
Cumulants of Hawkes Processes are Robust to Observation Noise

A. Technical Proofs
A.1. Proof of Theorem 1

We first start by showing that a random translation of an inhomogeneous Poisson process is another a Poisson process (Daley
& Jones, 2003; Doob, 1953). Subsequently, we will use this result to compute the cumulants of a randomly translated MHP.

Lemma 1. (Daley & Jones, 2003) Let N(·) be an inhomogeneous Poisson process on R+ with rate λ(t). The resulting
process after a random translation with distribution function F (·) is another Poisson process with rate

λ̃(t) :=

∫ t

−∞
λ(t− x)F (dx).

Proof. We prove this lemma by showing that the number of events within an arbitrary interval of the randomly translated
Poisson is Poisson with the specified rate. Let Iθ = [0, θ] be an interval in R, then

P(N(Iθ) = k) =
(Λ(Iθ))

k

k!
e−Λ(Iθ),

where Λ(Iθ) is
∫ θ

0
λ(x)dx. The probability that an arrival at time t ∈ Iθ is translated to an arbitrary interval I := [a, b] is

P(a ≤ x+ t ≤ b) = F (b− t)− F (a− t) := F (I − t)

The probability that only m of k arrivals within Iθ are translated to I is equal to(
k

m

)(∫ θ

0

F (I − t)λ(t)dt/Λ(Iθ)

)m(∫ θ

0

(1− F (I − t))λ(t)dt/Λ(Iθ)

)k−m
.

Therefore, the probability that m events are observed in I after translation is

lim
θ→∞

∑
k≥m

(Λ(Iθ))
k

k!
e−Λ(Iθ)

(
k

m

)(∫ θ

0

F (I − t)λ(t)dt/Λ(Iθ)

)m(∫ θ

0

(1− F (I − t))λ(t)dt/Λ(Iθ)

)k−m

= lim
θ→∞

∑
k≥m

e−Λ(Iθ)

m!(k −m)!

(∫ θ

0

F (I − t)λ(t)dt

)m(∫ θ

0

(1− F (I − t))λ(t)dt

)k−m

= lim
θ→∞

e−Λ(Iθ)

m!

(∫ θ

0

F (I − t)λ(t)dt

)m∑
k≥0

1

k!

(∫ θ

0

(1− F (I − t))λ(t)dt

)k

= lim
θ→∞

e−Λ(Iθ)

m!

(
Λ̃(Iθ)

)m
e(Λ(Iθ)−Λ̃(Iθ)),

where Λ̃(Iθ) :=
∫ θ

0
F (I − t)λ(t)dt. Letting θ to go to infinity and setting {a = v, b = v + dv}, we obtain

P(dÑ(v) = 1) = λ̃(v)dv =

(∫ ∞
0

f(v − u)λ(u)du

)
dv

=

(∫ v

−∞
λ(v − x)F (dx)

)
dv,

where F (dv) = f(v)dv.

To establish the result in Theorem 1, it is also useful to prove the following lemma.

Lemma 2. For every multi-index i = (i1, ..., in) and every vector t̃ = (t̃1, ..., t̃n), we have

Ki(t̃)dt̃ = P(Ei
t̃
∩ Ci

t̃
),

where Ei
t̃

denotes the event that for every k there is a type ik events at time t̃k and Ci
t̃

is the event that there exists a cluster
such that all the events in t̃ belong to that cluster.
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Figure 8: The evolution of a part of a cluster after random translation. Nodes are labeled by their types.

Proof. This can be seen by the facts that

E[dNi1(t̃1)...dNin(t̃n)] = P
(
∀k ∈ {1, ..., n}, there is a type ik event at t̃k

)
= P(Ei

t̃
),

P(Ei
t̃
) = P(Ei

t̃
∩ Ci

t̃
) + P(Ei

t̃
∩ C̄i

t̃
),

where C̄i
t̃

denotes the complement of the event Ci
t̃
. The rest follows similarly to the proof of Equation (24) in Appendix A

of (Jovanović et al., 2015).

Lemma 3. Consider the setting in Theorem 1, and define

R̃
(t)
i,jdt := P

(
type j event at 0 causes type i event at t

)
,

then R̃(t)
i,j =

[∑
n≥0 G̃

∗n(t)
]
i,j

.

Proof. Suppose in a cluster C of the original (before translation) MHP, dimension j at some time y triggers an arrival in
dimension i. Based on the definition of the clusters, the arrival times in dimension i are distributed as an inhomogeneous
Poisson with rate Gi,j(t− y). See Figure 8.

Suppose that nodes j and i are translated by τj and τi, respectively. Then t̃j = y + τj and t̃i = y + x + τi, where
x ∼ Exp(Gi,j(t− y)), and t̃i − t̃j = x+ τi − τj .

The above observation and Lemma 1 imply that

P(dNi(t̃i) = 1|τj)
dt

=

∫
R
fi(t̃i − s)Gi,j(s− y)ds =

∫
R
fi(t̃i − t̃j + τj − s)Gi,j(s)ds,

where Ni denotes the number of arrivals in i-th dimension of the translated process. Therefore,

G̃i,j(t̃i − t̃j) :=
P(dNi(t̃i) = 1)

dt
=

∫
R

∫
R
fi(t̃i − t̃j + τj − s)Gi,j(s)fj(τj)dsdτj .

This equation may be interpreted as follows: the cluster of an MHP after the random translation forms a new cluster in
which dimension j at some time t̃j causes an offspring of type i by generating a realization of an inhomogeneous Poisson
process with rate G̃i,j(t − t̃j). Moreover, an immigrant from dimension k appears in the translated cluster with rate∫
R µkFk(dx) = µk.

Define pni,j(t) as the probability that an event of type j at 0, after n generations, causes a type i event at t in the translated
cluster. Clearly, p0

i,j(t) = [Iδ(t)]i,jdt. For n > 0, we have

p1
i,j(t) = G̃i,j(t)dt,

p2
i,j(t) =

d∑
k=1

∫
R
G̃k,j(s)G̃i,k(t− s)dsdt = [G̃∗2(t)]i,jdt,

...

pni,j(t) = [G̃∗n(t)]i,jdt.
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This implies

R̃
(t)
i,jdt =

∑
n≥0

pni,j(t) =

∑
n≥0

G̃∗n(t)


i,j

dt.

With Lemma 3 at hand, we are ready to prove Theorem 1.

For Equation (4): From the definition of the cumulant, we have

Ki(t̃)dt̃ = K(dNi(t̃)) = E[dNi(t̃)].

The last term in the above expression is the probability that an immigrant, say from dimension j, generates an event in
dimension i at time t̃, which equals

d∑
j=1

∫
R
µjR̃

(t̃−x)
i,j dx =

d∑
j=1

∫
R
µjR̃

(x)
i,j dx = Ki.

For Equation (5): We have

Ki,j(t̃1, t̃2)dt̃1dt̃2 = P
(

types i, j events at times t̃1, t̃2 within the same cluster
)
.

The above event happens if and only if node i and j have a common ancestor in a cluster, which happens with probability

d∑
k=1

∫
R
P
(

an immigrant generates an event in dimension k at time x
)

× P
(
k generates i and j at times t̃1 and t̃2

)
dt̃1dt̃2dx

=

d∑
k=1

∫
R
Kk ×

(
R̃

(t̃1−x)
i,k R̃

(t̃2−x)
j,k dt̃1dt̃2

)
dx

For Equation (6): We use the above Lemmas 2 and 3, and the fact that i, j and k can all occur in one cluster if one of the
followings cases happen: (1) {i, j} and {k}, (2) {i, k} and {j}, (3) {k, j} and {i}, (4) {i, j, k}, where types within one
set have a common ancestor and separate sets have a common ancestor. For example, in case of {i, j} and {k}, i and j
share a common ancestor and the common ancestor of {i, j} and {k} have their own common ancestor. Say the common
ancestor of i and j be from type m at some time y, and assume m and k have a different common ancestor than {i, j}, say n
at another time x. This case can be formally written as follows

case({i, j}, {k}) =

d∑
m,n=1

∫
R
KnR̃

(t̃3−x)
k,n dt̃3

∫
R
R̃

(t̃1−y)
i,m dt̃1R̃

(t̃2−y)
j,m dt̃2Ψ̃m,n(y − x)dydx

=

d∑
m=1,n=1

Kn

∫
R

∫
R
R̃

(t̃3−x)
k,n R̃

(t̃1−y)
i,m R̃

(t̃2−y)
j,m Ψ̃m,n(y − x)dydxdt̃1dt̃2dt̃3.

In this expression, Ψ̃m,n appears because nodes m and n cannot coincide, then there must be at least one generation
difference from n to m. The probability of this event is

∑
r>0

prm,n(y − x) =

[∑
r>0

G̃∗r(y − x)

]
m,n

=
[
R̃

(y−x)
− Iδ(y − x)

]
m,n

:= Ψ̃m,n(y − x).

Similarly, one can compute the probability of the other partitions and conclude the result.
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A.2. Proof of Corollary 1

Recall from Theorem 1 that G̃i,j(t) = fi ∗Gi,j ∗ f j(t). Since functions Gi,j , fi, and fj are bounded, their convolutions is
also bounded. We have

Gi,j =

∫
R

∫
R

∫
R
fi(t+ x− s)Gi,j(s)fj(x)dsdxdt =

∫
R
Gi,j(s)ds.

The last equality is due to the fact that
∫
R fi(t)dt =

∫
R fj(t)dt = 1. By assumption, the matrix L[G](0) has spectral radius

less than one, and by the above equality so does the matrixG.

A.3. Proof of Corollary 2

The result is immediate from the definition of the covariance density matrix of a randomly translated MHP,

Σ̃i,j(t̃1, t̃2) := Ki,j(t̃1, t̃2)− E[dNi(t̃1)]

dt̃1
εi,jδ(t̃1 − t̃2),

and substituting the second order cumulant density given in (5).

A.4. Discussion on Covariance Density matrix Equations

We show that equations (13) and (15) do not admit unique solutions, but first we need the following Lemma.
Lemma 4. For a stationary MHP and a random translation of it, both ρ(L[G](s)) and ρ(L[G̃](s)) are strictly less than
one for all s ∈ C.

Proof. From Gelfand’s Formula, we know that for any matrix B, ρ(B) = limn→∞||Bn||1/n, where || · || is any matrix norm.

We will apply Gelfand’s formula with B = L[G](s) and || · || chosen as the max norm || · ||max, but first observe

||L[G]n(s)||max := maxi,j

∣∣∣[L[G]n(s)]i,j

∣∣∣ ≤ maxi,j ∣∣∣[L[G]n(0)]i,j

∣∣∣ = ||Gn||max, ∀n ∈ N, s ∈ C.

We used the triangle inequality and the fact that for a positive function f , |L[f ](s)| ≤ |L[f ](0)|. Now, applying Gelfand’s
Formula, we obtain

ρ (L[G](s)) ≤ limn→∞||Gn||1/nmax = ρ (G) < 1.

The last inequality is due to the stationarity assumption of the MHP. Following the same steps and the result of Corollary 1,
one can show ρ(L[G̃](s)) < 1.

Lemma 5. Equations (13) and (15) do not admit unique solutions in terms ofG(t) and G̃(t).

Proof. We only present the proof for equation (13). The argument for (15) is similar. LetG(t) denote a solution to (13) and
R(t) := Iδ(t) + Ψ(t), then

Σ(t) = R ∗ΛRT (t)−Λδ(t).

Define R0(t) := R(t)Λ1/2OΛ−1/2, where O is any orthogonal matrix, i.e., OOT = OTO = I. It is easy to see that

Σ(t) = R0 ∗ΛRT0 (t)−Λδ(t).

Lemma 4 implies that L[R](s) is bounded and equals (I− L[G](s))−1, therefore

L[R0](s) = L[R](s)Λ1/2OΛ−1/2 = (I− L[G](s))−1Λ1/2OΛ−1/2

=
(
Λ1/2OTΛ−1/2(I− L[G](s))

)−1

=
(

I− I + Λ1/2OTΛ−1/2 −Λ1/2OTΛ−1/2L[G](s)
)−1

=
(

I− A(s)
)−1

,

where
A(s) := I−Λ1/2OTΛ−1/2 + Λ1/2OTΛ−1/2L[G](s).

This meansG0(t) = L−1[A](t) is also a solution of (13).
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Figure 9: Tuning of the bandwidth H of the cumulants estimator used in the experiments of NPHC. We observe that the for
noise power in range σ2 < 1/β = 1, the best bandwidth H remains stable. For σ2 < 1/β = 1 the best bandwidth H was
increases linearly with σ2.

B. Estimators for the Integrated Cumulants
We used the same empirical estimates for the cumulants as in (Achab et al., 2017) as follows.

K̂i =
1

T

∑
τ ∈̃ti

1 =
Ni(T )

T
,

K̂i,j =
1

T

∑
τ ∈̃ti

(
Nj(τ +H)−Nj(τ −H)− 2HK̂j

)
,

K̂i,j,k =
1

T

∑
τ ∈̃ti

(
Nj(τ +H)−Nj(τ −H)− 2HK̂j

)(
Nk(τ +H)−Nk(τ −H)− 2HK̂k

)
− K̂i

T

∑
τ ∈̃tj

∑
τ ′∈̃tk

max{(2H − |τ ′ − τ |), 0}+ 4H2K̂iK̂jK̂k,

where t̃i denotes the set of all events up to time T in dimension i and H is a hyper-parameter used to truncate the interval
(−∞,∞) to [−H,H]. See (Achab et al., 2017) for a proof of the consistency of these estimators.

C. Reproducibility
In this section, we provide details of the experimental setup used to produce the figures reported in the main text. The
open-source code and all the scripts used to generate the figures are released publicly.

C.1. Synthetic data

The experimental setup for the experiments on synthetic data is as follows. We simulated 20 datasets, each comprised of 5
realizations of 105 events. We then randomly translated each dataset with distributions Fi ∼ N (0, σ2), 1 ≤ i ≤ d, for 20
noise powers σ2 ranging from 0.1 to 25, sampled in log-space.

The hyper-parameters used to produce the figures in Section 5 can be found in notebook and scripts. Details are as follows.

• ADM4. The exponential decay was set to its ground-truth value, β = 1.

• Desync-MLE. Similar to ADM4, the exponential decay was set to its ground-truth value, β = 1.

• NPHC. The bandwidth H of the estimator of the cumulants was set using binary search to minimize the L2,2 distance
to the ground-truth cumulants. The resulting bandwidth used to run the algorithm are discussed in Figure 9. In short,
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we observed that the for noise powers σ2 < 1/β = 1, the best bandwidth H remained stable. For σ2 < 1/β = 1 the
best bandwidth H increased linearly with σ2.

• WH. The maximum support of the excitation matrix was set to 10.0 to roughly match the same scale as the ground-truth
excitation functions. The number of quadrature points was set to 20. This value, which has a quadratic cost in the
computational complexity of the algorithm, was found to be large enough to provide prefect PR-AUC and Precision@n
on noiseless observations.

C.2. Real data

The dataset used in the experiments is that of Bund Futures traded at Eurex over 20 days in April 2014 8. This dataset has
already been modeled using MHPs in (Bacry et al., 2016). Each day is considered an independent realization of the process.
The timestamps are recorded at the microsecond timestamp resolution. As explained on the download website, the data
was preprocessed as follows. Market opens at 8AM which corresponds to a timestamp of 28 800. This timestamp has been
subtracted to all timestamps to have a realizations that starts at time 0. As markets closes at 10PM, the end time of the
realizations is 50 400. No additional preprocessing was performed on the dataset.

The first 5 days were used to tune the hyper-parameters of the learning algorithms, and the remaining 15 days were used to
measure the performance reported in Figure 7.

The hyper-parameters used to produce the figures in Section 5 can be found in notebook and scripts. Details are as follows.

• ADM4. To set the exponential decay β of the excitation functions, we ran a grid search for values between 102 and
104, and we found that β = 1291.0 maximized the log-likelihood. We used grid search between 1 and 105 to tune the
regularization weight and found that 103 maximized the log-likelihood.

• NPHC. Following the observation made in the experiments on synthetic data, the bandwidth H of the estimator of the
cumulants, was set to H = 1/β + σ2. This value provided stable results.

• WH. The hyper-parameters of this algorithm were set as in (Bacry et al., 2016).

We were unable to reproduce the results of (Bacry et al., 2016) on the noiseless dataset (i.e., without added random
translation) using Desync-MLE. Since the dataset consists of timestamps in a high-frequency trading application, it is
not expected to hold any synchronization noise. However, as shown in Figure 10, Desync-MLE converged to a non-zero
synchronization noise with a diagonal excitation matrix.
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Figure 10: Excitation matrices Ĝ0 learned by the different learning methods on the noiseless dataset of Bund Futures traded
at Eurex.

8Dataset available at: https://github.com/X-DataInitiative/tick-datasets/

https://github.com/X-DataInitiative /tick-datasets/

