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Appendices

A. Existence of a solution to Problem 1 under
Assumption 2

Under Assumption 2, Problem 1 is equivalent to

minimize
(W,b)∈C

h(W ) (18)

with

C =
{

(W, b) ∈ RN×M × RN
∣∣ max
j∈{1,...,J}

cj(W, b) 6 0
}
,

(19)
where the functions (cj)16j6J are defined in Eq. (11).
These functions being convex, Φ = maxj∈{1,...,J} cj is
convex (Bauschke & Combettes, 2019, Proposition 8.16).
We deduce that Ψ = infb∈RN Φ(·, b) is also a convex
function (Bauschke & Combettes, 2019, Proposition 8.35).
Since Φ > −ηT , Ψ is finite valued. It is thus continuous
on RN×M (Bauschke & Combettes, 2019, Corollary 8.40).
Let us now consider the problem:

minimize
W∈lev60 Ψ

h(W ) (20)

where lev60 Ψ is the 0-lower level set of Ψ defined as

lev60 Ψ =
{
W ∈ RN×M

∣∣ Ψ(W ) 6 0
}
, (21)

Ψ being both convex and continuous, lev60 Ψ is closed
and convex. According to Assumption 2, there exists
(W, b) ∈ RN×M × RN such that h(W ) < +∞ and
Φ(W, b) 6 0, which implies that Ψ(W ) 6 0. This shows
that lev60 Ψ has a nonempty intersection with the domain
of h. By invoking now the coercivity property of h, the
existence of a solution Ŵ to Problem (20) is guaranteed by
standard convex analysis results (Bauschke & Combettes,
2019, Theorem 11.10).

To show that (Ŵ , b̂) is a solution to (18), it is sufficient to
show that there exists b̂ ∈ RN such that Φ(Ŵ , b̂) = Ψ(Ŵ ).
This is equivalent to prove that there exists a solution b̂ to
the problem:

minimize
b∈RN

Φ(Ŵ , b). (22)

We know that Φ(Ŵ , ·) is a continuous function. In addition,
we have assumed that there exists (j∗, t∗) ∈ {1, . . . , J} ×
{1, . . . , T} such that yj∗,t∗ is an interior point of R(RN ),
which is also equal to the domain of ∂f and thus a subset
of the domain of f . Since f is continuous on the interior of
its domain, ∂f(yj∗,t∗) is bounded (Bauschke & Combettes,
2019, Proposition 16.17(ii)). Then d∂f(yj∗,t∗ ) is coercive,

hence cj∗(Ŵ , ·) is coercive, and so is Φ(Ŵ , ·) > cj∗(Ŵ , ·).
The existence of b̂ thus follows from the Weierstrass
theorem.

B. Results in Table 1
The results are derived from the expression of the convex
function ϕ associated with each activation function ρ
(Combettes & Pesquet, 2020a, Section 2.1) (Combettes &
Pesquet, 2020b, Section 3.2).

Sigmoid

(∀ζ ∈ R) ϕ(ζ) =
(ζ + 1/2) ln(ζ + 1/2) + (1/2− ζ)

ln(1/2− ζ)− 1

2
(ζ2 + 1/4) if |ζ| < 1/2

−1/4 if |ζ| = 1/2

+∞ if |ζ| > 1/2.

The range of the Sigmoid function is ] − 1/2, 1/2[ and
the above function is differentiable on this interval and its
derivative at every υ ∈]− 1/2, 1/2[ is

ϕ′(υ) = ln(υ + 1/2)− ln(υ − 1/2)− υ. (23)

We deduce that, for every ζ ∈ R, proj∂ϕ(υ)(ζ) = ϕ′(υ).

Arctangent

(∀ζ ∈ R) ϕ(ζ)

=

{
− 2
π ln

(
cos
(
πζ
2

))
− 1

2ζ
2, if |ζ| < 1

+∞, if |ζ| > 1.
(24)

By proceeding for this function similarly to the Sigmoid
function, we have, for every υ ∈ ρ(R) =]− 1, 1[,

(∀ζ ∈ R) proj∂ϕ(υ)(ζ) = ϕ′(υ) = tan(πυ/2)−υ. (25)

ReLU

(∀ζ ∈ R) ϕ(ζ) =

{
0 if ζ > 0

+∞ otherwise.
(26)

For every υ ∈ ρ(R) = [0,+∞[, we have

∂ϕ(υ) =

{
{0} if υ > 0

]−∞, 0] if υ = 0.
(27)

We deduce that

(∀ζ ∈ R) proj∂ϕ(υ)(ζ) =

{
0 if υ > 0 or ζ > 0

ζ otherwise.
(28)
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Leaky ReLU

(∀ζ ∈ R) ϕ(ζ) =

{
0, if ζ > 0

(1/α− 1)ζ2/2 if ζ 6 0.

(29)
Since this function is differentiable on R, for every υ ∈ R,

(∀ζ ∈ R) proj∂ϕ(υ)(ζ) = ϕ′(υ)

=

{
0 if υ > 0

(1/α− 1)υ otherwise.
(30)

Capped ReLU

(∀ζ ∈ R) ϕ(ζ) =

{
0 if ζ ∈ [0, α]

+∞ otherwise.
(31)

We have thus, for every υ ∈ [0, α],

∂ϕ(υ) =


{0} if υ ∈]0, α[

]−∞, 0] if υ = 0

[0,+∞[ if υ = α.
(32)

This leads to

(∀ζ ∈ R) proj∂ϕ(υ)(ζ)

=


ζ if (υ = 0 and ζ < 0)

or (υ = α and ζ > 0)

0 otherwise.
(33)

ELU

(∀ζ ∈ R) ϕ(ζ) =
0 if ζ > 0;

(ζ + α) ln
(
ζ+α
α

)
− ζ − ζ2

2 , if − α < ζ < 0

α− α2

2 , if ζ = −α
+∞, if ζ < −α.

(34)

This function being differentiable on ρ(R) =] − α,+∞[,
we have for every υ ∈]− α,+∞[,

(∀ζ ∈ R) proj∂ϕ(υ)(ζ) = ϕ′(υ)

=

{
0 if υ > 0

ln
(
υ+α
α

)
− υ otherwise.

(35)

QuadReLU Unlike the previous ones, this function does
not seem to have been investigated before. It can be seen as

a surrogate to the hard swish activation function, which is
not a proximal activation function. Let us define

(∀ζ ∈ R) ϕ(ζ)

=


+∞ if ζ < 0

− ζ22 + 4
3

√
αζ3/2 − αζ if ζ ∈ [0, α]

ζ2

2 − αζ + α2

3 if ζ > α.

(36)

ϕ is a lower-semicontinuous convex function whose
subdifferential is

(∀υ ∈ [0,+∞[) ∂ϕ(υ)

=


]−∞,−α] if υ = 0

{−υ + 2
√
αυ − α} if υ ∈]0, α]

{υ − α} if υ > α.
(37)

From the definition of the proximity operator, for every
(υ, ζ) ∈ R2, we have υ = proxϕ(ζ) if and only if

ζ ∈ υ + ∂ϕ(υ) ⇔


ζ ∈]−∞,−α] if υ = 0

ζ = 2
√
αυ − α if υ ∈]0, α]

ζ = 2υ − α if υ > α.

⇔ υ =


0 if ζ ∈]−∞,−α]
(ζ+α)2

4α if ζ ∈]− α, α]
ζ+α

2 if ζ > α.
(38)

This shows that

proxϕ(ζ) = (4α)−1(ζ + α) ReLU2α(ζ + α). (39)

In addition, for every υ ∈ [0,+∞[, it follows from Eq. (37)
that the projection onto ∂f(υ) is

(∀ζ ∈ R) proj∂f(υ)(ζ)

=


υ if υ = 0 and ζ 6 −α
−υ + 2

√
αυ − α if υ ∈]0, α]

or (υ = 0 and ζ > −α)

υ − α if υ > α.

(40)

C. Softmax Activation
Let C denote the closed hypercube [0, 1]N , let V be the
vector hyperplane defined as

V =
{
z = (ζ(k))16k6N ∈ RN

∣∣ N∑
k=1

ζ(k) = 0
}
, (41)

and let A be the affine hyperplane defined as

A =
{
z = (ζ(k))16k6N ∈ RN

∣∣ N∑
k=1

ζ(k) = 1
}

= V + u,

(42)
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where u = [1, . . . , 1]>/N = 1/N ∈ RN . If R is
the Softmax activation operator, the convex function f
such that proxf = R is (Combettes & Pesquet, 2020a,
Example 2.23):

(∀z = (ζ(k))16k6N ) f(z) ={∑N
k=1 ϕ(ζ(k)) if z ∈ C ∩A

+∞ otherwise,
(43)

where

(∀ζ ∈ [0,+∞[) ϕ(ζ) = ζ ln ζ − ζ2

2
(44)

(with the convention 0 ln 0 = 0). The latter function
is differentiable on ]0,+∞[. It then follows from
standard subdifferential calculus rules that, for every y =
(υ(k))16k6N ∈ ]0,+∞[

N ,

∂f(y) = (ϕ′(υ(k)))16k6N + ∂ιC∩A(y), (45)

where ϕ′ is the derivative of ϕ on ]0,+∞[ and ιC∩A
denotes the indicator function of the intersection of C and
A (equal to 0 on this set and +∞ elsewhere). It can be
deduced from Eq. (45) that, for every y = (υ(k))16k6N ∈
]0,+∞[

N ,

∂f(y) = (ϕ′(υ(k)))16k6N +NC(y) +NA(y), (46)

where ND denotes the normal cone to a nonempty closed
convex set D, which is defined as

(∀y ∈ D) ND(y) =
{
t ∈ RN

∣∣ (∀z ∈ D) 〈t | z − y〉 6 0
}
.

(47)
Thus, for every y ∈ A, NA(y) = NV (y − u) is the
orthogonal space V ⊥ of V .
Let us now assume that y ∈ R(RN ) =]0, 1[N∩A. Then,
since y is an interior point of C, NC(y) = {0}. We then
deduce from Eq. (46) that

∂f(y) = Q(y) + V ⊥, (48)

where

Q(y) = (ϕ′(υ(k)))16k6N = (ln υ(k) + 1− υ(k))16k6N .
(49)

It follows that, for every z ∈ RN ,

proj∂f(y)(z) = Q(y) + projV ⊥(z −Q(y)). (50)

By using the expression of the projection projV = Id −
projV ⊥ onto hyperplane V , we finally obtain

proj∂f(y)(z) = Q(y) +
1>(z −Q(y))

N
1. (51)

D. Experimental Setup
PyTorch is employed to implement our method. We use and
extend SNIP and RigL code available here2, LRR3, GraSP4,
SynFlow5, STR6, and FORCE7. In order to manage our
experiments we use Polyaxon8 on a Kubernetes9 cluster
and use five computing nodes with eight V100 GPUs each.
Floating point operations per second (FLOPs) is calculated
as equal to one multiply-add accumulator using the code10.

SIS has the following parameters: number of iterations of
Algorithm 1, number of iterations of Algorithm 2, step size
parameter γ in Algorithm 1, constraint bound parameter
η used to control the sparsity, and relaxation parameter
λn ≡ λ of Algorithm 1. In our experiments, the maximum
numbers of iterations of Algorithms 1 and 2 are set to 2000
and 1000, respectively. λ is set to 1.5 and γ is set to 0.1 for
all the SIS experiments. η value depends on the network
and dataset. With few experiments, we search for a good η
value that gives suitable sparsity and accuracy.

VGG19 and ResNet50 on CIFAR-10/100. We train
VGG19 on CIFAR-10 for 160 epochs with a batch size
of 128, learning rate of 0.1 and weight decay of 5× 10−4

applied at epochs 81 and 122. A momentum of 0.9 is used
with stochastic gradient descent (SGD). We make use of
1000 images per training class when using SIS. We fine-
tune the identified sparse subnetwork for 10 epochs at a
learning rate of 10−3. For CIFAR-100 we keep the same
training hyperparameters as for CIFAR-10. When applying
SIS to the dense network, we use 300 images per class from
the training samples. We fine-tune the identified sparse
subnetwork for 40 epochs on the training set with a learning
rate of 10−3. ResNet50 employs the same hyperparameters
as VGG19, except the weight decay that we set to 10−4.
When applying SIS to train dense ResNet50, we use the
same partial training set and the same hyperparameters
during fine-tuning. In case of VGG19 for CIFAR-10 and
CIFAR-100, we found that η values in range (1.5, 2) works
best for sparsity range (90%, 98%). In case of ResNet50, η
values in range (1, 2) is used.

2https://github.com/google-research/rigl
3https://github.com/lottery-ticket/

rewinding-iclr20-public/tree/master/vision/
gpu-src/official

4https://github.com/alecwangcq/GraSP
5https://github.com/ganguli-lab/

Synaptic-Flow
6https://github.com/RAIVNLab/STR
7https://github.com/naver/force
8https://github.com/polyaxon/polyaxon
9https://kubernetes.io/

10https://github.com/Lyken17/
pytorch-OpCounter

https://github.com/google-research/rigl
https://github.com/lottery-ticket/rewinding-iclr20-public/tree/master/vision/gpu-src/official
https://github.com/lottery-ticket/rewinding-iclr20-public/tree/master/vision/gpu-src/official
https://github.com/lottery-ticket/rewinding-iclr20-public/tree/master/vision/gpu-src/official
https://github.com/alecwangcq/GraSP
https://github.com/ganguli-lab/Synaptic-Flow
https://github.com/ganguli-lab/Synaptic-Flow
https://github.com/RAIVNLab/STR
https://github.com/naver/force
https://github.com/polyaxon/polyaxon
https://kubernetes.io/
https://github.com/Lyken17/pytorch-OpCounter
https://github.com/Lyken17/pytorch-OpCounter
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ResNet50 on ImageNet We use the weights of ResNet50
pre-trained on ImageNet available at PyTorch hub11. When
applying SIS to the dense pre-trained network we use 20%
samples per class from the training set. We fine-tune the
identified sparse subnetwork for 40 epochs on the training
set with a learning rate of 10−4. We use different η values in
range (0.7, 1.5) for sparsity range (60%, 90%). We found
that η = 2.3 achieves 96.5% sparsity.

MobileNets on ImageNet We use MobileNetV1 dense
pre-trained model from here12 and MobileNetV2 from
PyTorch hub13. In case of MobileNetV3, we replace the
hard swish activation function used in the original paper
(Howard et al., 2019) with our QuadReLU function (see the
last row of Table 1). We use hyperparameters provided in the
original paper to train MobileNetV3. When applying SIS
to the dense pre-trained MobileNets, we use 20% samples
per class from the training set. We fine-tune the identified
sparse subnetwork for 30 epochs on the training set with a
learning rate of 10−4. For MobileNets, we search η values
in range (0.6, 1.75) for sparsity range (75, 90).

Jasper on LibriSpeech A BxR Jasper network has B
blocks, each consisting of R repeating sub-blocks. Each
sub-block consists of 1D-Convolution, Batch Normalization,
ReLU activation, and Dropout. The kernel size of
convolutions increases with depth. The network has one
convolution block at the beginning and three at the end. We
train a network of 13 encoding blocks and one decoding
block, having 54 1D-Convolution layers on the LibriSpeech
dataset. The total number of parameters in our trained
network is 333 million. Jasper network is trained on train-
clean-100, train-clean-360, and train-other-500 splits of the
LibriSpeech dataset (Panayotov et al., 2015). The training
configuration can be found here14. We use train-clean-100
when using SIS. We fine-tune the identified sparse sub-
network on the completed training set for ten epochs with a
learning rate of 10−4. We use η values in range (0.6, 1.75)
for sparsity range (70, 90).

Transformer-XL on WikiText-103 We train the
Transformer-XL network (Dai et al., 2019b) on the base
version of WikiText-103 (Merity et al., 2017). We use the
training configuration available here15. We use 10% of the

11https://pytorch.org/hub/pytorch_vision_
resnet/

12https://github.com/RAIVNLab/STR
13https://pytorch.org/hub/pytorch_vision_

mobilenet_v2/
14https://github.com/NVIDIA/

DeepLearningExamples/blob/master/
PyTorch/SpeechRecognition/Jasper/configs/
jasper10x5dr_sp_offline_specaugment.toml

15https://github.com/NVIDIA/
DeepLearningExamples/blob/master/PyTorch/

training set articles when using SIS. We use η values in
range (0.5, 0.75) for sparsity range (40, 70).

N-BEATS on M4 We train the interpretable architecture
network of N-BEATS on the M4 dataset. The trained
network has six residual blocks. Each block consists of
four fully-connected layers and two linear projection layers.
With 24 fully-connected layers, this network has 14 million
trainable parameters. To compare different methods, we
only train a single network on a 48-hour window instead of
180 networks on different timescales. We use the training
configuration available here16. The training set has 50K
time-series samples. We use 10K training samples to
generate a sparse sub-network using SIS. We use η values
in range (0.75, 1.5) for sparsity range (70, 90).

LanguageModeling/Transformer-XL/pytorch/
wt103_base.yaml

16https://github.com/ElementAI/N-BEATS/
blob/master/experiments/m4/interpretable.
gin
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