phenomenal the strict negative correlation of tree-based
optimistic optimisation algorithms.

Using the assumption that the objective function is sampled
from a GP prior, BaMSOO and IMGPO reduce this negative
correlation by evaluating the function only at the children
where the UCB value is greater than the best function value
observed thus far (f+). However, the number of expansions
is still tied to the branch factor lying between

⌊
N
m

⌋
and N .

We present a new approach which permits to untie the
branch factor m from the number of tree expansions and
hence, solves the strict negative correlation of tree-based
optimistic optimisation algorithms. By doing so, we can
exploit the use of a large m to achieve finer partitions and
achieves a regret boundO(N−

√
N ) improving upon current

BO algorithms.

4.2. BOO algorithm

Our algorithm is described in Algorithm 1 where we as-
sume that the objective function is a sample from GP as in
Bayesian optimisation, however our approach follows the
principle of SOO which uses a hierarchical partitioning of
the search space X . The main difference of the proposed
BOO and previous works lies in the partitioning procedure,
the tree expansion mechanism and the function sampling
strategy.

Partitioning Procedure Unlike SOO based algorithms
including BaMSOO and IMGPO which often divide a cell
into m children cells along the longest side of the cell, we
use a novel partitioning procedure which exploits the par-
ticular decomposition of the branch factor m. Given any
a ≥ 2, 1 ≤ b ≤ D and m = ab, where a, b,m ∈ N, our
partitioning procedure, denoted by P (m; a, b), divides the
cell along its b longest dimensions into a new cells (see Fig-
ure 1). When b = 1 then our procedure becomes simply the
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Algorithm 1 The BOO Algorithm
Input: An evaluation budget N and parameters
m, a, b ∈ N.
Initialisation: Set T0 = {(0, 0)} (root node). Set p = 1.
Sample initial points to build D0.

1: while True do
2: Set vmax = −∞
3: for h = 0 to min(depth(Tp), hmax(p)) do
4: Among all leaves (h, j) of depth h, select (h, i) ∈

argmax(h,j)∈LUp(ch,j)
5: if Up(ch,i) ≥ vmax then
6: Expand node (h, i) by adding m children (h+

1, ij) to tree Tp, using partitioning procedure
P (m; a, b)

7: Evaluate f(ch,i)
8: Augment the data Dp =

{Dp−1, ((ch,i, f(ch,i))}.
9: Fit the Gaussian process using Dp

10: Update vmax = max{f(ch,i), vmax}
11: Update p = p+ 1
12: if p = N then
13: Return x(N) =

argmax{ch,i)|(ch,i,f(ch,i))∈DN}f(ch,i)
14: end if
15: end if
16: end for
17: end while

traditional partitioning procedure as in SOO. When b = D,
all dimensions of the cell are divided which benefits our
algorithm. We will explain this further in our convergence
analysis.

Tree Expansion Mechanism The algorithm incremen-
tally builds a tree Tp starting with a node T0 = {(0, 0)}
for p = 1...N , where N is the evaluation budget. At depth
h, among all the leaf nodes, denoted by L of the current
tree, the algorithm selects the node with the maximum GP-
UCB value, defined as Up(c) = µp(c) + β

1/2
p σp(c), where

β
1/2
p =

√
2log(π2p3/3η) and η ∈ (0, 1). The tree is ex-

panded by adding m children nodes to the selected node. To
force the depth of tree after p expansions, we use a function
hmax(p) which is also a parameter of the algorithm. We
note that the algorithm uses GP-UCB acquisition function
to determine the candidate node, but it only performs a max-
imisation on a finite, discrete set comprising the leaf nodes
at the depth in consideration.

Function Sampling Strategy Once the node is selected
for expansion, unlike previous works that evaluate the ob-
jective function at children nodes, we propose to evaluate

Figure 2. SOO samples the function at all m children nodes while
our sampling strategy samples the function only at the parent node
(the node selected for expansion). As a result, our strategy requires
only one function evaluation irrespective of the value of m.

.

the objective function only at that node without evaluating
the function at its children (see Figure 2).

By this sampling scheme, our algorithm allows to untie
the branch factor m from the number of tree expansions.
As a result, it allows the use of a large m to achieve finer
partitions and to reach closer to the optimum. In fact, using a
small m as in previous optimistic optimisation methods also
reaches finer partitions, however it needs a large number
of tree expansions, and thus still needs a large number of
evaluations. Consider an example where m = 2D with a =
2 and b = D. Using the partitioning procedure P (m; 2, D),
our algorithm partitions a node into m cells with the same
granularity. To reach the same granularity as our method,
SOO algorithm can use the partitioning with m = 2 and
repeat it D times. However, by this way, SOO always
spends 2D function evaluations while our algorithm only
uses one evaluation. BamSOO and IMGPO algorithms
have the similar problem although they improve over SOO
- they only evaluate the function at nodes c that satisfy the
condition U(c) > f+ (best function value observed thus far)
is satisfied. In summary, to reach the same granularity as
our method, these algorithms need to spend m′ evaluations,
where 1 ≤ m′ ≤ 2D depending on the number of nodes
c satisfying the condition U(c) > f+. In contrast, our
algorithm only spends one evaluation for all cases regardless
of the value of m. Together with our partitioning procedure,
we leverage this benefit to improve the regret bound for
optimisation.

5. Convergence Analysis
In this section, we theoretically analyse the convergence of
our algorithm. We start with assumptions about function f .

5.1. Assumptions

To guarantee the correctness of our algorithm, we use the
following assumptions.

Assumption 1. The function f sampled from GP(0, kν),
that is a zero mean GP with a Matérn kernel kν with ν >
4 + D

2 , where D is the number of dimensions.
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Assumption 2. The objective function f has a unique
global maximum x∗.

The assumption of a unique maximiser holds with probabil-
ity one in most non-trivial cases (De Freitas et al., 2012).
Under such assumptions, we obtain the following property.

Property 1. Assume that the function f is sampled from
GP(0, kν) satisfying the Assumption 1 and 2. Then,

1. f(x∗) − f(x) ≤ L1||x∗ − x||22 for every x ∈ X , for
some constant L1 > 0,

2. f(x) ≤ f(x∗)− L2||x− x∗||2 for every x ∈ B(x∗, θ)
for some constants L2, θ > 0,

3. f(x∗)− maxx∈X\B(x∗,θ)f(x) > ε0 for some ε0 > 0.

We note that all constants L1, L2 and ε0 are unknown. The
Property 1.2 can be considered as the quadratic behavior of
the objective function in the neighborhood of the optimum.
This property holds for every Matérn kernel with ν > 2 as
argued by (De Freitas et al., 2012) and (Wang et al., 2014).
The result closest to ours is that of IMGPO (Kawaguchi
et al., 2016) that achieves an exponential regret bound e−

√
N .

However, their work requires a type of quadratic behavior
in the whole search space (as represented in Assumption
2 in their paper) which is quite strong. Compared to it,
our assumption is weaker which only requires the quadratic
behavior of the function in a neighborhood of the optimum.
Despite this, we will show that our algorithm can improve
their regret bound.

5.2. Convergence Analysis

For the theoretical guarantee, we follow the principle of the
optimism in the face of uncertainty as in (Munos, 2011).
The basic idea is to construct the set of expandable nodes at
each depth h, called the expansion set. We do this in Section
5.2.1. Quantifying the size of the expansion set is a key step
in this principle. We do this in Section 5.2.2. Finally, by
using upper bounds on the size of these sets, we derive the
regret bounds in Section 5.2.3. All proofs are provided in
the Supplementary Material.

5.2.1. THE EXPANSION SET

Definition 1. Let the expansion set at depth h be the set of
all nodes that could be potentially expanded before the opti-
mal node at depth h is selected for expansion in Algorithm
1. Formally,

Ih = {(h, i)|∃h ≤ p ≤ N : Up(ch,i) ≥ f(x∗)−δ(h; a, b)}

, where δ(h; a, b) is defined as

δ(h; a, b) = L1Da
−2b bhD c,

and Up(ch,i) is the upper confidence bound at the center
ch,i of node (h, i) after p expansions.

We note that even though this definition uses δ(h; a, b) that
depends on the unknown metric L1, our BOO algorithm
does not need to know this information. The reason we
use δ(h; a, b) = L1Da

−2b bhD c lies in the following three
observations of our partitioning procedure P (m; a, b) in the
search space X . We assume here that X = [0, 1]D (this can
always be achieved by scaling).

Lemma 1. Given a cell Ah,i at depth h, we have that

1. the longest side of cell Ah,i is at most a−b
bh
D c, and

2. the smallest side of cell Ah,i is at least a−d
bh
D e.

Lemma 2. Given a cell Ah,i at depth h, then we have
that supx∈Ah,i

||x− ch,i|| ≤ D1/2a−b
bh
D c, where ch,i is the

center of cell Ah,i.

Proof. By Lemma 1, the longest side of a cell at depth
h is at most a−b

bh
D c. Therefore, supx∈Ah,i

||x − ch,i|| ≤√
Da−2b

bh
D c = D1/2a−b

bh
D c.

We denote a node (h, i∗) as the optimal node at depth h if
x∗ belongs to the cell Ah,i∗ .

Lemma 3. At a depth h, we have that f(ch,i∗) ≥ f(x∗)−
δ(h; a, b).

Proof. By Property 1, f(x∗) − f(ch,i∗) ≤ L1||x∗ −
ch,i∗ ||2. By Lemma 2, ||x∗ − ch,i∗ || ≤ D1/2a−b

bh
D c =√

δ(h; a, b)/L1. Thus, f(x∗) − f(ch,i∗) ≤ L1||x∗ −
ch,i∗ ||2 ≤ δ(h; a, b).

By Lemma 3 and the fact that Up(ch,i) ≥ f(ch,i) with
high probability, we have that Up(ch,i) ≥ f(x∗)− δ(h; a, b)
with high probability. It deduces that the global maximum
x∗ belongs to the expansion set at every depth with high
probability.

The expansion set at a depth h in our approach differs
from the ones in works of (Munos, 2011; Wang et al.,
2014; Kawaguchi et al., 2016) which is defined as Ih =
{(h, i)|f(ch,i) ≥ f(x∗) − δ(h; a, b)}. More precisely, set
Ih of their works is a smaller set than the set Ih in our
work defined above because we have Up(ch,i) ≥ f(ch,i)
with high probability. This bigger Ih directly might in-
volve unnecessary explorations and therefore, the algorithm
may incur higher regret than that of BamSOO and IMGPO.
However, we solve this challenge by leveraging our new
partitioning procedure P (m; a, b) with b = D, and some
results from (Kanagawa et al., 2018; Vakili et al., 2020)
which are presented in the following section.



Bayesian Optimistic Optimisation with Exponentially Decaying Regret

5.2.2. AN UPPER BOUND ON THE SIZE OF THE
EXPANSION SET

To quantify |Ih|, we use a concept called the near-optimality
dimension as in (Munos, 2011). In our context, we define
the near-optimality dimension as follows:
Definition 2. The near-optimality dimension is defined as
the smallest d ≥ 0 such that there exists C > 0 such that for
any δ(h; a, b), the maximal number of disjoint balls the with
largest size in a cell at depth h with center inXδ(h;a,b) is less
than C(δ(h; a, b))d, where Xδ(h;a,b) = {x ∈ X | Up(x) ≥
f(x∗)− δ(h; a, b)}.

With partitioning procedure P (m; a, b) where a =
O(N1/D) with b = D, we will show d = 0 (which is
equivalent to prove |Ih| ≤ C) through the following Theo-
rem 1.
Theorem 1 (Bound on Expansion Set Size). Consider a
partitioning procedure P (m; a, b) where a = O(N1/D)
and b = D. Then there exist constants N1 > 0 and C > 0
such that for every for N ≥ N1 and h ≥ 2, we have,
|Ih| ≤ C.

To prove Theorem 1, we estimate a bound on variance func-
tion σp in terms of the function δ(h − 1; a, b) through the
following lemma.
Lemma 4. Assuming that node (h, i) at the depth h ≥ 1 is
evaluated at the p-th evaluation, where p ≥ h. Thus,

σp(ch,i) ≤ C1(δ(h− 1; a, b))ν/2−D/4,

where C1 is a constant.

This lemma holds by applying some results about the close-
ness between the samples from a GP (in Bayesian setting)
and the elements of an RKHS (in non-Bayesian setting) as
in (Kanagawa et al., 2018; Vakili et al., 2020), to the struc-
tured search space as in our approach. This technique is
novel compared to BaMSOO and IMGPO’s ones. We refer
to our Supplementary Material in Section 3.

Using this result and the condition ν > 4+D/2, we achieve
a constant bound on the size of set Ih.

5.2.3. BOUNDING THE SIMPLE REGRET

Next we use the upper bound on |Ih| at every depth h to
derive a bound on the simple regret rN .

Let us use h∗p to denote the depth of the deepest expanded
node in the branch containing x∗ after p expansions. Similar
to the lemma 2 in (Munos, 2011), we can bound the sum of
|Ih| as follows.
Lemma 5. Assume that f(c) ≤ U(c) for all centers c of
optimal nodes at all depths 0 ≤ h ≤ hmax(p) after p ex-
pansions. Then for any depth 0 ≤ h ≤ hmax(p), whenever
p ≥ hmax(p)

∑h
i=0 |Ii|, we have h∗p ≥ h.

We use Ap to denote the set of all points evaluated by the
algorithm and all centers of optimal nodes of the tree Tp
after p evaluations.

Lemma 6. Pick a η ∈ (0, 1). Set βp = 2log(π2p3/3η) and
Lp(c) = µp(c) − β1/2

p σp(c). With probability 1 − η, we
have

Lp(c) ≤ f(c) ≤ Up(c),

for every p ≥ 1 and for every c ∈ Ap.

We now use Lemmas 3-6 to derive a simple regret for the
proposed algorithm. Here, the simple regret rp after p ex-
pansions is defined as rp = f(x∗)−max1≤i≤pf(xi), where
xi is the i-th sample.

Theorem 2 (Regret Bound). Assume that there is a parti-
tioning procedure P (m; a, b) where a = O(N1/D), b = D
and 2 ≤ m <

√
N − 1. Let the depth function hmax(p) =√

p. We consider m2 < p ≤ N , and define h(p) as the
smallest integer h such that h ≥

√
p−m−1
C + 2, where C is

the constant defined by Theorem 1. Pick a η ∈ (0, 1). Then
for every N ≥ N1, the loss is bounded as

rp ≤ δ(min{h(p),
√
p+ 1}; a, b) +

+ 4C1β
1/2
p (δ(min{h(p)− 1,

√
p}; a, b))ν/2−D/4,

with probability 1 − η, where N1 is the constant defined
in Theorem 1, C1 is the constant defined in lemma 4 and
βN =

√
2log(π2N3/3η).

Proof. By Theorem 1, the definition of h(p) and the facts
that |I0| = 1 and |I1| ≤ m, we have

h(p)−1∑
l=0

|Il| = |I0|+ |I1|+ (|I2|+ ...+ |I|h(p)−1)

≤ 1 +m+ C(h(p)− 2) ≤ √p

Therefore,
∑h(p)−1
l=0 |Il| ≤

√
p. By Lemma 5 when h(p)−

1 ≤ hmax(p) =
√
p, we have h∗p ≥ h(p)−1. If h(p)−1 >√

p then h∗p = hmax(p) =
√
p since the BOO algorithm

does not expand nodes beyond depth hmax(p). Thus, in all
cases, h∗p ≥ min{h(p)− 1,

√
p}.

Let (h, j) be the deepest node in Tp that has been expanded
by the algorithm up to p expansions. Thus h ≥ h∗p. By
Algorithm 1, we only expand a node when its GP-UCB
value is larger than vmax which is updated at Line 10 of
Algorithm 1. Thus, since the node (h, j) has been expanded,
its GP-UCB value is at least as high as that of the some node
(h∗p+1, j) at depth h∗p+1, such that (1) node (h∗p+1, o) has
been evaluated at some p′-th expansion before node (h, j)
and (2) (h∗p + 1, o) ∈ argmax(h∗p+1,i)∈LUp′(ch∗p+1,i) (see
Line 4 of Algorithm 1).
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Thus, by using Lemma 3 and Lemma 6, we can achieve with
probability 1− η that f(x∗)−Up(ch,j) ≤ δ(h∗p + 1; a, b) +

2β
1/2
p′ σp′(ch∗p+1,o).

Further by Lemma 6, we have Up(ch,j) = µp(ch,j) +

β
1/2
p σp(ch,j) = Lp(ch,j) + 2β

1/2
p σp(ch,j) ≤ f(ch,j) +

2β
1/2
p σp(ch,j), with a probability 1− η.

Combining these two results, we have f(x∗) − f(ch,j) ≤
δ(h∗p + 1; a, b) + 2β

1/2
p′ σp′(ch∗p+1,o) + 2β

1/2
p σp(ch,j) with

a probability 1− η.

Finally, by using Lemma 4 to bound σp′(ch∗p+1,o) and
σp(ch,j) and using the fact that the function δ(∗; a, b) de-
creases with their depths, we achieve

rp ≤ f(x∗)− f(ch,j)

≤ δ(min{h(p),
√
p+ 1}; a, b) +

+ 4C1β
1/2
p (δ(min{h(p)− 1,

√
p}; a, b))ν/2−D/4

with a probability 1− η. We provide the complete proof
in the Supplementary Material.

Finally, we present an improved and simpler expression
for the regret bound through the following corollary from
Theorem 2.
Corollary 1. Pick a η ∈ (0, 1). Then, there exists a con-
stant N2 > 0 such that for every N ≥ N2, the simple regret
of the proposed BOO algorithm with the partitioning proce-
dure P (m; a, b) where a = b(

√
N
2 )

1
D c, b = D, is bounded

as
rN ≤ O(N−

√
N ),

with probability 1− η, where N is the number of sampled
points.

Remark 1. A detailed expression for the regret bound of
Corollary 1 is that rN ≤ O(C1L1D/2

DN−
√

N
CD + 2

CD−
2
D ),

where C1 is a constant (defined in Lemma 4) given L1

and D, and C is a constant (defined in Theorem 1) given
L1, L2, η and ν. This complete formula is extracted from
the proof of Corollary 1 in Supplementary Material.

Remark 2. The closest result to ours is the regret bound
of IMGPO which has the worst case order O(e−

√
N ). As

can be seen, we have improved the regret bound. Our re-
sult improves over previous works because we leverage a
large value of the branch factor m and our new partitioning
procedure with b = D where all dimensions of a cell are
divided.

6. Experiments
To evaluate the performance of our BOO algorithm, we
performed a set of experiments involving optimisation of

three benchmark functions and three real applications. We
compared our method against five baselines which have the-
oretical guarantees: (1) GP-EI (Bull, 2011), (2) GP-UCB
(Srinivas et al., 2012), (3) SOO (Munos, 2011), (4) BaM-
SOO (Wang et al., 2014), (5) IMGPO (Kawaguchi et al.,
2016).

Experimental settings All implementations are in
Python. For each test function, we repeat the experiments 15
times. We plot the mean and a confidence bound of one stan-
dard deviation across all the runs. We used Matérn kernel
with ν = 4+(D+1)/2 which satisfies our assumptions, and
estimated the kernel hyper-parameters automatically from
data using Maximum Likelihood Estimation. All methods
using GP (including GP-EI, GP-UCB, BaMSOO, IMGPO
and our method) were started from randomly initialised
points to train GP. For GP-EI and GP-UCB which follow the
standard BO, we used the DIRECT algorithm to maximise
the acquisition functions and computed βt for GP-UCB as
suggested in (Srinivas et al., 2012). For tree-based space
partitioning methods, we follow their implementations to
set the branch factor m. Note that these methods use a small
m due to the negative correlation. SOO and BaMSOO use
m = 2 while IMGPO uses m = 3. The depth of search tree
hmax(p) in SOO and BaMSOO was set to

√
p as suggested

in (Munos, 2011; Wang et al., 2014). The parameter Ξn in
IMGPO was set to 1.

Table 1. Average CPU time (in seconds) for the experiment with
each test function.

Algorithm Hartmann Shekel Schwefel
GP-EI 200.39 740.20 250.79
GP-UCB 880.43 1640.87 180.96
SOO 0.51 0.40 0.11
BaMSOO 39.02 87.62 28.67
IMGPO 23.23 80.53 34.65
BOO 27.21 91.22 41.01

6.1. Optimisation of Benchmark Functions

We first demonstrate the efficiency of our algorithm on stan-
dard benchmark functions: Hartmann3 (D = 3), Schwefel
(D = 3) and Shekel (D = 4). The evaluation metric is
the log distance to the true optimum: log10(f(x∗) − f+),
where f+ is the best function value sampled so far.

For our BOO algorithm, we choose parameters m, a, b and
N as per Corollary 1 which suggests using N so that a =

O((
√
N
2 )1/D) ≥ 2. For Hartmann3 (D = 3) and Schwefel

(D = 3) we use partitioning procedure P (8; 2, 3) with N =
200. For Shekel function (D = 4), we use P (16; 2; 4) with
N = 800 so that (

√
N
2 )1/D ≈ 2. We follow Lemma 6 in

our theoretical analysis to set βp = 2log(π2p3/3η), with
η = 0.05.
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Figure 3. Comparison of methods for Hartmann3 (D = 3), Schwefel (D = 3), and Shekel (D = 4) functions.
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Figure 4. Log prediction error on MNIST dataset for different algorithms ElasticNet, MLP and XGBoost.

Figure 3 shows the performance of our algorithm compared
to the baselines. Our method outperforms all baselines
for all considered synthetic functions in general with only
one exceptional case of Shekel function where GP-UCB
performs better our method. Compared to BaMSOO and
IMGPO which are tree-based optimisation algorithms, the
efficiency of BOO is gained by using a largem and sampling
strategies similar to BO (as shown in Section 4.2). Com-
pared to GP-EI and GP-UCB, our algorithm takes advantage
of searching a point to be evaluated at each iteration. BOO
searches it only in a promising region (as done in Line 4 and
5 in Algorithm 1) rather in a whole search space. Moreover,
unlike GP-EI and GP-UCB, BOO avoids the searching by
optimisation at each iteration which cannot be obtained suf-
ficiently and accurately given a limited computation budget.

On Computational Effectiveness Our method performs
competitively against BaMSOO and IMGPO in terms of
computational effectiveness (as shown in Table 1). Our
method uses a large value of m and hence it takes slightly
more time to compute UCBs of all nodes. It performs slower
than IMGPO but much faster than GP-EI, GP-UCB which
require the maximisation of the acquisition function in a
continuous space.

On Ablation Study between Function Sampling and
Partitioning Procedure To show the influence of the pro-
posed function sampling and the proposed partition proce-
dure on BOO’s performance, we have performed additional
experiments with m = 64 (see Figure 5). The left plot
shows different partitioning procedures while the function
sampling is fixed to our proposed scheme. We can see a
good improvement when b = D compared to b = 1 case.
The right plot compares BaMSOO with our method which
uses the proposed function sampling scheme but keeps us-

ing BaMSOO’s partitioning procedure (b = 1, m = 64). In
this case, we are not able to outperform BaMSOO. However,
our result for b = D in the left plot is significantly better
than that of BaMSOO. This clearly shows that the effect
of partitioning procedure is higher than that of the function
sampling.
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Figure 5. On Ablation Study between Function Sampling and Par-
titioning Procedure for the Hartmann6 (D = 6) function.

6.2. Hyperparameter Tuning for Machine Learning
Models

To further validate the performance of our algorithm, we
tune hyperparameter tuning of three machine learning mod-
els on the MNIST dataset and Skin Segmentation dataset,
then plot the log prediction error.

Elastic Net A regression method has the L1 and L2 reg-
ularisation parameters. We tune w1 and w2 where w1 > 0
expresses the magnitude of the regularisation penalty while
w2 ∈ [0, 1] expresses the ratio between the two penalties.
We tune w1 in the normal space while w2 is tuned in an
exponent space (base 10). The search space is the domain
[0, 1]× [−3,−1]. We implement the Elastic net model by
using the function SGDClassifier in the scikit-learn package.
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Multilayer Perceptron (MLP) We consider a 2-layer
MLP with 512 neurons/layer and optimize three hyperpa-
rameters: the learning rate l and the L2 norm regularisation
parameters lr1 and lr2 of the two layers (all tuned in the
exponent space (base 10)). The search space is [−6,−1]3.
The model is trained with the Adam optimizer in 20 epochs
with batch size 128.

Using MNIST dataset, we train the models with this hyper-
parameter setting using the 55000 patterns and then test the
model on the 10000 patterns. The algorithms suggests a new
hyperparameter setting based on the prediction accuracy on
the test dataset. We set N = 200. We use P (4; 2, 2) for
ElasticNet and P (8; 2, 3) for MLP as per Corollary 1.

As seen in Figure 4, for Elastic Net, our algorithm outper-
forms the all baselines. For MLP, our algorithm achieves
slightly lower prediction errors compared to the baselines
because there is a little room to improve where the predic-
tion error of our method for MLP attains 1.8%.

Table 2. Hyperparameters for XGBoost.

Variables Min Max
learning rate 0.1 1
max depth 5 15
subsample 0.5 1
colsample 0.1 1
gamma 0 10

XGBoost classification We demonstrate a classification
task using XGBoost (Chen & Guestrin, 2016) on a Skin Seg-
mentation dataset 1. The Skin Segmentation dataset is plit
into 15% for training and 85% for testing for a classification
problem. There are 5 hyperarameters for XGBoost which
is summarized in Table 2. Our proposed BOO is the best
solution, outperforming all the baselines by a wide margin.

7. Conclusion
We have presented a first practical algorithm which can
achieve an exponential regret bound with tightest order
N−
√
N for Baysian optimisation under the assumption that

the objective function is sampled from a Gaussian process
with a Matérn kernel with ν > 4 + D

2 . Our partitioning
procedure and the sampling strategy differ from the existing
ones. We have demonstrated the benefits of our algorithm
on both synthetic and real world experiments. In the future
we plan to extend our work to high dimensions and noisy
setting.

1https://archive.ics.uci.edu/ml/datasets/skin+segmentation
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