
Learning a Universal Template for Few-shot Dataset Generalization

Implementation Details

Architecture We use a ResNet-18 as our feature extractor,
to be consistent with the previous work we compare against.
The dataset classifier that is used in our Blender network is
comprised of a permutation-invariant set encoder g (Zaheer
et al., 2017) followed by a linear layer l, as explained in
our main paper. We adopt a similar architecture for g to the
one used in (Requeima et al., 2019) for their ‘adaptation
networks’. This consists of 5 convolutional blocks, each of
which is comprised of a 3x3 convolution operation with 64
channels, followed by batch normalization, ReLU, and 2x2
max-pooling with stride 2. We then apply global average
pooling to the output, followed by averaging over the first
dimension (i.e. over the different examples of the batch), to
obtain our set encoding of the given batch. This vector is
then fed into l to classify the given batch into one of the M

training datasets.

Training the shared and per-dataset parameters We
train FLUTE via a joint phase that utilizes data from all
M training datasets in order to learn a universal template
� and M per-dataset sets of FiLM parameters  1 . . . M .
As detailed in the main paper, our training objective is a
multi-task classification one, that requires M per-dataset
classification readout heads. Following recent work (Chen
et al., 2019; 2020; Dvornik et al., 2020), we treat each of
those readout heads as a cosine classifier, i.e. a layer with-
out a bias, parameterized only by a weight matrix, where
the activations that are the inputs to the layer, as well as
the rows of that matrix are L2-normalized before the ma-
trix multiplication is performed. Following those previous
works, we also utilize a learnable softmax temperature for
these cosine classifiers.

We use stochastic gradient descent with a momentum of 0.9,
with a cosine decay schedule with restarts for the learning
rate. We also applied weight decay to the parameters of
the convolutional layers and to the FiLM parameters. We
tuned these parameters on the validation set, and used a
starting learning rate of 0.01. The first round decays over
10000 steps from that starting learning rate to “alpha” (we
use the default value of 0 for “alpha”). Then, a warm restart
is performed, where the learning rate is now “m mul” times
smaller than our original starting learning rate (we use the
default value of 1 for “m mul”), and the decay is done over
“t mul” times more steps than the previous decay round (we
use the default value of 2 for “t mul”). We set the weight
decay parameter for the convolutional layers to 7e� 4, and
the weight decay for the FiLM parameters to 0.001, which
regularizes the network’s � offset parameters to 0 and the �

scaling parameters to 1 (i.e. for the �, we apply the weight
decay to (� � 1)). Following previous work (Chen et al.,
2020), during our joint training phase, we sample examples
from ImageNet half the time, with the other half being

devoted to examples from all training datasets uniformly.

Training the dataset classifier To train our dataset clas-
sifier, we use Adam with a cosine decay schedule for the
learning rate, without restarts. The values that worked best
for this (as per the validation set performance) were an ini-
tial learning rate of 0.001 that is decayed over 3000 steps.
Note that this phase is significantly shorter compared to the
previously-described phase that trains our feature extractor.
We early-stopped the training of the dataset classifier based
on the validation accuracy: specifically, this is the accuracy
on the M -way dataset classification task computed on the
validation set, which contains held-out classes of the M

training datasets, as explained in the main paper.

Fine-tuning d⇤ During evaluation, the fine-tuning phase
within each test task also uses Adam as the optimizer, with-
out any learning rate decay in this case. We tuned the
learning rate and the number of fine-tuning steps based on
episodes from the validation set. Our best variant used a
learning rate of 0.005 and 6 steps. The values we consid-
ered for these were 0.0005, 0.001, 0.005 for the learning
rate and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 150, 20, 30 for the num-
ber of steps.

Hypothesis testing We follow the same procedure as in
(Triantafillou et al., 2020) to compute ranks for different
methods that in turn determine which entries to bold in our
tables. Specifically, we perform a 95% confidence interval
statistical test on the difference between the mean accuracies
of pairs of entries of each row. If for two entries we are
not able to reject the null hypothesis that the difference
between their means is 0, they will receive the same rank.
For example, if model A and model B are tied for the first
place according to that test, they will each receive the rank
1.5 (the average of the ranks 1 and 2). If we are able to
reject that hypothesis, however, the entry with the larger
mean accuracy will receive a higher rank than the other. In
each row, we bold the entries that are tied for the highest
rank.

The effect of the number of steps to train  d⇤

In Figure 2 of the main paper we visualized the performance
(on the support and query sets) for test episodes of held-out
datasets throughout the fine-tuning of  d⇤ . For complete-
ness, we also present in Figure 4 the same result, but for test
episodes of seen datasets (weak generalization setting). We
observe that the increase in accuracy is less pronounced for
these seen datasets. This is expected, since we know that
there already exists a set of FiLM parameters that performs
well for each test task sampled from a training dataset m
(namely the set  m of FiLM parameters), and assuming
the dataset classifier is accurate, the Blender would almost



Learning a Universal Template for Few-shot Dataset Generalization

exclusively pick that set of FiLM parameters.

Inpsecting the Blender’s proposals

In Figure 3 in the main paper, we visualized the average
combination co-efficients that the Blender produces for test
tasks of different datasets. Since that figure only shows the
average, we now take a closer look at the distribution of the
Blender’s proposed combination co-efficients differs within
different test tasks of the same dataset. As a reminder, these
co-efficients are computed based on the support set of each
given test task, so they are not re-used across different tasks
of the same dataset (in fact, the dataset identity is not known
at test time).

We visualize the Blender’s proposals for 600 test tasks of
each dataset in Figure 6. We observe that, for each seen
dataset (the first 8 sub-plots), the Blender almost exclusively
picks the FiLM parameters dedicated to that specific dataset
(although ImageNet and Birds sometimes pick each other
to some small extent). This means that the dataset classifier
is accurate across several held-out episodes of the seen
datasets. For the unseen datasets, on the other hand, there is
some more variability, as expected, consistent with Figure 3.

We also plot the variance of the distribution of the dataset
classifier’s predictions across several test tasks of each
dataset, in Figure 5. Specifically, each column corresponds
to a test dataset, and the different rows show the variance of
the dataset classifier’s predictions over the 8 dimensions of
its output vector (one for each of the M training datasets).
We observe that there is no variance for the first 8 columns
(seen datasets) since, as expected, the dataset classifier is
accurate on the seen datasets and successfully predicts the
training dataset from which each support set originates from.
Out of the held-out ones, we observe that MNIST also has
very low variance (it always picks Quickdraw as we can
see from Figure 6), but the remaining held-out datasets
exhibit larger variance, especially Traffic Signs where the
dataset classifier’s estimate of whether support sets from
test episodes of Traffic Signs belong to the Flower dataset
really vary from task to task.

Additional confidence intervals

We omitted the confidence intervals of Table 3 from the
main paper due to space constraints, so we report a copy of
that table along with the 95% confidence intervals here in
Table 4.

Additional runs of the dataset classifier

network

Since we noticed in Table 3 of the main paper that the
initialization of  d⇤ has a large effect on performance, here

we evaluate different checkpoints of our dataset classifier.
Specifically, we performed different runs when training the
dataset classifier, each with different hyperparameters, as
outlined in the previous section. In what follows, we present
the results not only of the top-performing one (in terms of
validation accuracy), but the five top-performing ones. This
allows us to understand the sensitivity of our results to the
choice of the specific checkpoint of the dataset classifier
that we use. We show these results in Tables 6 and 7, with
and without fine-tuning of  d⇤ , respectively. That is, the
former sets the Blender’s proposal as d⇤ directly, instead of
treating that as the initialization for fine-tuning via gradient
descent, as we do in the latter. The last column of each table
corresponds to the checkpoint of the dataset classifier that
we used for our results in the main paper.

To generate the results in Table 7, for each of the 5 check-
points of the dataset classifier, we performed a valida-
tion round where we used the performance on validation
episodes to determine the learning rate and number of steps
that will be used for fine-tuning. The hyperparameters that
worked best for the 5 different checkpoints and their re-
spective validation accuracies are shown in Table 5. These
validation accuracies are averaged over a large number of
validation episodes (600 per dataset in the validation set),
where as a reminder the validation set contains held-out
classes of the M training datasets.

From Table 6, we observe that the results are reasonably
consistent across the 5 checkpoints of the dataset classi-
fier that we consider. This is especially true of the perfor-
mance on (held-out classes of) the seen datasets, in rows
ImageNet-Flower (weak generalization setting). On the un-
seen datasets in rows Traffic Signs - CIFAR-100 (strong
generalization setting), there is some more variance, as ex-
pected. This is because of the fact that during training (and
validation), the dataset classifier is not exposed to any data
from these held-out datasets, so its behavior is underspeci-
fied in that regard, and it is plausible that different solutions
perform equally well on the training and validation sets, but
behave differently on the held-out datasets of the test set.
Nevertheless, we find the observed variance reasonable (the
difference between the best and worst performing runs is at
most 0.1% on average WG, at most 1.7% on Average SG,
and at most 0.7% on the overall average).

Next, we look at Table 7, where there is an additional po-
tential source of variance coming from the additional fine-
tuning phase and the difference in the hyperparameters that
were chosen for the different runs. However, we still find
the observed variance reasonable (the difference between
the best and worst performing runs is at most 0.2% on aver-
age WG, at most 2.7% on average SG, and at most 1% on
the overall average). We note that even our worst variant
outperforms the previous state-of-the-art on average, and in



Learning a Universal Template for Few-shot Dataset Generalization

Figure 4. The support and query accuracy over 600 test episodes of seen datasets (weak generalization setting) as a function of the
fine-tuning steps for  d⇤ .

Figure 5. Visualization of the variance of the co-efficients that
the Blender produces for each dataset over 600 test episodes of
that dataset. This aids us to understand how much the dataset
classifier’s predictions change based on the specific support set that
it ingests. As a reminder, the dataset classifier makes predictions
based on the support set of each given test task, so the resulting
combination co-efficients are not re-used across different tasks of
the same dataset (in fact, the dataset identity is not known at test
time).

fact with a large margin on the problem of few-shot dataset
generalization that we study in this work (“Average SG”).
These additional runs therefore further support FLUTE’s
effectiveness.

We encourage future work to also report the performance
across several runs. We believe that there is an inherent
underspecification in few-shot dataset generalization, due
to the large gap between the training (and validation) data
compared to the test data. (Gulrajani & Lopez-Paz, 2020)
also offer an extensive discussion on the difficulty of model
selection in the difficult regime of the domain generalization
problem that they study, which is closely related to our setup.
Given these difficulties, we believe it is important to report
the variance of our approaches, instead of reporting only the
accuracy of the top-performing run.

A closer look at the comparison between

FLUTE and SUR-pf

As a reminder, SUR-pf makes the design choice of training
the parametric family parameters only on ImageNet, and
subsequently training a separate set of FiLM parameters
for each other dataset, but without modifying the shared
convolutional layer parameters. In this next experiment, we



Learning a Universal Template for Few-shot Dataset Generalization

Table 4. The effect of training on different data (‘All’, as in FLUTE, or ‘ImageNet-only’), and alternative initialization schemes for  d⇤ :
from scratch (‘scratch’), from ImageNet’s FiLM parameters (‘ IN ’) and from Blender. The column corresponding to the setting “All,
Blender” is our proposed FLUTE model. This is the same Table as 3 from the main paper, but additionally annotated with confidence
intervals.

Training data All ImageNet only
Init scheme Scratch  IN Blender Scratch  IN Blender

ImageNet 47.7 ± 1.1 53.9 ± 1.1 51.8 ± 1.1 34.2 ± 1.0 46.9 ± 1.1 46.9 ± 1.1

Omniglot 91.2 ± 0.6 75.6 ± 1.1 93.2 ± 0.5 57.2 ± 1.4 61.6 ± 1.4 77.9 ± 1.1

Aircraft 80.6 ± 0.8 66.0 ± 0.9 87.2 ± 0.5 35.3 ± 0.8 48.5 ± 1.0 67.3 ± 0.8

Birds 72.0 ± 0.9 73.2 ± 0.9 79.2 ± 0.8 28.8 ± 0.8 47.9 ± 1.0 60.0 ± 0.9

Textures 69.8 ± 0.7 71.9 ± 0.7 68.8 ± 0.8 55.5 ± 0.7 63.8 ± 0.8 61.2 ± 0.7

Quickdraw 78.1 ± 0.7 69.3 ± 0.8 79.5 ± 0.7 50.6 ± 1.0 57.5 ± 1.0 60.9 ± 0.9

Fungi 51.6 ± 1.1 46.0 ± 1.1 58.1 ± 1.1 23.0 ± 0.9 31.8 ± 1.0 34.3 ± 1.0

Flower 91.0 ± 0.6 89.2 ± 0.6 91.6 ± 0.6 65.9 ± 1.0 80.1 ± 0.9 73.8 ± 0.8

Traffic Signs 56.2 ± 1.1 54.8 ± 1.1 58.4 ± 1.1 36.4 ± 1.0 46.5 ± 1.1 43.0 ± 1.1

MSCOCO 42.5 ± 1.0 50.6 ± 1.0 50.0 ± 1.0 29.3 ± 0.9 41.4 ± 1.0 41.3 ± 1.0

MNIST 95.5 ± 0.5 83.4 ± 0.7 95.6 ± 0.4 78.9 ± 0.7 80.8 ± 0.8 86.9 ± 0.6

CIFAR-10 69.6 ± 0.9 76.9 ± 0.7 78.6 ± 0.7 47.1 ± 0.8 65.4 ± 0.8 65.4 ± 0.8

CIFAR-100 58.0 ± 1.1 67.5 ± 0.9 67.1 ± 1.0 34.5 ± 1.0 52.7 ± 1.1 52.2 ± 1.1

Average WG 72.8 68.1 76.2 43.8 54.8 60.3

Average SG 64.4 66.7 69.9 45.2 57.4 57.8

Average all 69.5 67.6 73.8 44.4 55.8 59.3

Table 5. The learning rate and number of steps that were deemed
best (as per the validation set accuracy) for each of the 5 check-
points of the dataset classifier, as well as their associated validation
set accuracy. These are the hyperparameters of the fine-tuning
phase that were used to generate the results of Table 7.

Run 1 Run 2 Run 3 Run 4 Run 5
learn rate 1e-3 5e-4 5e-3 5e-4 5e-3
num steps 4 6 2 10 6
valid acc 77.6 77.5 77.5 77.5 78.1

run a variant of SUR-pf that trains on all datasets in the
same way as FLUTE (we re-used the parameteric family
we trained for FLUTE to achieve this). The only difference
between this variant and FLUTE, then, is the algorithm for
tackling each test task: FLUTE will learn a new set of batch
normalization parameters for the task at hand, as described
in the main paper. SUR-pf, on the other hand, creates a
‘universal representation’ by concatenating the activations
of the different backbones (that share some but not all of
their parameters) and applying SUR’s selection mechanism
to weigh the universal representation features appropriately
for the task at hand (Dvornik et al., 2020). The results of
this comparison are shown in Table 8. While our modified
variant of SUR-pf outperforms the original SUR-pf, it still
significantly falls short of FLUTE, especially on the strong
generalization tasks. This suggests that FLUTE’s superiority
over SUR is not solely due to training on more data, but also
due to its inductive bias that is particularly appropriate for
the problem of few-shot dataset generalization.

Shuffled Traffic Signs

It was recently noticed 4 that in the introduction notebook
that comes with the Meta-Dataset code-base5, the usage
examples given for the episode input pipeline did not set the
parameter that dictates the size of the shuffle buffer, which
defaults to not shuffling examples within each class. This
led to many previous works on Meta-Dataset using unshuf-
fled datasets, which evidently produced more optimistic
results on the Traffic Signs dataset. Specifically, the exam-
ples of this dataset are organized as 30-image sequences
of pictures from the same physical sign (successive frames
from the same video), leading to support and query exam-
ples being more frequently really close when not shuffling
the examples of each class.

The results we reported in this paper are computed as in-
tended, using the shuffled datasets. For reference, there is
also a leaderboard on the Meta-Dataset code-base repository
that reflects the shuffled Traffic Signs numbers for different
methods.

However, for completeness, we show here the results com-
puted on the easier variant induced by not shuffling the
images. These are in Table 9 (main results) and Table 10
(additional runs of the dataset classifier). The latter displays
the results of the same 5 checkpoints as we used in the pre-
vious section. The last column represents the model that we
used to report FLUTE’s results in the main paper.

4https://github.com/google-research/meta-dataset/issues/54
5https://github.com/google-research/meta-dataset



Learning a Universal Template for Few-shot Dataset Generalization

Table 6. The performance of FLUTE when using each of 5 different checkpoints of the dataset classifier. In this case, we omit the
fine-tuning phase, and treat the Blender’s proposal directly as the FiLM parameters of the new task (instead of treating that as the
initialization for further fine-tuning). This allows us to more closely inspect the difference in performance induced by different dataset
classifiers. As usual, we report the performance on the test set of each of the seen datasets (ImageNet - Flower) for the weak generalization
setting (WG), and the performance on the held-out datasets (Traffic Signs - CIFAR-100) for the strong generalization setting (SG),
corresponding to the problem of few-shot dataset generalization that we focus on in this work.

Dataset Run 1 Run 2 Run 3 Run 4 Run 5

ImageNet 53.4 ± 1.1 53.9 ± 1.1 53.9 ± 1.1 53.4 ± 1.1 53.8 ± 1.1

Omniglot 92.8 ± 0.5 92.8 ± 0.5 92.8 ± 0.5 92.8 ± 0.5 92.8 ± 0.5

Aircraft 87.1 ± 0.5 87.1 ± 0.5 87.1 ± 0.5 87.1 ± 0.5 87.1 ± 0.5

Birds 78.6 ± 0.8 78.6 ± 0.8 78.6 ± 0.8 78.5 ± 0.8 78.6 ± 0.8

Textures 67.7 ± 0.8 67.7 ± 0.8 67.7 ± 0.8 67.8 ± 0.8 67.7 ± 0.8

Quickdraw 79.6 ± 0.7 79.6 ± 0.7 79.6 ± 0.7 79.6 ± 0.7 79.6 ± 0.7

Fungi 58.1 ± 1.1 58.2 ± 1.1 58.2 ± 1.1 58.0 ± 1.1 58.1 ± 1.1

Flower 91.5 ± 0.6 91.5 ± 0.6 91.5 ± 0.6 91.5 ± 0.6 91.5 ± 0.6

Traffic Signs 51.8 ± 1.1 52.6 ± 1.1 51.8 ± 1.1 52.0 ± 1.1 53.8 ± 1.1

MSCOCO 48.7 ± 1.0 50.2 ± 1.0 50.3 ± 1.0 49.3 ± 1.0 50.1 ± 1.0

MNIST 96.0 ± 0.4 94.3 ± 0.5 94.3 ± 0.5 94.3 ± 0.5 94.3 ± 0.5

CIFAR-10 75.8 ± 0.7 75.1 ± 0.8 75.7 ± 0.8 73.8 ± 0.8 76.4 ± 0.7

CIFAR-100 66.3 ± 1.0 63.4 ± 1.0 65.1 ± 1.0 62.9 ± 1.0 66.4 ± 1.0

Average WG 76.1 76.2 76.2 76.1 76.2

Average SG 67.7 67.1 67.4 66.5 68.2

Average all 72.9 72.7 72.8 72.4 73.1

Table 7. The performance of FLUTE when using each of 5 different checkpoints of the dataset classifier. Contrary to Table 6, we now
perform the fine-tuning phase too that learns the FiLM parameters for the new task, starting from the Blender’s proposed initialization.
Table 5 shows the hyperparameters used for fine-tuning for each of the 5 runs, and their respective validation accuracies. As usual, we
report the performance on the test set of each of the seen datasets (ImageNet - Flower) for the weak generalization setting (WG), and the
performance on the held-out datasets (Traffic Signs - CIFAR-100) for the strong generalization setting (SG), corresponding to the problem
of few-shot dataset generalization that we focus on in this work. The results for the rightmost column (Run 5) are the results we reported
for FLUTE in the main paper, since this run achieved the highest validation accuracy as shown in Table 5.

Dataset Run 1 Run 2 Run 3 Run 4 Run 5

ImageNet 53.4 ± 1.1 53.8 ± 1.1 53.6 ± 1.1 53.4 ± 1.1 51.8 ± 1.1

Omniglot 92.9 ± 0.5 92.9 ± 0.5 93.0 ± 0.5 92.9 ± 0.5 93.2 ± 0.5

Aircraft 87.2 ± 0.5 87.2 ± 0.5 87.3 ± 0.5 87.2 ± 0.5 87.2 ± 0.5

Birds 78.8 ± 0.8 78.8 ± 0.8 79.0 ± 0.8 78.8 ± 0.8 79.2 ± 0.8

Textures 68.0 ± 0.8 68.0 ± 0.8 68.3 ± 0.8 68.1 ± 0.8 68.8 ± 0.8

Quickdraw 79.6 ± 0.7 79.6 ± 0.7 79.6 ± 0.7 79.6 ± 0.7 79.5 ± 0.7

Fungi 58.2 ± 1.1 58.3 ± 1.1 58.5 ± 1.1 58.3 ± 1.1 58.1 ± 1.1

Flower 91.6 ± 0.6 91.6 ± 0.6 91.6 ± 0.6 91.6 ± 0.6 91.6 ± 0.6

Traffic Signs 52.5 ± 1.1 53.2 ± 1.1 54.5 ± 1.1 53.4 ± 1.1 58.4 ± 1.1

MSCOCO 49.0 ± 1.0 50.4 ± 1.0 50.8 ± 1.0 49.7 ± 1.0 50.0 ± 1.0

MNIST 96.0 ± 0.4 94.5 ± 0.5 94.9 ± 0.5 94.7 ± 0.5 95.6 ± 0.5

CIFAR-10 76.6 ± 0.7 75.7 ± 0.8 77.4 ± 0.8 74.8 ± 0.8 78.6 ± 0.7

CIFAR-100 66.8 ± 1.0 63.8 ± 1.0 66.2 ± 1.0 63.5 ± 1.0 67.1 ± 0.9

Average WG 76.2 76.3 76.4 76.2 76.2

Average SG 68.2 67.5 68.8 67.2 69.9

Average all 73.1 72.9 73.4 72.8 73.8



Learning a Universal Template for Few-shot Dataset Generalization

Table 8. Comparison of FLUTE to SUR-pf and a different variant of SUR-pf that we ran (‘All SUR-pf’) whose parametric family is
trained on all datasets, in the same way as FLUTE, instead of being trained on ImageNet only as SUR-pf is.

Dataset FLUTE SUR-pf All SUR-pf

ImageNet 51.8 ± 1.1 56.4 ± 1.2 54.4 ± 1.1

Omniglot 93.2 ± 0.5 88.5 ± 0.8 92.0 ± 0.6

Aircraft 87.2 ± 0.5 79.5 ± 0.8 87.0 ± 0.6

Birds 79.2 ± 0.8 76.4 ± 0.9 79.4 ± 0.8

Textures 68.8 ± 0.8 73.1 ± 0.7 72.3 ± 0.7

Quickdraw 79.5 ± 0.7 75.7 ± 0.7 79.1 ± 0.7

Fungi 58.1 ± 1.1 48.2 ± 0.9 54.4 ± 1.1

Flower 91.6 ± 0.6 90.6 ± 0.5 91.9 ± 0.6

Traffic Signs 58.4 ± 1.1 52.2 ± 0.8 49.4 ± 1.1

MSCOCO 50.0 ± 1.0 52.1 ± 1.0 47.6 ± 1.0

MNIST 95.6 ± 0.4 93.2 ± 0.4 95.8 ± 0.4

CIFAR-10 78.6 ± 0.7 66.4 ± 0.8 66.2 ± 0.8

CIFAR-100 67.1 ± 1.0 57.1 ± 1.0 56.4 ± 1.0

Average WG 76.2 73.6 76.3

Average SG 69.9 64.2 63.1

Average all 73.8 70.0 71.2

Table 9. Comparing FLUTE to recent state-of-the-art methods. This is the same table as Table 2 in the main paper, with the exception of
the Traffic Signs row that now reflects the easier (unshuffled) variant of Traffic Signs.

Dataset CNAPs TaskNorm SimpleCNAPs SUR-pf URT-pf SUR (x8) URT (x8) FLUTE

ImageNet 52.3 ± 1.0% 50.6 ± 1.1% 58.6 ± 1.1% 56.4 ± 1.2% 55.5 ± 1.1% 56.3 ± 1.1% 55.7 ± 1.1% 51.8 ± 1.1%
Omniglot 88.4 ± 0.7% 90.7 ± 0.6% 91.7 ± 0.6% 88.5 ± 0.8% 90.2 ± 0.6% 93.1 ± 0.5% 94.4 ± 0.4% 93.2 ± 0.5%
Aircraft 80.5 ± 0.6% 83.8 ± 0.6% 82.4 ± 0.7% 79.5 ± 0.8% 79.8 ± 0.7% 85.4 ± 0.7% 85.8 ± 0.6% 87.2 ± 0.5%

Birds 72.2 ± 0.9% 74.6 ± 0.8% 74.9 ± 0.8% 76.4 ± 0.9% 77.5 ± 0.8% 71.4 ± 1.0% 76.3 ± 0.8% 79.2 ± 0.8%

Textures 58.3 ± 0.7% 62.1 ± 0.7% 67.8 ± 0.8% 73.1 ± 0.7% 73.5 ± 0.7% 71.5 ± 0.8% 71.8 ± 0.7% 68.8 ± 0.8%
Quickdraw 72.5 ± 0.8% 74.8 ± 0.7% 77.7 ± 0.7% 75.7 ± 0.7% 75.8 ± 0.7% 81.3 ± 0.6% 82.5 ± 0.6% 79.5 ± 0.7%
Fungi 47.4 ± 1.0% 48.7 ± 1.0% 46.9 ± 1.0% 48.2 ± 0.9% 48.1 ± 0.9% 63.1 ± 1.0% 63.5 ± 1.0% 58.1 ± 1.1%
Flower 86.0 ± 0.5% 89.6 ± 0.6% 90.7 ± 0.5% 90.6 ± 0.5% 91.9 ± 0.5% 82.8 ± 0.7% 88.2 ± 0.6% 91.6 ± 0.6%

Traffic Signs 60.2 ± 0.9% 67.0 ± 0.7% 73.5 ± 0.7% 65.1 ± 0.8% 67.5 ± 0.8% 70.4 ± 0.8% 69.4 ± 0.8% 74.8 ± 0.7%

MSCOCO 42.6 ± 1.1% 43.4 ± 1.0% 46.2 ± 1.1% 52.1 ± 1.0% 52.1 ± 1.0% 52.4 ± 1.1% 52.2 ± 1.1% 50.0 ± 1.0%
MNIST 92.7 ± 0.4% 92.3 ± 0.4% 93.9 ± 0.4% 93.2 ± 0.4% 93.9 ± 0.4% 94.3 ± 0.4% 94.8 ± 0.4% 95.6 ± 0.5%

CIFAR-10 61.5 ± 0.7% 69.3 ± 0.8% 74.3 ± 0.7% 66.4 ± 0.8% 66.1 ± 0.8% 66.8 ± 0.9% 67.3 ± 0.8% 78.6 ± 0.7%

CIFAR-100 50.1 ± 1.0% 54.6 ± 1.1% 60.5 ± 1.0% 57.1 ± 1.0% 57.3 ± 1.0% 56.6 ± 1.0% 56.9 ± 1.0% 67.1 ± 1.0%

Average WG 69.7 % 71.9 % 73.8 % 73.6 % 74.0 % 75.6 % 77.3 % 76.2 %
Average SG 61.4 % 65.3 % 69.7 % 66.8 % 67.4 % 68.1 % 68.1 % 73.2 %

Average all 66.5 % 69.3 % 72.2 % 70.9 % 71.5 % 72.7 % 73.8 % 75.0 %

Table 10. The performance of FLUTE when using each of 5 different checkpoints of the dataset classifier on the (easier) unshuffled
version of the Traffic Signs dataset. The results for the rightmost column (Run 5) are the results produced by the FLUTE variant that we
report in the main paper.

Dataset Run 1 Run 2 Run 3 Run 4 Run 5

Unshuffled Traffic Signs 73.1 ± 0.7% 73.3 ± 0.7% 73.0 ± 0.7% 72.9 ± 0.7% 74.8 ± 0.7%



Learning a Universal Template for Few-shot Dataset Generalization

Hard Blender: using the dataset classifier but

without taking a convex combination

An alternative design choice is to use a ‘Hard’ Blender,
that instead of taking a convex combination of the training
datasets’ FiLM parameters, selects only the FiLM param-
eters of the most likely training dataset (as assessed by
the dataset classifier). The comparison with this variant
is shown in Table 11. Perhaps unsurprisingly, the two ini-
tialization schemes perform similarly. This is expected,
especially for the WG tasks, since the Blender, which is
based on an accurate dataset classifier, puts most of its prob-
ability mass on a single dataset anyway. Taking the convex
combination is a more general approach that doesn’t suffer,
and in fact may slightly be beneficial for some SG tasks. We
therefore adopt this initialization scheme as our default one
for use with FLUTE.



Learning a Universal Template for Few-shot Dataset Generalization

Table 11. Comparing the Blender initialization scheme to the ‘Hard Blender’ variant. Specifically, instead of taking a convex combination
of the training datasets’ FiLM parameters as Blender does, ‘Hard Blender’ selects only the FiLM parameters of the most likely training
dataset (as assessed by the dataset classifier). The columns marked as ‘fine-tune’ train the FiLM parameters using gradient descent from
the Blender or Hard Blender initialization, whereas the others use the initialization directly, allowing to more closely inspect the difference
between these two initialization schemes.

Dataset Blender Blender (fine-tune) Hard Blender Hard Blender (fine-tune)

ImageNet 53.8 ± 1.1 51.8 ± 1.1 53.9 ± 1.1 51.8 ± 1.1

Omniglot 92.8 ± 0.5 93.2 ± 0.5 92.8 ± 0.5 93.2 ± 0.5

Aircraft 87.1 ± 0.5 87.2 ± 0.5 87.1 ± 0.5 87.3 ± 0.5

Birds 78.6 ± 0.8 79.2 ± 0.8 78.6 ± 0.8 79.2 ± 0.8

Textures 67.7 ± 0.8 68.8 ± 0.8 67.7 ± 0.8 68.8 ± 0.8

Quickdraw 79.6 ± 0.7 79.5 ± 0.7 79.6 ± 0.7 79.5 ± 0.7

Fungi 58.1 ± 1.1 58.1 ± 1.1 58.2 ± 1.1 58.1 ± 1.1

Flower 91.5 ± 0.6 91.6 ± 0.6 91.5 ± 0.6 91.6 ± 0.6

Traffic Signs 53.8 ± 1.1 58.4 ± 1.1 52.4 ± 1.1 57.2 ± 1.1

MSCOCO 50.1 ± 1.0 50.0 ± 0.7 50.4 ± 1.0 50.1 ± 1.0

MNIST 94.3 ± 0.5 95.6 ± 1.0 94.3 ± 0.5 95.6 ± 0.5

CIFAR-10 76.4 ± 0.7 78.6 ± 0.5 76.5 ± 0.7 78.4 ± 0.7

CIFAR-100 66.4 ± 1.0 67.1 ± 0.7 67.0 ± 0.9 66.7 ± 1.0

Average WG 76.2 76.2 76.2 76.2

Average SG 68.2 69.9 68.1 69.6

Average all 73.1 73.8 73.1 73.7



Learning a Universal Template for Few-shot Dataset Generalization

Figure 6. The combination co-efficients that the Blender outputs for test episodes of each dataset. Each plot is creating using 600 test
episodes of its corresponding dataset.


