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1 Example episodes from the dataset

We show examples from the Concept IID split test set comprising the ground truth productive
concept (top), along with the support and query sets for meta learning (rendered as images) and
the alternate hypotheses which are consistent with the support set – that is, other hypotheses
which could also have generated the positive and negative examples in the support set (Figures 1
to 4).

2 Additional Dataset Details

We first provide more details of the concept space G, then explain how we obtain H, the space
of concepts for training and evaluation, provide more details of the structured splits, and finally
explain the weight w(h) based on which we sample concepts.
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All objects are purple and the x-coordinate of all objects is less than 8

(All objects are purple)
(All objects are purple)

(All objects are purple)

Other Valid Hypotheses

1) for-all x in S =(purple, color?(x))
   All objects are purple
   Log-Prob: -0.852

2) for-all x in S =(color?(x), purple)
   All objects are purple
   Log-Prob: -0.852

3) all(color?(S), purple)
   All objects are purple
   Log-Prob: -1.950

4) exists x in S and(=(metal, material?(x)), all(color?(S), purple))
   All objects are purple and there exists an object whose material is metal
   Log-Prob: -8.523

5) for-all x in S and(=(color?(x), purple), any(material?(S), metal))
   All objects are purple and there exists an object whose material is metal
   Log-Prob: -8.523

Figure 1: Qualitative Example of an Episode in CURI dataset. Best viewed zooming in, in color.

There exists an object in the scene such that the y-coordinate of all other objects is 7
and one of the other objects is red

Valid Hypotheses

1) any(locationY?(S), 7)
   There exists an object in the scene whose y-coordinate is 7
   Log-Prob: -1.621

2) exists x in S >(locationY?(x), 6)
   There exists an object in the scene whose y-coordinate is greater than 6
   Log-Prob: -1.621

3) exists x in S any(locationY?(S_{-x}), 7)
   There exists an object in the scene such that an object other than it has a y-coordinate of 7
   Log-Prob: -1.621

4) exists x in S all(locationY?(S_{-x}), 7)
   There exists an object in the scene such that all other objects have a y-coordinate of 7
   Log-Prob: -1.647

5) exists x in S =(locationY?(x), 7)
   There exists an object in the scene whose y-coordinate is 7
   Log-Prob: -2.314

Figure 2: Qualitative Example of an Episode in CURI dataset. Best viewed zooming in, in color.
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There exists an object in the scene such that there exists another object in 
the scene that is large and all other objects have a y-coordinate of 6

Valid Hypotheses

1) exists x in S all(locationY?(S_{-x}), 6)
   There exists an object in the scene such that all other objects have a y-coordinate of 6
   Log-Prob: -0.008

2) exists x in S >(count=(locationY?(S_{-x}), 6), count=(size?(S_{-x}), 0.35))
   There exists an object in the scene such that the count of all other objects whose y-coordinate is 6
   is greater than the count of all other objects whose size is small
   Log-Prob: -6.668

3) for-all x in S =(count=(locationY?(S), 6), count=(shape?(S), shape?(x))
   For all objects in the scene, the count of objects which have the same shape as it, and the count of
   all objects which have the a y-coordinate of 6 is equal
   Log-Prob: -6.690

4) for-all x in S =(count=(shape?(S), shape?(x)), count=(locationY?(S), 6))
   For all objects in the scene, the number of objects which have the same shape as it and the count of
   number of objects with y-coordinate of 6 is equal
   Log-Prob: -6.690

5) exists x in S and(>(locationY?(x), 5), >(size?(x), 0.35))
   There exists an object in the scene such that its y-coordinate is greater than 5 and its size is
   greater than small
   Log-Prob: -.451

Figure 3: Qualitative Example of an Episode in CURI dataset. Best viewed zooming in, in color.

There exists an object in the scene such that all other objects are made 
of rubber and all other objects are cyan in color

Valid Hypotheses

1) exists x in S and(any(material?(S_{-x}), rubber), all(color?(S_{-x}), cyan))
   There exists an object in the scene such that one of the other objects is made of
   rubber and all other objects are cyan in color
   Log-Prob: -0.983

2) exists x in S and(all(color?(S_{-x}), cyan), all(material?(S_{-x}), rubber))
   There exists an object in the scene such that all other objects are cyan and all
   other objects are made of rubber
   Log-Prob: -1.162

3) exists x in S and(all(material?(S_{-x}), rubber), all(color?(S_{-x}), cyan))
   There exists an object in the scene such that all other objects are cyan and all
   other objects are made of rubber
   Log-Prob: -1.162

Figure 4: Qualitative Example of an Episode in CURI dataset. Best viewed zooming in, in color.
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2.1 More details of the grammar
We provide below the full grammar used to sample concepts, where A → B|C means that
A can expand to either B or C under the rules defined by the grammar. We always start
expanding at the START token and then follow the rules of the grammar until we hit a terminal
node (which does not have any expansions defined). As and where possible, we followed the
insights from Piantadosi et al. [5] in choosing the sampling probabilities for various completions
based on how well humans seem to be able to learn the corresponding primitive. For example,
we sample utterances with disjunctions (or) less frequently since they are known to be difficult
for humans to learn. Based on Kemp and Jern [4], we chose to represent location as a discrete
entity, such that relative, and categorical notions of left or right simply become comparisons
in the location space (location? x > location? S−x), unlike the CLEVR dataset [3] which
defines categorical relational objects.

Here is the full grammar G used for sampling the concepts (as explained in the main paper,
S−x = S/{x}). Note that the grammar always generates strings in postfix notation and thus
the operands in each expansion occur before the operation:
START −> λ S . BOOL e x i s t s= | λ S . BOOL for−a l l=

BOOL −> BOOL BOOL and | BOOL BOOL or | BOOL not |
C C = | SH SH = | M M = | SI SI = | L L = |
NUM NUM = | SI SI > | L L > | NUM NUM > |
SETFC C a l l | SETFSH SH a l l | SETFM M a l l |
SETFSI SI a l l | SETFL L a l l | SETFC C any |
SETFSH SH any | SETFM M any | SETFSI SI any |
SETFL L any

NUM −> SETFC C count= | SETFSH SH count= |
SETFM M count= | SETFSI SI count= | SETFL L count=

NUM −> 1 | 2 | 3

SETFC −> SET FC
SETFSH−> SET FSH
SETFM −> SET FM
SETFSI−> SET FSI
SETFL −> SET FL

C −> gray | red | b lue | green | brown | purple |
cyan | ye l low

C −> OBJECT FC

SH −> cube | sphere | c y l i nd e r
SH −> OBJECT FSH

M −> rubber | metal
M −> OBJECT FM

SI −> la r g e | smal l
SI −> OBJECT FSI

L −> 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8
L −> OBJECT FL

FC −> co l o r ?
FSH −> shape ?
FM −> mate r i a l ?
FSI −> s i z e ?
FL −> locat ionX ? | locat ionY ?

OBJECT−> x
SET: S | S−x
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2.2 Sampling
We sample 2000000 initial hypotheses from the CFG G, and impose a maximum depth in
the recursion tree of 6 when sampling. That is, no node has a depth larger than 6 in the
recursion through which we generate concepts from the grammar G. We then reject and filter
the hypotheses to obtain a set of “interesting” hypotheses H used in the main paper explained
in more detail below:
Rejection Sampling: We reject the following string combinations after sampling from the
grammar G:

• All programs which contain "λS. for-all x" and "S−x" in the same program. This is
asking that for all objects in a scene, a certain property is satisfied by everything other
than the object, which is the same as saying, for all objects in the scene.

• All programs where we compare the properties of the same object to itself, e.g. color?
(x) == color? (x), where color? can be any function applied to the object.

• All programs where we have the following string: exists(color?(S) == color?(x)) or
for-all(color?(S) == color?(x)) where color? can be any function applied to the
object.

• All programs which evaluate to true on schemas more than 10% of the time and less
than 10 times. The former condition ensures that we work with concepts which are in
some sense interesting and surprising (as opposed to concepts which are always trivially
true), and the second condition ensures that we have unique schmeas or datapoints to
place in the support and query sets, which both have 5 positive images each.

We provide examples of concepts which get rejected for being true too often below:

exists=x \in S or(
=(locationX?( x ), locationY?( x ) ),
any(color?( S ), brown )

)
exists=x \in S and(

exists=(locationY?( S ), locationX?( x ) ),
any(color?( S ), brown )

)
exists=x \in S or(

all(color?( S ), gray ),
all(color?( S ), brown )

)

See Section 3 for more details on the structured generalization splits which yeild train
concepts Htrain and test concepts Htest.

2.3 Concept prior weight w(h)

We next explain the form of the prior weight w(h) that we use for defining the prior over the
concepts provided to the models (both oracles as well as deep learning models). Given l(h),
the number of tokens in the postfix serialization of the concept h, the unnormalized weight
w̃(h) is log-linear in the length, and is defined as follows:

w̃(h) ∝ exp−0.2 · l(h) (1)

Given a split Ω ∈ {train, test}, the final, normalized weight is given as:

w(h) =
w̃(h)∑
HΩ

w̃(h)
(2)

As explained in the main paper, the final prior for a hypothesis given a split Ω is p(h) =∑
h′∈HΩ

w(h)I[h = h′].
Our choice of the log-linear weight is inspired by the observation in cognitive science that

longer boolean concepts are harder for people to learn [1].
Here are some examples of hypotheses with a high weight (computed on Ω = train ∪ test):
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e x i s t s x in S =(2 , count=( c o l o r ?( $S_{−x}$ ) , cyan ) ) ,
e x i s t s x in S >( locat ionY ?( x ) , 6 ) ,
=(count=( c o l o r ?( S ) , brown ) , 3 ) ,
>(count=( locat ionX ?( S ) , 3 ) , 2 ) ,
any ( locat ionY ?( S ) , 6 ) ,
=(1 , count=( locat ionY ?( S ) , 7 ) ) ,
=(3 , count=( locat ionY ?( S ) , 3 ) ) ,
a l l ( locat ionX ?( S ) , 2 ) ,
e x i s t s x in S a l l ( locat ionY ?( $S_{−x}$ ) , 5 ) ,
=(2 , count=( c o l o r ?( S ) , b lue ) ) ,
for−a l l x in S not ( >(6 , locat ionX ?( x ) ) ) ,
=(count=( c o l o r ?( S ) , gray ) , 2 ) ,
=(2 , count=( c o l o r ?( S ) , gray ) )

2.4 Execution on Images.
In order to create the perceptual inputs in the dataset U , we sample images using the renderer
for CLEVR from Johnson et al. [3], changing the range of objects to [2, 5], to reduce clutter
and enable easier learning of predicates like any and all for models. 1 The CLEVR renderer
produces scenes u with pixels as well as an associated schema file us detailing the properties
of all the objects sampled in the scene, including their location, shape, size, material, and
rotation. Given the original CLEVR scenes, we map some of the properties to other floating
point or integer values before execution. The exact mappings are:

1. "large" size → 0.7

2. "small" size → 0.35

3. "x-coordinate" of each object discretized to 8 bins

4. "y-coordinate" of each object discretized to 8 bins

Based on this, we convert our sampled concepts into postfix notation and execute them on the
schemas using an operator stack. Concretely, execution of the concept h ∈ H on us yields a
boolean true or false value {0, 1}. We execute each such hypothesis on a set of 990K images,
yielding scores of how often a hypothesis is true for an image. We threshold this score to retain
the subset of hypotheses which are true for no more than 10% of the images and are true at
least for 10 images, to pick a subset of “interesting” hypotheses H′ for training models.

Bias. The image dataset here sampled itself has a bias in terms of the location coordinates
(in the pixel space). The CLEVR dataset generation process samples objects in the 3d (top-
down x, y) coordinate space uniformly (from a grid of -3, to +3). However, since the camera
is always looking into the scene from outside, the image formation geometry implies that in
the camera / image coordinates most of the objects appear to be away from the scene and
very few are close to the camera. Thus, in terms of the y-coordinates we observe in the image
coordinates a bias in terms of the distribution not being unifrom. This also makes sense in
general, as even in the real world, objects are not found very close to the camera or very far
away from the camera in general. See Figure 5 for all the biases in the observation space u
computed over 990K sampled images.

2.5 Audio.
To build the audio data, we use clips of orchestral instruments playing various pitches down-
loaded from https://philharmonia.co.uk/resources/sound-samples/. We make the fol-
lowing mappings of object properties:

• x location → temporal location. larger x bin means the note is played later.

• y location → pitch. All pitches between the instruments are the same (up to octaves).

• color → instrument

– gray → trumpet
1Since the chances of a constraint being true for all obejcts reduce exponentially as the number of

objects increases.
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Figure 5: Histogram of properties found in inputs u in the dataset. We notice that the properties are
all largely uniform with bias in x and y-coordinates towards the center of the image.

– red → clarinet
– blue → violin
– green → flute
– brown → oboe
– purple → saxaphone
– cyan → french-horn
– yellow → guitar

• shape → amplitude profile; either getting louder, getting softer, or constant volume

• size → total volume

• material → low-pass filtering or no filtering.

All binned quantities use the same number of bins as in the image domain.

2.6 Analysis of synonomy of concepts.
We next show an analysis of concepts which have the same evaluation signatures on a large set
of 990K images, and are thus synonymous (in context of the dataset at hand). Note that while
some of these concepts might be truly synonymous to each other (for example, A > B is the
same as B < A), others might be synonymous in context of the image distribution we work
with. For example, size can never be greater than 0.7 in our dataset and location can never be
greater than 8, and thus asking if location is greater than 8 or size is greater than 0.7 has the
same semantics on our dataset. In Figure 6 we show each such “concept” or “meaning”, which
is a cluster of hypotheses which all evaluate to the same truth value and plot a histogram of
how many hypotheses each cluster tends to have. We notice that most of the concepts have 1
synonym (i.e. there is only one concept with the particular) evaluation signature, with a long
tail going upto 80 synonyms in a concept. In the Concept IID split we ensure that none of the
concepts which have the same signature are found across the train/val/test splits.
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Figure 6: Histogram of number hypotheses with same evaluation signatures.

3 Detailed discussion of the structured splits
We provide more details on how each of the structured splits described in Sec. 3 of the main
paper are created. Assuming access to H, the space of concepts sampled and filtered from the
grammar G, we use various heuristics to produce the generalization splits in the paper:

• Instance IID: This split is trivial since Htrain = Htest = H

• Concept IID: This split divides concepts into train and test by picking concepts at random
from H and assigning them to Htrain or Htest while ensuring that no two concepts which
are synonyms Section 2.6 are found in different splits.

• Boolean: This split forms cross product of all possible colors and {and, or} boolean
operators, and partitions a subset of such combinations which we want to only occur in
test. We use the following tokens for test:

‘green’, ‘or’ | ‘purple’, ‘and’ | ‘cyan’, ‘and’ |
‘red’, ‘or’ | ‘green’, ‘and’

We then create Htest to contain all concepts which have any of the combinations above.
For example, if a concept has both green and or we would place it in Htest. After every
feasible candidate is placed in Htest based on this heurisitc, the remaining concepts in H
are assigned to Htrain.

• Extrinsic: This split forms cross product of all possible colors and locations in the dataset,
and partitions a subset of such combinations that we only want to occur in test. We use
the following tokens for test (only a subset shown for illustration):

‘7’, ‘gray’ | ‘1’, ‘red’ | ‘3’, ‘purple’ |
‘1’, ‘blue’ | ‘8’, ‘cyan’ | ‘5’, ‘yellow’ |
‘5’, ‘green’ | ‘3’, ‘yellow’ | ‘7’, ‘purple’ |
‘2’, ‘blue’ | ‘3’, ‘cyan’

We then create Htest to contain all concepts which have any of the combinations above.
For example, if a concept has both gray and 7, and is related to location, that is contains
locationX? or locationY? keywords, we would place it in Htest. After every feasible
candidate is placed in Htest based on this heurisitc, the remaining concepts in H are
assigned to Htrain.
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• Intrinsic: This split forms cross product of all possible colors and materials in the dataset,
and partitions a subset of such combinations that we only want to occur in test. We use
the following tokens for test:

‘green’, ‘metal’ | ‘purple’, ‘rubber’ | ‘cyan’, ‘rubber’ |
‘red’, ‘metal’ | ‘green’, ‘rubber’

We then create Htest to contain all concepts which have any of the combinations above.
For example, if a concept has both green and metal, and is related to material, that is
contains material? keyword, we would place it in Htest. After every feasible candidate
is placed in Htest based on this heurisitc, the remaining concepts in H are assigned to
Htrain.

• Binding (color): This split takes all possible colors in the dataset, and partitions a subset
of colors that we only want to occur in test. We use the following tokens for test:

‘purple’ | ‘cyan’ | ‘yellow’

We then create Htest to contain all concepts which have any of the tokens above. For
example, if a concept has purple, we would place it in Htest. After every feasible
candidate is placed in Htest based on this heurisitc, the remaining concepts in H are
assigned to Htrain.

• Binding (shape): This split takes all possible shapes in the dataset, and partitions a
subset of shapes that we only want to occur in test. We use the following tokens for test:

‘cylinder’

We then create Htest to contain all concepts which have any of the tokens above. For
example, if a concept has cylinder, we would place it in Htest. After every feasible
candidate is placed in Htest based on this heurisitc, the remaining concepts in H are
assigned to Htrain.

• Complexity: This split partitions into train and test based on length of the postfix
serialization of the concept. Specifically, concepts shorter than 10 tokens are placed in
Htrain and longer concepts are placed in Htest.

4 Creating Support and Query Sets
We next explain how we go from the initial dataset U – which contains a large number of
images, schema and sounds – and a concept space Htrain and Htest, to a dataset for meta
learning. To create the training/validation/test sets for models, we sample a series of episodes,
each containing a support set and a query set. We illustrate the sampling procedure for a
training episode below:
Support Set Sampling with Hard Negatives

1. Pick a concept h ∼ ptrain(h), with a preference for shorter hypotheses being more frequent
based on the weights used to define the prior Section 2.3

2. Pick 5 images (P ), uniformly at random from U such that h(us) = 1, where the concept
is evaluated on the schema to determine the label Section 2.4

3. Identify other concepts h′ ∈ H s.t. h(u(S)) = 1 and h′ 6= h

4. Pick images such that h′(us) = 1 and h(us) = 0 as negatives (N). If no such images
exist, pick random images from U as negatives until we have 20 negatives.

5. Relabel any candidate negatives u ∈ N where h(u) = 1, by removing them from N and
placing them in P .
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6. Return Dsupp = P ∪N .

The sampling procedure for the Query set iterates all the steps above (except step 1, where
we choose the concept h). Step 3 and 4 outline a procedure for identifying hard negatives for
training the model, by looking at other hypotheses which also explain a chosen set of positives
P and using them to clarify what the concept of interest is.

We give below an analogous procedure for easy negatives:
Support Set Sampling with Easy Negatives

1. Pick a concept h ∼ ptrain(h), with a preference for shorter hypotheses being more frequent
based on the weights used to define the prior Section 2.3

2. Pick 5 images (P ), uniformly at random from U such that h(us) = 1, where the concept
is evaluated on the schema to determine the label Section 2.4

3. Pick 20 random images from U as negatives, N.

4. Relabel any candidate negatives u ∈ N where h(u) = 1, by removing them from N and
placing them in P .

5. Return Dsupp = P ∪N .

Similar to hard negatives, the sampling procedure for the Query set iterates all the steps above
(except step 1, where we choose the concept h).

5 Reproducibility and Hyperparameters
For all the models in Figure. 5 in the main paper, we use the following hyperparameters. All
the modalities are processed into a set of objects {oi}Ni=1 where each oi ∈ R64 for image and
sound models while for schema oi ∈ R96. Further, the we use a learning rate of 1e-4 for image
models, 1e-3 for schema models, and 5e-5 using the best learning rate for each modality across
an initial sweep. The batch size for image and sound models is 8 episodes per batch, while
for schema we use a batch size of 64. All models use the Adam optimizer. The overall scene
representation across all the modalities is set to 256, that is, u ∈ R256. All our models are
initialized with the method proposed in [2], which we found to be crucial for training relation
networks well. The initial representation from the first stage of the encoder (Figure. 5 in main
paper) with the objects for images has a size of 10x8 i.e. there are 80 objects, while for sound
representations have 38 objects. In the schema case the number of objects is the ground truth
number of objects which is provided as input to the model.

We trained all the models on the training set, and picked the best performing checkpoints
on training – measured in terms of mAP– to report all the results in the main paper. Our
image and schema models are trained for 1 million steps (16 epochs for images, 128 epochs for
schemas) while the sound models are trained for 500K steps, and checkpoints are stored after
every 30K steps.

All our models fit on a GPU with 16GB capacity except the relation network trained with
image inputs, which needs at 32GB GPU. We use the pytorch framework to implement all our
models.

6 Model Architectures for Pooling
In this section we detail the exact architectures used for the different pooling operations we
consider in this paper as shown in Figure. 5 center panel (main paper). We first establish some
notation. Let oi ∈ RK be the output object feature from the modality specific encoder (Figure.
5, left panel, main paper), and let us denote by O = {oi}|O|i=1 the set of features for each of the
objects in the scene, which includes optional position information indicating where the object
is present in the scene (Figure. 5). Let N be the requested dimensionality of the feature space
from the pooling operation. Given this, we can describe the pooling operations used as follows:

• avg-pool: We first average the representations across all the objects {oi}|O|i=1 and then
pass the averaged representation through an MLP with 256 x 512 x 384 x N units
with batch normalization and rectified linear unit nonlinearity in the hidden layers.
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Figure 7: mAP on validation for hard negatives (y-axis) vs number of training steps (x-axis) for
relation network models on images with different dimensionality for the object embedding oi.

• concat: We first concatenate all the object representations in O, followed by an MLP
with 256 x 512 x 256 x N units with batch normalization and rectified linear units
nonlinearity in the hidden layers.

• relation-net: For relation networks, following [6] we use relative position encoding that
captures the relative positioning of the objects in a scene for image and sound modalities,
and use the location information already present in the schema modality. Based on
this, in the terminology of Santoro et al. [6] our g() MLP has 256 x 256 x 256 x 256
hidden units with rectified linear unit non linearity and batch normalization whereas our
f() MLP has 256 x 256 x N units with recitifed linear unit non linearlity and batch
normalization in the middle (non-output) layers. Different from the original paper, we
do not use dropout as we did not observe any overfitting in our experiments.

• transformer: We use a 2-head multi-head attention layer stacked 4 times, with the
feedforward network dimenstions set to 512. After forwarding through this module, we
take the output vectors o′i for each object processed through these initial layers and pool
across objects by doing max(), mean(), sum(), min() operations and concatenating
their outputs, similar to previous work by Wang et al. [7]. The final representation then
does a linear projection of this concatenated vector to N , the dimensionality expected
from the pooling module.

7 Additional Results
7.1 Hyperparameter sweeps – object feature dimensions
We next show the hyperparameter sweeps for image models in deterimining the choice of the
dimensionality to represent each object oi for our image models (Figure 7). The same choice
of dimensionality was replicated for sound models. In our initial sweeps, on the Concept IID
split, across different choices of the dimensionality of objects, we found relation networks to
outperform concat and global average pooling models substantially, and thus we picked the
object dimensions based on what performs best for relation networks since overall we are
interested in the best possible choice of models for a given split and modality. Based on the
results in Figure 7 we picked oi ∈ R64.

7.2 Image relation networks learning rate sweeps
We picked the learning rate for image models based on the best performing image relation
network model, which across an initial sweep we found to yeild the best class of models.
Figure 8 shows the performance of the models across learning rates of {1e-4, 5e-4, 2.5e-4}.

7.3 Sweep on use of Language
As explained in the main paper (Figure. 5), the parameter α controls the tradeoff between the
query accuracy and the likelihood of the concept expressed as a prefix string. We generally found
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Figure 8: mAP on validation for hard negatives (y-axis) vs number of training steps (x-axis) for
relation network models on images with different learning rates.

Figure 9: mAP on validation for hard negatives (y-axis) vs number of training steps (x-axis) for
relation network models on images with different amounts of language usage by varying the parameter
α.

across a broad range of values in {0.0, 0.01, 0.10, 1.0} the models generally performed
the best at α = 1.0. Our initial experiments with α = 10.0 suggested substantially worse
performance so we discareded it from the sweep. See Figures 9 to 11 for the corresponding
results.

7.4 Results on Easy Negatives

In Figure 12 we show results for the relation-net model on various splits, where easy negatives
are used to populate the support and query sets during training and evaluation, unlike the case
of hard negatives discussed in the main paper (Figure. 6). Notice that the compositionality gap
(compositionality gap) is lower in general for easy negatives compared to the hard negatives as
reported in the main paper. Further, we find that the best models are substantially closer to the
strong oracle compared to Figure. 6 main paper, showing that on the easier, less compositional
task it is easier for machine learning models to approach the strong oracle (especially in terms
of accuracy). Finally, it is interesting to note that with easy negatives it appears that the
best models outperform the weak oracle on the Counting split, while with the hard negatives
one finds that the models are worse than the weak oracle, suggesting poor generalization for
counting.
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Figure 10: mAP on validation for hard negatives (y-axis) vs number of training steps (x-axis) for
relation network models on schemas with different amounts of language usage by varying the parameter
α.

Figure 11: mAP on validation for hard negatives (y-axis) vs number of training steps (x-axis) for
concat pooling models on schemas with different amounts of language usage by varying the parameter
α.
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Figure 12: mAP (top) and accuracy (bottom) metrics for the different splits presented in the paper
when easy negatives are used (ordered by their corresponding compositionality gap). Yellow: shows
the schema relation-net model while purple: shows the image relation-net model. Notice that
compared to Fig. 5 in the main paper, the compositionality gap is smaller and the models appear to
be substantially closer to the strong oracle in this setting compared to when we use hard negatives.

7.5 Finer α sweep for Counting
Finally, we ran a finer alpha sweep for the Counting split since it appeared on our initial sweep
that the counting split was not performing better with language. Concretely, we ran a new set
of experiments sweeping over α values of {0.01, 0.10, 1.0, 5.0, 10.0, 100.0}. Across
this broader range of values, we found models still did not show any statistically significant
gains from using language vs. not for the Counting split.

7.6 Choice of metric: mAP vs. accuracy
In general, the mAP metric opens up a larger compositionality gap for the various splits than
indicated by accuracy. For example, with hard negatives, while accuracy indicates a gap of
14.2% for Counting compared to 0% for Instance IID, mAP suggests a gap of 34.4% for Counting
relative to 0% for Instance IID. For the Binding (color) split its 86.5% compositionality gap
(mAP) vs. 34.0% for accuracy. mAP, while being more expensive to compute evaluates more
thoroughly to test if a concept h is truly learnt by the model, by probing its performance on
a large, representative set of negatives T , providing a more stringent test of compositional
generalization.

7.7 Detailed results on all the splits in easy negatives setting.
In this section we provide the full results of all of the tested models on each of the splits
considered in the paper, in the easy negatives setting. Tables 1-18 show the results of different
models (sorted in a descending order based on accuracy or mAP (whichever is the metric
reported) for each of the splits considered in the paper, in the case where models do not have
access to language. Note that we did not evaluate transformer models or sound models in this
setting as this is qualitatively less interesting than the hard negatives setting and is not the
main focus of the paper.
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Table 1: Performance on meta-test, sorted based on mAP (in %) on Binding (color) with easy negatives

modality pooling mAP (mean) mAP (std)

schema relation-net 18.6 1.6
image relation-net 16.3 0.8
image avg-pool 16.3 0.5
image concat 15.6 0.5
schema avg-pool 15.5 0.5
schema concat 15.5 0.5

Table 2: Performance on meta-test, sorted based on mAP (in %) on Boolean with easy negatives

modality pooling mAP (mean) mAP (std)

schema relation-net 58.1 2.0
schema avg-pool 55.0 2.1
schema concat 54.7 2.2
image relation-net 50.7 7.3
image avg-pool 42.9 1.6
image concat 40.9 1.7

Table 3: Performance on meta-test, sorted based on mAP (in %) on Counting with easy negatives

modality pooling mAP (mean) mAP (std)

schema relation-net 67.9 8.5
schema avg-pool 64.4 7.3
image avg-pool 62.2 6.6
image concat 61.2 6.9
schema concat 60.8 6.7
image relation-net 58.8 5.7

Table 4: Performance on meta-test, sorted based on mAP (in %) on Extrinsic with easy negatives

modality pooling mAP (mean) mAP (std)

schema relation-net 63.7 1.4
image relation-net 62.9 1.1
image concat 61.8 2.4
image avg-pool 61.5 1.4
schema avg-pool 57.5 1.2
schema concat 57.2 1.5

Table 5: Performance on meta-test, sorted based on mAP (in %) on Intrinsic with easy negatives

modality pooling mAP (mean) mAP (std)

schema relation-net 66.5 4.8
image relation-net 64.9 5.3
image avg-pool 64.4 4.5
schema avg-pool 63.1 4.7
image concat 62.7 4.5
schema concat 60.8 4.6

Table 6: Performance on meta-test, sorted based on mAP (in %) on Concept IID with easy negatives

modality pooling mAP (mean) mAP (std)

schema relation-net 68.2 1.0
image relation-net 65.8 0.4
image avg-pool 65.1 0.4
image concat 64.7 0.4
schema avg-pool 63.3 0.4
schema concat 61.9 0.2
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Table 7: Performance on meta-test, sorted based on mAP (in %) on Instance IID with easy negatives

modality pooling mAP (mean) mAP (std)

schema relation-net 69.0 3.6
image avg-pool 66.8 3.3
image relation-net 66.5 3.2
image concat 65.4 3.4
schema avg-pool 63.5 3.1
schema concat 63.3 3.1

Table 8: Performance on meta-test, sorted based on mAP (in %) on Complexity with easy negatives

modality pooling mAP (mean) mAP (std)

schema relation-net 55.1 1.8
schema avg-pool 51.9 2.0
schema concat 51.3 1.9
image avg-pool 49.0 1.6
image concat 48.2 1.7
image relation-net 46.6 1.5

Table 9: Performance on meta-test, sorted based on mAP (in %) on Binding (shape) with easy
negatives

modality pooling mAP (mean) mAP (std)

image relation-net 33.9 2.4
schema avg-pool 32.1 1.7
image avg-pool 31.9 1.8
schema relation-net 31.7 1.6
image concat 31.3 1.7
schema concat 31.0 1.5

Table 10: Performance sorted based on accuracy (in %) on Binding (color) with easy negatives

modality pooling accuracy accuracy (Std)

schema relation-network 81.8 2.2
image relation-network 80.9 2.0
image avg-pool 80.4 1.9
schema concat 79.4 2.0
schema avg-pool 79.4 1.9
image concat 79.2 1.9

Table 11: Performance sorted based on accuracy (in %) on Boolean with easy negatives

modality pooling accuracy accuracy (Std)

schema relation-network 90.3 1.8
schema avg-pool 90.0 1.7
schema concat 89.8 1.8
image relation-network 89.4 2.0
image avg-pool 89.1 1.8
image concat 88.8 1.9

Table 12: Performance sorted based on accuracy (in %) on Counting with easy negatives

modality pooling accuracy accuracy (Std)

schema relation-network 92.0 5.4
image avg-pool 90.6 5.0
schema avg-pool 90.5 5.0
schema concat 90.5 4.7
image concat 90.1 5.1
image relation-network 90.0 5.3

16



Table 13: Performance sorted based on accuracy (in %) on Extrinsic with easy negatives

modality pooling accuracy accuracy (Std)

image avg-pool 93.0 1.2
schema relation-network 93.0 1.2
image concat 92.9 1.2
image relation-network 92.9 1.2
schema avg-pool 92.4 1.3
schema concat 92.3 1.2

Table 14: Performance sorted based on accuracy (in %) on Intrinsic with easy negatives

modality pooling accuracy accuracy (Std)

schema relation-network 91.9 3.4
image avg-pool 91.6 3.3
schema avg-pool 91.6 3.3
image concat 91.4 3.2
schema concat 91.3 3.5
image relation-network 90.3 3.7

Table 15: Performance sorted based on accuracy (in %) on Concept IID with easy negatives

modality pooling accuracy accuracy (Std)

schema relation-network 94.0 0.2
image avg-pool 93.6 0.1
image relation-network 93.5 0.1
image concat 93.3 0.1
schema avg-pool 93.0 0.1
schema concat 92.6 0.1

Table 16: Performance sorted based on accuracy (in %) on Instance IID with easy negatives

modality pooling accuracy accuracy (Std)

schema relation-network 92.6 2.8
image avg-pool 92.3 2.7
image relation-network 92.1 2.6
image concat 91.9 2.8
schema avg-pool 91.6 2.7
schema concat 91.4 2.7

Table 17: Performance sorted based on accuracy (in %) on Complexity with easy negatives

modality pooling accuracy accuracy (Std)

schema relation-network 90.3 1.9
schema avg-pool 89.7 1.9
schema concat 89.3 2.1
image avg-pool 88.2 2.1
image relation-network 87.8 2.0
image concat 87.7 2.3

Table 18: Performance sorted based on accuracy (in %) on Binding (shape) with easy negatives

modality pooling accuracy accuracy (Std)

image relation-network 82.4 2.1
image avg-pool 81.9 2.1
schema avg-pool 81.7 2.2
image concat 81.7 2.2
schema relation-network 81.2 2.6
schema concat 80.9 2.2
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