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A. Proof of Proposition 1
Let f∗ : C → Z be a diffeomorphism that transforms p∗(c)
(the true prior distribution of the factors of variation) into
the fixed model prior p(z):

p∗(c)(c) = p(z)(f∗(c)) |det∇cf
∗(c)| . (5)

Superscripts are included here to clarify which random vari-
able a distribution is defined over, but will be often omitted.
The existence of f∗ implies that the true generative model
p∗(x | z) can be expressed as a composition of a determinis-
tic transformation, (f∗)−1, and a stochastic one, p∗(x | c).

Similarly, let fθ : C → Z be a diffeomorphism, parame-
terized by θ, that defines a distribution pθ(c) (in general
different from p∗(c)) with support C:

p
(c)
θ (c) = p(z)(fθ(c)) |det∇cfθ(c)| . (6)

We will assume that the learned generative model pθ(x | z)
can be expressed as a composition of the learned determin-
istic transformation f−1θ and the true p∗(x | c):

pθ(x) =

∫
z

pθ(x | z)p(z)dz

=

∫
c

pθ(x | fθ(c))pθ(c)dc

=

∫
c

p∗(x | c)pθ(c)dc (7)

where c = f−1θ (z). Note that the distribution pθ(c) is im-
plicitly learned by learning fθ, and it represents the learned
prior distribution over the true factors of variation.

The expected log likelihood we wish to maximize is

Ep∗(x)[log pθ(x)] = −H(p∗(x))−DKL(p
∗(x)‖pθ(x))

where the differential entropyH(p∗(x)) is constant with re-
spect to the model parameters, and can therefore be ignored.
The KL term can be rewritten as

DKL(p
∗(x)‖pθ(x)) =

∫
x

p∗(x) log
p∗(x)

pθ(x)
dx

=

∫
x

∫
c

p∗(x | c)p∗(c) log
p∗(c)p

∗(x | c)
p∗(c |x)

pθ(c)
p∗(x | c)
p∗(c |x)

dc dx

=

∫
x

∫
c

p∗(x | c)p∗(c) log p
∗(c)

pθ(c)
dc dx

=

∫
c

p∗(c) log
p∗(c)

pθ(c)

∫
x

p∗(x | c)dx dc

= DKL(p
∗(c)‖pθ(c)) . (8)

Note that, since the KL divergence is always non-
negative, the maximum likelihood corresponds to
DKL(p

∗(x)‖pθ(x)) = 0.

Let a matrix be σ-diagonal if there exists a permutation σ
that makes it diagonal. Since by assumption p∗(c) does
not factorize while p(z) does, it follows that∇cf

∗(c) (the
Jacobian of f∗) is not σ-diagonal.6 However, if the repre-
sentations z are disentangled w.r.t. the true factors c then
the Jacobian of fθ is σ-diagonal. Thus, fθ(c) cannot be
equal to f∗(c) almost everywhere. This in turn means
that DKL(p

∗(c)‖pθ(c)) > 0, hence Ep∗(x)[log pθ(x)] <
Ep∗(x)[log p∗(x)]. This proves that if the generative model
is disentangled w.r.t. the true factors then its expected likeli-
hood is less than the optimal likelihood.

On the other hand, in the general case in which the repre-
sentations are not necessarily disentangled, we can choose
θ such that fθ(c) = f∗(c) almost everywhere, which im-
plies that DKL(p

∗(c)‖pθ(c)) = 0. Thus, there exists an
entangled model that has optimal likelihood.

We have proved that (i) if the generative model is con-
strained to be disentangled then the optimal likelihood can-
not be achieved, and (ii) if it is not constrained to be disen-
tangled then the optimal likelihood can be achieved. Equiv-
alently, the optimal likelihood can be attained if and only if
the generative model is entangled w.r.t. the true generative
factors.

B. Implementation details
Unsupervised Disentanglement methods. For the sake
of comparison, the considered disentanglement methods
in this work cover the full collection of state-of-the-art
approaches in disentanglement_lib from Locatello
et al. (2019b) based on representations learned by VAEs.
The set contains six different methods that enforce disen-
tanglement of the representation by equipping the loss with
different regularizers that aim at enforcing the special struc-
ture of the posterior aggregate encoder distribution. A de-
tailed description of the regularizer forms used in this work,
specifically β-VAE (Higgins et al., 2017a), FactorVAE (Kim
& Mnih, 2018), AnnealedVAE (Burgess et al., 2018), DIP-
VAE-I, DIP-VAE-II (Kumar et al., 2018) and β-TC-VAE
(Chen et al., 2018) is provided in Locatello et al. (2019b).
We use the same encoder and decoder architecture with 10
latent dimensions for every model.

Joint distributions of correlated factors in datasets. In
Fig. 6 we show the joint probability distributions of the cor-
related pair of FoV for all datasets and correlation strengths
considered in this study. Dataset A, B and C were designed
with correlated factors of variation that are ordinal for a

6If p(z) factorizes and∇cf
∗(c) is σ-diagonal, then p∗(c) also

factorizes. Thus, since by assumption p∗(c) does not factorize,
either∇cf

∗(c) is not σ-diagonal or p(z) does not factorize. Be-
cause the latter is false by assumption, it must be that ∇cf

∗(c)
(the Jacobian of f∗) is not σ-diagonal.
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Figure 6. Probability distributions for sampling training data in the
correlated pair of FoVs in the respective datasets (A, B, C, D, E)
considering correlation strengths of σ = 0.2, σ = 0.4, σ = 0.7
and σ =∞, the uncorrelated limit (from left to right).

natural visual interpretation of the traversals. In contrast,
datasets D and E contain a correlated factor of variation that
has no such natural ordering.

Pairwise entanglement metric. We base the computa-
tion of the pairwise entanglement metric on a procedure
developed in Locatello et al. (2020a): Starting from the
GBT feature importance matrix between encoded FoV and
latent codes, a bipartite graph between latent codes and
FoVs is constructed such that the edge weights are the cor-
responding matrix elements. After deleting all edges that
have weight smaller than a given threshold, one counts the
number of disconnected sub graphs having more than one
vertex and how many FoV are still connected with at least
one latent. When repeating this computation for different
thresholds, one can track at which particular threshold a
given pair of FoV is merged with each other in this bipartite
graph, resulting in the metric we are reporting. A pair of
FoV that are being merged at a higher threshold are sta-
tistically more related to each other via shared latent code
dimensions. This computation can be not only based on
the GBT feature importance matrix but likewise on weight
matrices inferred from the mutual information.

corr. strength σ = 0.2 σ = 0.4 σ = 0.7 σ =∞ (uc)

Shapes3D (A) object size - azimuth 0.38 (0.28) 0.26 (0.25) 0.13 (0.2) 0.08 (0.17)
median other pairs 0.09 (0.2) 0.09 (0.2) 0.09 (0.19) 0.08 (0.18)

dSprites (B) orientation - position x 0.17 (0.34) 0.16 (0.31) 0.14 (0.24) 0.11 (0.14)
median other pairs 0.13 (0.16) 0.13 (0.18) 0.13 (0.19) 0.13 (0.15)

MPI3D (C) First DOF - Second DOF 0.2 (0.54) 0.19 (0.52) 0.17 (0.5) 0.16 (0.49)
median other pairs 0.16 (0.25) 0.16 (0.25) 0.15 (0.26) 0.15 (0.25)

Shapes3D (D) object color - object size 0.29 (0.38) 0.28 (0.31) - -
median uncorrelated pairs 0.07 (0.11) 0.07 (0.11) - -

Shapes3D (E) object color - azimuth 0.25 (0.43) 0.23 (0.3) - -
median uncorrelated pairs 0.1 (0.15) 0.09 (0.15) - -

Table 4. Pairwise entanglement scores help to uncover still existent
correlations in the latent representation. Mean of the pairwise
entanglement scores for the correlated pair (red) and the median
of the uncorrelated pairs. We see that stronger correlation leads to
statistically more entanglement latents across all datasets studied
compared to their baseline pairwise entanglement where the data
exhibits no correlations (blue). Each score is the mean across 180
models for each dataset and correlation strength. Scores are based
on GBT feature importance; scores in brackets are based on the
Mutual Information.

Unfairness between a pair of FoV. The scores reported
are based on a notion of demographic parity for predicting
a target variable y given a protected and sensitive variable
s. Both y and s can be associated with a factor of variation
here. Rather than using the global total variation average as
defined in Locatello et al. (2019a), we report the individual
demographic parities for the correlated factors specifically.

Disentanglement metrics. To measure disentanglement
of a learned representation, various metrics have been pro-
posed, each requiring access to the ground truth labels. The
BetaVAE score is based upon the prediction of a fixed factor
from the disentangled representation using a linear classifier
(Higgins et al., 2017a). The FactorVAE score is intended
to correct for some failures of the former by utilizing ma-
jority vote classifiers based on a normalized variance of
each latent dimension (Kim & Mnih, 2018). The SAP score
represents the mean distance between the classification er-
rors of the two latent dimensions that are most predictable
(Kumar et al., 2018). For the MIG score, one computes the
mutual information between the latent representation and
the ground truth factors and calculates the final score using
a normalized gap between the two highest MI entries for
each factor. Finally, a disentanglement score proposed by
Eastwood & Williams (2018), often referred to as DCI score,
is calculated from a dimension-wise entropy reflecting the
usefulness of the dimension to predict a single factor of
variation.

C. Additional Results Section 4
C.1. Section 4.2

Latent structure and pairwise entanglement. Our hy-
pothesis that the latent representations are less correlated
if the correlation strength is weaker is shown for a model
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Figure 7. We show latent traversals (left) of the best DCI score model among all 180 trained models with weak correlation (σ = 0.7) in
object size and azimuth. The traversals in latent codes 2, 6, and 7 (highlighted in black), suggest that these dimensions encode no mixture
of azimuth and object size compared to the models with stronger correlation. This is supported by the GBT feature importance matrix of
this model (right).

(a) β−VAE

corr. strength 0.2 0.4 0.7 ∞ (uc)

Shapes3D (A) object size - azimuth 0.38 0.25 0.14 0.08
median uncorrelated pairs 0.08 0.09 0.09 0.07

dSprites (B) orientation - position x 0.18 0.16 0.14 0.12
median uncorrelated pairs 0.14 0.14 0.14 0.12

MPI3D (C) First DOF - Second DOF 0.22 0.19 0.18 0.16
median uncorrelated pairs 0.16 0.15 0.15 0.14

Shapes3D (D) object color - object size 0.28 0.3 - -
median uncorrelated pairs 0.08 0.07 - -

Shapes3D (E) object color - azimuth 0.24 0.25 - -
median uncorrelated pairs 0.11 0.09 - -

(b) Factor-VAE

corr. strength 0.2 0.4 0.7 ∞ (uc)

Shapes3D (A) object size - azimuth 0.48 0.3 0.1 0.03
median uncorrelated pairs 0.07 0.06 0.07 0.04

dSprites (B) orientation - position x 0.23 0.2 0.16 0.12
median uncorrelated pairs 0.14 0.15 0.14 0.13

MPI3D (C) First DOF - Second DOF 0.23 0.22 0.19 0.18
median uncorrelated pairs 0.15 0.15 0.14 0.15

Shapes3D (D) object color - object size 0.36 0.33 - -
median uncorrelated pairs 0.02 0.03 - -

Shapes3D (E) object color - azimuth 0.3 0.28 - -
median uncorrelated pairs 0.1 0.08 - -

(c) Annealed-VAE

corr. strength 0.2 0.4 0.7 ∞ (uc)

Shapes3D (A) object size - azimuth 0.32 0.25 0.13 0.11
median uncorrelated pairs 0.09 0.09 0.11 0.1

dSprites (B) orientation - position x 0.17 0.16 0.14 0.1
median uncorrelated pairs 0.14 0.15 0.14 0.15

MPI3D (C) First DOF - Second DOF 0.17 0.17 0.15 0.15
median uncorrelated pairs 0.15 0.15 0.15 0.14

Shapes3D (D) object color - object size 0.33 0.28 - -
median uncorrelated pairs 0.07 0.08 - -

Shapes3D (E) object color - azimuth 0.25 0.19 - -
median uncorrelated pairs 0.1 0.1 - -

(d) β-TC-VAE

corr. strength 0.2 0.4 0.7 ∞ (uc)

Shapes3D (A) object size - azimuth 0.41 0.26 0.09 0.05
median uncorrelated pairs 0.07 0.09 0.06 0.05

dSprites (B) orientation - position x 0.18 0.15 0.13 0.11
median uncorrelated pairs 0.14 0.14 0.13 0.12

MPI3D (C) First DOF - Second DOF 0.24 0.22 0.19 0.17
median uncorrelated pairs 0.18 0.17 0.15 0.15

Shapes3D (D) object color - object size 0.3 0.29 - -
median uncorrelated pairs 0.05 0.06 -

Shapes3D (E) object color - azimuth 0.23 0.23 - -
median uncorrelated pairs 0.09 0.07 -

(e) Dip-VAE-I

corr. strength 0.2 0.4 0.7 ∞ (uc)

Shapes3D (A) object size - azimuth 0.38 0.24 0.14 0.07
median uncorrelated pairs 0.1 0.1 0.11 0.09

dSprites (B) orientation - position x 0.13 0.13 0.12 0.11
median uncorrelated pairs 0.11 0.11 0.11 0.11

MPI3D (C) First DOF - Second DOF 0.16 0.15 0.14 0.14
median uncorrelated pairs 0.13 0.13 0.13 0.13

Shapes3D (D) object color - object size 0.27 0.25 - -
median uncorrelated pairs 0.06 0.06 - -

Shapes3D (E) object color - azimuth 0.22 0.22 - -
median uncorrelated pairs 0.1 0.1 - -

(f) Dip-VAE-II

corr. strength 0.2 0.4 0.7 ∞ (uc)

Shapes3D (A) object size - azimuth 0.28 0.23 0.19 0.14
median uncorrelated pairs 0.12 0.11 0.11 0.11

dSprites (B) orientation - position x 0.14 0.14 0.13 0.12
median uncorrelated pairs 0.14 0.14 0.13 0.13

MPI3D (C) First DOF - Second DOF 0.22 0.21 0.18 0.17
median uncorrelated pairs 0.15 0.14 0.15 0.15

Shapes3D (D) object color - object size 0.23 0.2 - -
median uncorrelated pairs 0.13 0.12 - -

Shapes3D (E) object color - azimuth 0.23 0.19 - -
median uncorrelated pairs 0.12 0.13 - -

Table 5. Pairwise entanglement scores from Table 4 separated along each disentanglement regularizer. Mean of the pairwise entanglement
scores for the correlated pair (red) and the median of the uncorrelated pairs. We see that stronger correlation leads to statistically more
entanglement latents across all datasets and regularizers studied compared to their baseline pairwise entanglement where the data exhibits
no correlations. Each pairwise score is the mean across 30 models for each dataset and correlation strength. Scores are based on GBT
feature importance.
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Figure 8. Disentangled representations trained on correlated data
are anti-correlated with higher fairness properties. The plots show
the mean unfairness scores between the correlated factors with
decreasing correlation strength for Shapes3D (A), dSprites (B) and
MPI3D-real (C).

on Shapes3D (A) with weak correlation in Fig. 7. Here the
latent traversals do not mirror the major and minor axis of
the correlated joint distribution.

To make our conclusion more sound we perform an empir-
ical analysis of the pairwise entanglement metrics for the
correlated pair vs. the median of all other pairs across the
entire unsupervised study on all datasets and models trained.
Table 4 shows the results of this analysis, aggregated across
all disentanglement models. To avoid missing any particular
disentanglement regularizer that might disentangle the cor-
related pair but is hidden among the combined aggregation,
we also separately report the thresholds for each of the six
disentanglement models in Table 5. We can clearly see that
the correlated pair has a much higher entanglement than the
rest of the pairs in the trained models across the full board,
thus confirming our conclusion that inductive bias of current
SOTA unsupervised disentanglement learners is insufficient.
Another pairwise metric that tracks the correlation strength
in our scenario is the unfairness score between the corre-
lated pair of factors that is being shown for datasets A, B
and C in Fig. 8.

Shortcomings of existing metrics. Following recent
studies, we evaluate the trained models with the help of
a broad range of disentanglement metrics that aim at quanti-
fying overall success by a single scalar measure. Perhaps
surprisingly, Fig. 9 and Fig. 10 show no clear trend among
all implemented disentanglement scores w.r.t. correlation
strength. The metrics have been evaluated by both, either
sampling from the correlated data distribution or from the
uncorrelated distribution. Given our extensive analysis of
latent entanglements of the correlated FoV pair from above,
we thus argue that common disentanglement metrics are
limited in revealing those when correlations are introduced
into the training data and we partly account this to the aver-
aging procedures across many FoV with these pairs. Note
that regarding BetaVAE and FactorVAE this observed trend
is to some degree expected as they would yield perfect dis-
entanglement scores even if we would take the correlated
ground truth factors or a linear transformation in the case of
BetaVAE as the representation.

Figure 9. Standard global disentanglement metrics evaluated on
the correlated training set showing no clear trend for different
correlation strengths.

Figure 10. Standard global disentanglement metrics evaluated on
the uncorrelated (uc) dataset set showing no clear trend for different
correlation strengths.

Figure 11. When disentanglement metrics are only evaluated re-
garding the 2 correlated FoV we can observe the still persisting
entanglement in the latents using DCI score.
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Figure 12. Generalization capabilities towards out-of-distribution
test data. Latent traversals from an observations the model has
never seen during training. The starting point corresponds to a
factor configuration in point number 2 from Fig. 4 Shown are the
results of the model with highest DCI score among all 180 trained
models on Shapes3d (A) with a very restricted correlation strength
σ = 0.2 in object size and azimuth

As these metrics are defined with respect to the whole set
of underlying ground truth FoV and employ various aver-
aging techniques to form a single scalar measure we want
to investigate how much the observed latent entanglements
are hidden though imperfect disentanglement of other fac-
tors. Thus, we evaluate the same metrics but only on the
two correlated FoV excluding all other remaining factors.
Indeed, as can be seen from Fig. 11, only DCI tracks the
entangled latents under this reduced disentanglement score,
while the others show no or only weak trends. We refer
the interested reader to Locatello et al. (2020a), where a
detailed discussion is provided why MIG is not tracking the
latent entanglement we observed.

C.2. Section 4.3

Generalization Properties In order to support our con-
clusion that disentanglement methods can generalize to-
wards unseen FoV configurations we show in Fig. 12 latent
traversals originating from OOD point number 2 with small-
est object size and largest azimuth. We observe that changes
in the remaining factors reliably yield the expected recon-
structions.

Emphasizing the generalization results from the main paper,
we are visualizing the latent spaces with similar extrap-
olation and generalization capabilities of four additional
models from the two strongest correlation dataset variants
of Shapes3d (D) and Shapes3d (E) in Fig. 13. These latent
spaces further support that OOD examples are meaningfully
encoded into the existing structure of the latent space and
that the decoder is equally capable of generating observa-
tions from such unseen representations.

Figure 13. Latent space distribution of the two entangled dimen-
sions of the best DCI model in Shapes3d (E) with σ = 0.2 (top
row), in Shapes3d (E) with σ = 0.4 (second row), in Shapes3d
(D) with σ = 0.2 (third row) and in Shapes3d (D) with σ = 0.4
(bottom row). Latent codes sampled from correlated observa-
tions (circle without edge) and (2) latent codes sampled with an
object size-azimuth configuration not encountered during train-
ing(squares with black edge). Each column shows the ground truth
values of the two correlated factors by color.
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Figure 14. Latent space distribution of the two entangled dimen-
sions of the best DCI model in Shapes3D (A). Latent codes sam-
pled from correlated observations (circle without edge) and (2)
latent codes sampled with an object size-azimuth configuration
not encountered during training (squares with black edge). Left
column shows the latent space of the two correlated factors by
color. Middle and right column show the fast adapted space using
linear regression and 100 or 1000 labels respectively.

D. Additional Results Section 5
D.1. Post-hoc alignment correction with few labels

In Fig. 14, we see the axis alignment of the correlated la-
tent space after fast adaptation using linear regression on a
model trained on Shapes3D (A). Fast adaptation with linear
regression substitution fails in some settings: when no two
latent dimensions encode the applied correlation isolated
from the other latent codes, or when the correlated variables
do not have a unique natural ordering (e.g. color or cate-
gorical variables). Additionally, the functional form of the
latent manifolds beyond the training distribution is unknown
and in general expected to be nonlinear. We test the pos-
sibility of fast adaptation in this case using as substitution
function a one-hidden layer MLP classifier of size 100 on
the correlated Shapes3D variants. Under this method, we
sample the few labels from a uniform independent distribu-
tion. A small number of such samples could practically be
labeled manually. Using only 1000 labeled data points for
our fast adaptation method shows a significant reduction in
entanglement thresholds for the correlated pair (Table 6).

D.2. Alignment during training using weak supervision

Using the studied weakly supervision Ada-GVAE method
with k = 1 from Locatello et al. (2020b), we showed that
weak supervision can provide a strong inductive bias capable
of finding the right factorization and resolving spurious
correlations for datasets of unknown degree of correlation.
Besides the results shown on Shapes3D (A) in the main
paper, representative latent space visualizations that show
strong axis alignment across all three correlation variants

dataset labels 0 1000

A (σ = 0.2) object size - azimuth 0.37 0.26
median uncorrelated pairs 0.09 0.1

D (σ = 0.2) object color - object size 0.3 0.16
median uncorrelated pairs 0.07 0.07

E (σ = 0.2) object color - azimuth 0.25 0.2
median uncorrelated pairs 0.1 0.11

Table 6. Mean of the pairwise entanglement scores for the corre-
lated pair (red) and the median of the uncorrelated pairs (based on
GBT feature importance) for all pairs of variables in Shapes3D
(D) (top), Shapes3D (E) (middle) and Shapes3D (A) (bottom) all
with correlation strength σ = 0.2. Each pairwise score is the mean
across 180 models for each dataset and correlation strength. First
column is the unsupervised baseline without any fast adaptation
and the second column shows that fast adaption using a one-hidden
layer MLP reduces these correlations with as little as 1000 labels.

in Shapes3D (A, D, E) are shown in Fig. 15. This study
contains a total of 360 trained models.

In addition to the experiment from the main paper where
pairs are constructed solely from the correlated observa-
tional data, we want to study two scenarios where we have
some intervention capabilities on the FoV to generate train-
ing pairs. The resulting distribution of FoVs (still exhibiting
correlations) in these pairs depends on whether the corre-
lation between two pairs is due to a causal link or due to a
common confounder.

Scenario I-1: We assume there is a confounder (which is
not among the observable factors in the data) causing a
spurious correlation between the pair of correlated factors.
Then, the correlation is broken whenever our interventional
sampling procedure yields a pair where the changing FoV
is one of the correlated ones. In that case, the value of
the changing variable is sampled uniformly in the second
observation of the pair. Note that this still means that the
vast majority of sampled pairs exhibit correlated FoV as
in most cases the changing factor will be one of the other
independent uncorrelated FoV.

As under the default scenario from the main paper, we con-
sistently observe high disentanglement models, often achiev-
ing perfect DCI score irrespective of correlations in the data
set. This is depicted together with some selected latent space
visualizations that show strong axis alignment in Fig. 16.
The latent spaces of the correlated FoV in the train data
tend to strongly align their coordinates with the ground truth
label axis. We chose 10 random seeds per configuration in
this study, yielding 720 models in total.

Scenario I-2: Let us assume c1 causes c2 in our examples,
which manifests as the studied linear correlation. If we
intervene on (or “fix”) all factors except for the effect c2,
we cannot sample uniformly in c2 as it is causally affected
by c1. Intervening on all factors but c1, however, allows us
to sample any value in c1 as it is not causally affected by
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Figure 15. Left: For the weakly supervised scenario using cor-
related observational data trained models on Shapes3D (A), (D)
and (E) correlating object color and azimuth learn consistently
improved, often perfect, disentangled representation across all cor-
relation strengths. Right: Latent dimensions of a best DCI model
trained on strongly correlated observational data. Representations
are strongly axis-aligned with respect to both of the correlated
variables ground truth values (right).

c2. To test the hypothesis that this constraint also allows
for disentangling the correlation, we trained on Shapes3D
(A) and sampled pairs consistent with this causal model.
Besides observing visually disentangled factors in the latent
traversals, we show a summary of our results in Fig. 17 with
the same significant improvements regarding disentangling
the correlated FoVs. Besides the correlation strengths used
throughout the paper, we additionally trained the same mod-
els using a very strong correlation of σ = 0.1. The study of
scenario I-2 thus comprises 300 models.

Figure 16. Left: For the weakly supervised scenario with interven-
ing capabilities (Scenario I-1) trained models on Shapes3D (A),
(D) and (E) correlating object color and azimuth learn consistently
improved, often perfect, disentangled representation across all cor-
relation strengths. Right: Latent dimensions of a best DCI model
with strong correlation (σ = 0.2). Representations are strongly
axis-aligned with respect to both of the correlated variables ground
truth values.

Figure 17. DCI scores and latent spaces show strong disentangle-
ment using weak supervision with intervening capabilities (Sce-
nario I-2) - even under the stronger assumption that sampling of
observation pairs follow its causal generative model. We show
the learned latent space encoding of the two correlated factors of
variation for a model on Shapes3D with σ = 0.1.


