
Unbiased Gradient Estimation in Unrolled Computation Graphs
with Persistent Evolution Strategies

Supplementary Material

Paul Vicol Luke Metz Jascha Sohl-Dickstein

This appendix is structured as follows:

• In Section A we give an overview of the notation used in this paper.

• In Section B we provide a table comparing several hyperparameter optimization approaches.

• In Section C we provide experimental details.

• In Section D we discuss telescoping sums as a way to target the final loss rather than the sum of losses as the
meta-objective.

• In Section E we provide a derivation of the PES estimator.

• In Section F we prove that PES is unbiased.

• In Section G we derive the variance of the PES estimator.

• In Section H we derive a variant of the PES estimator that incorporates the analytic gradient from the most recent
partial unroll to reduce variance.

• In Section I we show the connection between PES and the framework for gradient estimation in stochastic computation
graphs introduced in Schulman et al. (2015).

• In Section J we show derivations and compute/memory costs of the methods in Table 1.

• In Section K we provide diagrammatic representations of the ES and PES algorithms.

• In Section L we provide an ablation study over the truncation length and number of particles for PES.

• In Section M we provide simplified code to implement PES in JAX (Bradbury et al., 2018).

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

A. Notation
Table 2 summarizes the notation used in this paper.

Symbol Meaning

ES Evolution strategies
PES Persistent evolution strategies

(T)BPTT (Truncated) backpropagation through time
RTRL Real time recurrent learning
UORO Unbiased online recurrent optimization
T The total sequence length / total unroll length of the inner problem
K The truncation length for subsequences / partial unrolls
S The dimensionality of the state of the unrolled system, dim(s)

P The dimensionality of the parameters of the unrolled system, dim(θ)

θ The parameters of the unrolled system
θt The parameters of the unrolled system at time t, where θt = θ,∀t
Θ A matrix whose rows are the parameters at each timestep, Θ = (θ1, . . . ,θT)>

st The state of the unrolled system at time t
xt The (optional) external input to the unrolled system at time t
f The update function that evolves the unrolled system
N The number of particles for ES and PES
σ2 The variance of the ES/PES perturbations
εt A perturbation applied to the parameters θ at timestep t

ε A matrix whose rows are the perturbations at each timestep, ε = (ε1, . . . , εT)>

ξt The sum of PES perturbations up to time t, ξt = ε1 + · · ·+ εt
Lt(Θ) The loss at timestep t, Lt(Θ) = Lt(θ1, . . . ,θt)

L(θ), L(Θ) The total loss, L(θ) = L(Θ) =
∑T
t=1 Lt(Θ) =

∑T
t=1 Lt(θ1, . . . ,θt)

gt The true gradient at step t: ∇θLt(θ)

ĝES The vanilla ES gradient estimate (with Monte-Carlo sampling)

ĝPES The PES gradient estimate (with Monte-Carlo sampling)

ĝPES-A The antithetic PES gradient estimate (with Monte-Carlo sampling)

g (t, τ) Shorthand for ∂Lt(Θ)
∂θτ

, used in variance expressions

pt Shorthand for ∂Lt(Θ)
∂θt

, used in the PES-Analytic estimate
⊗ Kronecker product
α The learning rate for the parameters θ

unroll(s,θ,K)
A function that unrolls the system for K steps

starting with state s, using parameters θ.
Returns the updated state and loss resulting from the unroll

Table 2. Table of notation, defining the terms we use in this paper.

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

B. Hyperparameter Optimization Methods
Table 3 presents a comparison of several hyperparameter optimization approaches. We distinguish between black-box,
gray-box, and gradient-based approaches, and focus our comparison on whether each method can tune optimization
hyperparameters, regularization hyperparameters, and discrete hyperparameters, as well as whether the method requires
multiple runs through the inner problem or is online (operating within the timespan of a single inner problem), and whether
the method is unbiased, meaning that it will eventually converge to the optimal hyperparameters.

Method Type Parallel Tune
Opt

Tune
Reg

Tune
Discrete

Online
(1 Run) Unbiased

Grid/Random (Bergstra & Bengio, 2012) � 3 3 3 3 7 3
BayesOpt (Snoek et al., 2012) � 3 3 3 3 7 3

SHAC (Kumar et al., 2018) � 3 3 3 3 7 7
Freeze-Thaw BO (Swersky et al., 2014) � 3 3 3 3 7 3

Full ES � 3 3 3 3 7 3
PBT (Jaderberg et al., 2017) � 3 3 3 3 3 7

Succ. Halving (Jamieson & Talwalkar, 2016) � 3 3 3 3 7 7
Hyperband (Li et al., 2017) � 3 3 3 3 7 7

Trunc. Unroll (Maclaurin et al., 2015) ∇ 7 3 3 7 7 7
STN (MacKay et al., 2019) ∇ 7 7 3 3 3 7
IFT (Lorraine et al., 2020) ∇ 7 7 3 7 3 3
HD (Baydin et al., 2017) ∇ 7 3 7 7 3 7

MARTHE (Donini et al., 2019) ∇ 7 3 3 7 3 7
RTHO (Franceschi et al., 2017) ∇ 7 3 3 7 3 3

PES (Ours) � 3 3 3 3 7 3
PES+Analytic (Ours) ∇ 3 3 3 7 7 3

Table 3. Comparison between hyperparameter optimization approaches. � denotes black-box, � denotes gray-box, and∇ denotes
gradient-based approaches.

C. Experiment Details
In this section, we provide details for the experiments from Section 5.

Computing Infrastructure. All experiments except for learned optimizer training were run on NVIDIA P100 GPUs
(using only a single GPU per experiment). The learned optimizer experiment in Section 5.2 was trained on 8 TPUv2 cores;
we used asynchronous multi-TPU training for convenience, not necessity (these experiments could be run on a single GPU
if desired).

C.1. 2D Toy Regression

The inner objective is a toy 2D function defined as:

f(x0, x1) =
√
x2

0 + 5−
√

5 + sin2(x1) exp(−5x2
0) + 0.25|x1 − 100| (12)

This was manually designed to be a challenging problem for any meta-optimization method that suffers from truncation
bias. In Figure 10 we visualize the outer loss surface (aka the meta-loss surface) and the inner loss surface for this task;
we show the optimization trajectories on the inner loss surface corresponding to three different choices of optimization
hyperparameters (shown by color-coded markers).

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

4 2 0 2 4
Initial LR

4

2

0

2

4

Fi
na

l L
R

Outer Loss Surface

6.5

7.0

7.5

8.0

8.5

100 50 0 50 100 150 200
x0

100

75

50

25

0

25

50

75

100

x 1

Inner Loss Surface

20

40

60

80

100

120

140

4 3 2 1 0 1 2 3 4
x0

4

3

2

1

0

1

2

3

4

x 1

Close-up of Inner Loss Surface

24.5

25.0

25.5

26.0

26.5

27.0

27.5

28.0

(a) (b) (c)

Figure 10. Optimization landscape for the toy 2D regression problem. (a) The outer loss (e.g. meta-loss) surface, showing the
meta-objective values (e.g. the sum of losses over the inner optimization trajectory) for different settings of the two hyperparameters
controlling the initial and final (log) learning rates of a linear decay schedule; (b) the inner loss surface, showing color-coded optimization
trajectories corresponding to the hyperparameters highlighted in (a); (c) a close-up of the inner loss surface in the region where the
parameters (x0, x1) are initialized at the start of the inner problem.

In our experiments, the total inner problem length was T = 100, and we used truncated unrolls of length K = 10. For ES
and PES, we used perturbation variance σ2 = 1, and 100 particles (50 antithetic pairs). We used Adam with learning rate
1e-2 as the outer optimizer for all methods (TBPTT, RTRL, UORO, ES, and PES).

C.2. Influence Balancing

100 101 102 103 104

Iteration
10 14

10 5

103

1011

Lo
ss

TBPTT 1
TBPTT 10
TBPTT 100
ES

PES
UORO
RTRL

Figure 11. Longer run of influence balancing,
with log-scaled x-axis.

The influence balancing task considers learning a scalar parameter θ ∈ R
that governs the evolution of the following unrolled system:

st+1 = Ast + (θ, . . . , θ︸ ︷︷ ︸
p positive

,−θ, . . . ,−θ︸ ︷︷ ︸
n− p negative

)> (13)

where A is a fixed n × n matrix with Ai,i = 0.5, Ai,i+1 = 0.5 and 0
everywhere else. The vector on the right hand side consists of θ tiled n
times, with p positive and n − p negative copies. In our experiments, we
used n = 23 and p = 10. The loss at each step is regression on the first
index in the state vector st:

Lt =
1

2
(s0
t − 1)2 (14)

For the influence balancing experiment, we used n = 23 with 10 positive and 13 negative θ’s. The state was initialized to a
vector of ones, s0 = 1, and θ was initialized to 0.5. We used gradient descent for optimization, with learning rate 1e-4.
We did not use learning rate decay as was used in (Tallec & Ollivier, 2017a), as we did not find this to be necessary for
convergence. For ES and PES we used perturbation scale σ = 0.1 and 103 particles.

C.3. MNIST Experiments

MNIST Meta-Optimization. Following Wu et al. (2018), we used a two-layer MLP with 100 hidden units per layer and
ReLU activations and the learning rate schedule parameterization αt = θ0

(1+ t
Q)

θ1
, where αt is the learning rate at step t, θ0

is the initial learning rate, θ1 is the decay factor, and Q is a constant fixed to 5000. This schedule is used for SGD with fixed
momentum 0.9. We used mini-batches of size 100. The full unrolled inner problem consists of T = 5000 optimization steps,
and we used vanilla ES and PES with truncation lengths K ∈ {10, 100}, yielding 500 and 50 unrolls per inner problem.
The meta-objective is the sum of training softmax cross-entropy losses over the inner optimization trajectory. We used
Adam as the outer-optimizer, and for each method (ES and PES), we performed a grid search over the outer-learning rates
{0.01, 0.03, 0.1} to find the most stable and fastest-converging setups. For both ES and PES, we used perturbation standard
deviation σ = 0.1, and 1000 particles (500 antithetic pairs).

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

Tuning Many Hyperparameters & Comparison to Random Search. For this experiment, we used a four-hidden-
layer MLP with 100 hidden units per layer and ReLU nonlinearities (architecture Linear(784, 100) → ReLU →
Linear(100, 100) → ReLU → Linear(100, 100) → ReLU → Linear(100, 100) → ReLU → Linear(100, 10)), trained
on mini-batches of size 100. We tuned a separate learning rate and momentum coefficient for each weight matrix and
bias in the network: we have 5 layers in total (including the output layer), each layer has a weight and bias, and each
weight/bias has 2 tuned hyperparameters, yielding 20 total hyperparameters for this task. The meta-objective was the sum
of training losses over the inner optimization trajectory. The total inner problem length was T = 1000, and for ES and
PES we used truncations of length K = 10, yielding 100 unrolls per inner problem. For random search, we sampled
learning rates uniformly at random in log-space, with range (e−8, e0) = (∼ 3e-4, 1); we sampled the pre-transformed
momentum coefficients uniformly at random in the range (−10, 10) then transformed them by a sigmoid, so that the range
corresponds to the constrained space (∼ 4.5e-5, 0.9999). These values were selected to be uninformative, while remaining
stable in most settings. For ES and PES, we initialized each learning rate uniformly at random in log space in the range
(1e-4, 1e-2); we initialized each momentum coefficient uniformly at random in the pre-transformed space corresponding to
the sigmoid-transformed range (0.01, 0.9). These ranges are slightly smaller than the ones used for random search in order
to maintain meta-optimization stability; note from Figure 9 that the performance of both ES and PES is initially poor (prior
to meta-optimization), indicating that these ranges for random initialization do not increase their performance compared to
random search, and thus the improvement for PES is primarily due to its adaptation of the hyperparameters. For ES and
PES, we used perturbation standard deviation σ = 0.1, N = 2 particles (1 antithetic pair), and Adam with learning rate 0.01
for outer optimization. We ran each method four times with different random seeds, and plotted the mean performance,
with the min and max shown by the shaded regions in Figure 9. We measured the best meta-objective value achieved so far
during meta-optimization, as a function of total compute, which takes into account the number of inner iterations performed,
as well as the number of parallel workers (or particles); total compute corresponds to the product of inner iterations and the
number of workers.

Additional Hyperparameter Optimization and Learned Optimizer Experiments. In Figure 12a, we tune hyperpa-
rameters for a 1.6M parameter ResNet on CIFAR-10 using ES and PES with T = 5000, K = 20, and N = 4, targeting the
sum of validation losses. In Figure 12b, we train a learned optimizer on MNIST (similarly to Metz et al. (2019)). We use the
same configuration as described in section 5.2 but target a 2 hidden layer, 128 unit MLP trained on MNIST.

0 2 4 6 8
Momentum (Logit Space)

5

4

3

2

1

0

LR
 (l

og
10

 S
pa

ce
)

PES

ES

8.2

8.6

9.0

9.4

9.8

10.2

10.6

11.0

(a) Tuning LR & momentum for a Myrtle.ai
ResNet on CIFAR-10.

(b) Learned optimizer trained on MNIST.

Figure 12. CIFAR-10 experiment for hyperparameter optimization and MNIST experiment for learned optimizer training.

Tuning Regularization for UCI Regression. Here we show that truncation bias can also arise for regularization hyperpa-
rameters such as the L2 regularization coefficient. We tune L2 regularization for linear regression on the Yacht data from
the UCI collection (Asuncion & Newman, 2007). We found the optimal L2 coefficient using a fine-trained grid search. In
Figure 13 we compare meta-optimization using ES and PES, starting from different initial L2 coefficients; PES robustly
converges to the correct solution in all cases. We used σ = 0.01, K = 1, and N = 4 for both ES and PES.

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

0 100k 200k 300k
Total Compute

−8
−6
−4
−2

0
2
4

Lo
g

L2
 C

oe
ffi

cie
nt

ES
PES
Optimal

(a) Meta-optimization trajectories using ES and
PES from different initial L2 coefficients.

0 100k 200k 300k
Total Compute

14.0

14.2

14.4

14.6

14.8

15.0

Va
l L

os
s

ES
PES

(b) Validation losses using ES and PES for dif-
fernet initial L2 values.

Figure 13. Using ES and PES to tune the L2 regularization coefficient for linear regression on the UCI Yacht dataset.

C.4. Continuous Control Details

We used OpenAI Gym4 to interface with MuJoCo. In our implementation, each antithetic pair shares a MuJoCo environment
state, which is different between different antithetic pairs. The environment state is reset to the same point before running
the partial unrolls of each particle in a pair, to control for randomness (e.g., the antithetic perturbations are evaluated starting
from a common state). As is standard for MuJoCo environments, the length of a full episode is T = 1000; we ran full-unroll
ES with K = 1000, and we used partial unrolls of length K = 100 for truncated ES and PES. Following Mania et al.
(2018), we used a linear policy initialized as all 0s (the linear policy is a single weight matrix with no bias term). Also
following Mania et al. (2018), we divided the rewards by their standard deviation (computed using the aggregated rewards
from all antithetic pairs) before computing the ES/PES gradient estimates. We did not use state normalization, nor did we
perform any heuristic selection of a subset of the best sampled perturbation directions (as used in the ARS V2 approach
of Mania et al. (2018)).

D. Telescoping Sums
If we wish to target the final loss LT as the meta-objective, we can define pt = Lt − Lt−1, where L−1 ≡ 0. This yields the
telescoping sum:

T∑
t=0

pt = (��L0 − L−1) + (��L1 −��L0) + (��L2 −��L1) + · · ·+ (���LT−1 −���LT−2) + (LT −���LT−1) = LT (15)

10 2 10 1 100 101 102

Decay
10 3

10 2

10 1

100

101

In
iti

al
 L

R PES ES

1.6
1.2
0.8
0.4

0.0
0.4
0.8
1.2
1.6

Figure 14. Telescoping sum for FashionMNIST
final training loss (colors show log-final-loss).

Targeting the final loss encourages different behavior than targeting the
sum or average of the losses. Targeting the sum of losses encourages fast
convergence (small

∑
t Lt), but not necessarily the smallest final loss LT ,

while targeting the final loss encourages finding the smallest LT potentially
at the expense of slower convergence (larger

∑
t Lt).

We performed an experiment using telescoping sums to target the final
training loss, optimizing an exponential LR schedule for an MLP on Fash-
ionMNIST with T = 5000, K = 20, N = 100 (Figure 14). Due to the
computational expense of evaluating the loss on the full training set to obtain
Lt at each partial unroll, we selected a random minibatch at the start of each
inner problem, which was kept fixed for the loss evaluations for that inner
problem.

E. Derivation of Persistent Evolution Strategies
Here we derive the PES estimator. The derivation here closely follows that in the text body, but shows additional intermediate
steps in several places in the derivation. Also see Appendix I for an alternate derivation using stochastic computation

4https://github.com/openai/gym

https://github.com/openai/gym

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

graphs (Schulman et al., 2015).

E.1. Notation

Notation
Shift

Figure 15. Shift in notation, dropping the dependence on st and explicitly including the dependence on each θt.

Unrolled computation graphs (as illustrated in Figure 1) depend on shared parameters θ at every timestep. In order to
account for how these contribute to the overall gradient ∇θL(θ), we use subscripts θt to distinguish between applications
of θ at different steps, where θt = θ,∀t (see Figure 15). We further define Θ = (θ1, . . . ,θT)>, which is a matrix with
the per-timestep θt as its rows. For notational simplicity in the following derivation, we drop the dependence on st and
explicitly include the dependence on each θt, writing Lt(st;θ) as either Lt(θ1, . . . ,θt) or simply Lt(Θ), with an implicit
initial state s0. Thus, L(θ) =

∑T
t=1 Lt(st;θ) =

∑T
t=1 Lt(θ1, . . . ,θt) =

∑T
t=1 Lt(Θ).

E.2. PES is ES Over the Parameters at Each Unroll Step

We wish to compute the gradient∇θL(θ) of the total loss over all unrolls. We begin by writing this gradient in terms of the
full gradient ∂L(Θ)

∂ vec(Θ) ∈ RPT×1, where P is the number of parameters, and T is the total number of unrolls, and then using

ES to approximate ∂L(Θ)
∂ vec(Θ) . First, note that we can write:

dL(θ)

dθ
=
dL(Θ)

dθ
=
∂L(Θ)

∂θ1 �
�
�7

1
dθ1

dθ
+
∂L(Θ)

∂θ2 �
�
�7

1
dθ2

dθ
+ · · ·+ ∂L(Θ)

∂θT �
�
��

1
dθT
dθ

=

T∑
τ=1

∂L (Θ)

∂θτ
=
(
I⊗ 1>

) ∂L(Θ)

∂ vec (Θ)

where ⊗ denotes the Kronecker product, I has dimension P × P , 1> has dimension 1× T , and thus I⊗ 1> has dimension
P × PT . Note that because ∂L(Θ)

∂ vec(Θ) has dimension PT × 1, the product
(
I⊗ 1>

) ∂L(Θ)
∂ vec(Θ) will be P × 1. Next, we will

apply ES to approximate the last RHS expression above:

dL(θ)

dθ
≈ gPES =

(
I⊗ 1>

)
Eε
[

1

σ2
vec (ε)L (Θ + ε)

]
=

1

σ2
Eε
[(
I⊗ 1>

)
vec (ε)L (Θ + ε)

]
=

1

σ2
Eε

[(
T∑
τ=1

ετ

)
L (Θ + ε)

]
,

where ε = (ε1, . . . , εT)
> is a matrix of perturbations εt to be added to the θt at each timestep and the expectation is over

entries in ε drawn from an iid Gaussian with variance σ2. This ES approximation is an unbiased estimator of the gradient of
the Gaussian-smoothed objective Eε[L(Θ + ε)].

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

We next show that gPES decomposes into a sum of sequential gradient estimates,

gPES =
1

σ2
Eε

[(
T∑
τ=1

ετ

)
L (Θ + ε)

]

=
1

σ2
Eε

[(
T∑
τ=1

ετ

)
T∑
t=1

Lt (Θ + ε)

]

=
1

σ2
Eε

[
T∑
t=1

(
T∑
τ=1

ετ

)
Lt (Θ + ε)

]
(16)

=
1

σ2
Eε

[
T∑
t=1

(
t∑

τ=1

ετ

)
Lt (Θ + ε)

]
(17)

=
1

σ2
Eε

[
T∑
t=1

ξtLt (Θ + ε)

]
(18)

= Eε

[
T∑
t=1

ĝPES
t,ε

]
, (19)

ĝPES
t,ε =

1

σ2
ξtLt (Θ + ε) =

1

σ2
ξtLt (θ1 + ε1, . . . ,θt + εt) . (20)

where ξt =
∑t
τ=1 ετ , Equation 17 relies on Lt (·) being independent of ετ for τ > t, and Equation 20 similarly relies on

Lt (·) only being a function of θτ for τ ≤ t.

The PES estimator consists of Monte Carlo estimates of Equation 19,

ĝPES =
1

N

N∑
i=1

T∑
t=1

ĝPES
t,ε(i) (21)

where ε(i) are samples of ε, and N is the number of Monte Carlo samples. Gradient estimates at each time step can be
evaluated sequentially, and used to perform SGD.

Concrete Example. To illustrate how the expressions in the derivation above yield the desired gradient estimate, here we
provide a concrete example using two-dimensional θ with three steps of unrolling. The matrix Θ is:

Θ =

−−−−θ1−−−−
−−−−θ2−−−−
−−−−θ3−−−−

 =

θ
(1)
1 θ

(2)
1

θ
(1)
2 θ

(2)
2

θ
(1)
3 θ

(2)
3

The vectorized matrix vec (Θ) and gradient ∂L(Θ)

∂ vec(Θ) are as follows:

vec(Θ) =

θ
(1)
1

θ
(1)
2

θ
(1)
3

θ
(2)
1

θ
(2)
2

θ
(2)
3

∂L(Θ)

∂vec(Θ)
=

∂L(Θ)

∂θ
(1)
1

∂L(Θ)

∂θ
(1)
2

∂L(Θ)

∂θ
(1)
3

∂L(Θ)

∂θ
(2)
1

∂L(Θ)

∂θ
(2)
2

∂L(Θ)

∂θ
(2)
3

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

The Kronecker product is: I⊗ 1> =

[
1 0
0 1

]
⊗
[
1 1 1

]
=

[
1 1 1 0 0 0
0 0 0 1 1 1

]
. Thus, we have:

(I⊗ 1>)
∂L(Θ)

∂vec(Θ)
=

∂L(Θ)

∂θ
(1)
1

+ ∂L(Θ)

∂θ
(1)
2

+ ∂L(Θ)

∂θ
(1)
3

∂L(Θ)

∂θ
(2)
1

+ ∂L(Θ)

∂θ
(2)
2

+ ∂L(Θ)

∂θ
(2)
3

 =

∂L(Θ)

∂θ
(1)
1

∂L(Θ)

∂θ
(2)
1

︸ ︷︷ ︸

∂L(Θ)
∂θ1

+

∂L(Θ)

∂θ
(1)
2

∂L(Θ)

∂θ
(2)
2

︸ ︷︷ ︸

∂L(Θ)
∂θ2

+

∂L(Θ)

∂θ
(1)
3

∂L(Θ)

∂θ
(2)
3

︸ ︷︷ ︸

∂L(Θ)
∂θ3

=

T∑
τ=1

∂L(Θ)

∂θτ
=
dL(Θ)

dθ

Similarly, to see how the PES derivation works, consider a matrix of perturbations ε and its vectorization vec(ε) as follows:

ε =

−−−−ε1−−−−
−−−−ε2−−−−
−−−−ε3−−−−

 =

ε
(1)
1 ε

(2)
1

ε
(1)
2 ε

(2)
2

ε
(1)
3 ε

(2)
3

 vec(ε) =

ε
(1)
1

ε
(1)
2

ε
(1)
3

ε
(2)
1

ε
(2)
2

ε
(2)
3

Then,

(I⊗ 1>)vec(ε) =

[
ε
(1)
1 + ε

(1)
2 + ε

(1)
3

ε
(2)
1 + ε

(2)
2 + ε

(2)
3

]
=

[
ε
(1)
1

ε
(2)
1

]
︸ ︷︷ ︸
ε1

+

[
ε
(1)
2

ε
(2)
2

]
︸ ︷︷ ︸
ε2

+

[
ε
(1)
3

ε
(2)
3

]
︸ ︷︷ ︸
ε3

=

T∑
τ=1

ετ

This shows how the following statements are equivalent in our derivation:

1

σ2
Eε
[(
I⊗ 1>

)
vec (ε)L (Θ + ε)

]
=

1

σ2
Eε

[(
T∑
τ=1

ετ

)
L (Θ + ε)

]

F. Proof that PES is Unbiased
Statement F.1. Let θ ∈ Rn and L(θ) =

∑T
t=1 Lt(θ). Suppose that ∇θL(θ) exists, and assume that L is quadratic, so

that it is equivalent to its second-order Taylor series expansion:

L(Θ + ε) = L(Θ) + vec(ε)>∇vec(Θ)L(Θ) +
1

2
vec(ε)>∇2

vec(Θ)L(Θ) vec(ε)

Consider the PES estimator (using antithetic sampling) below:

ĝPES-A = (I⊗ 1>)Eε
[

1

2σ2
vec(ε)(L(Θ + ε)− L(Θ− ε))

]
,

where ε ∼ N (0, Iσ2).

Then, bias(ĝPES-A) = Eε[ĝPES-A]−∇θL(θ) = 0.

Proof. Using the assumption that L is quadratic and due to antithetic sampling, we can simplify this expression L(Θ + ε)−
L(Θ− ε) as follows:

L(Θ + ε)− L(Θ− ε) =(��
�L(Θ) + vec(ε)>∇vec(Θ)L(Θ) +

(((
((((

(((
((((1

2
vec(ε)>∇2

vec(Θ)L(Θ) vec(ε)) (22)

− (��
�L(Θ)− vec(ε)>∇vec(Θ)L(Θ) +

(((
((((

(((
((((1

2
vec(ε)>∇2

vec(Θ)L(Θ) vec(ε)) (23)

=2 vec(ε)>∇vec(Θ)L(Θ) (24)

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

Thus, we have:

ĝPES-A = (I⊗ 1>)Eε
[

1

2σ2
2 vec(ε) vec(ε)>∇vec(Θ)L(Θ)

]
(25)

= (I⊗ 1>)
1

σ2
Eε
[
vec(ε) vec(ε)>

]︸ ︷︷ ︸
σ2I

∇vec(Θ)L(Θ) (26)

= (I⊗ 1>)∇vec(Θ)L(Θ) (27)
= ∇θL(θ) (28)

Thus, E[ĝPES-A] = ∇θL(θ) and bias(ĝPES-A) = 0.

G. PES Variance
In this section, we derive the variance of PES. The PES estimator is defined as follows (we show the simplified form
assuming antithetic sampling and quadratic functions Lt). To simplify the derivation here, we assume that the number of
antithetic pairs is N = 1. As shorthand in the derivation, we write∇Lt(θ) = gt.

ĝPES =
1

σ2

T∑
t=1

ξtε
>
t ∇Lt(θ) (29)

=
1

σ2

(
ξ1ε
>
1 g1 + ξ2ε

>
2 g2 + · · ·+ ξT ε>T gT

)
(30)

We use the total variance tr(Var(ĝ)) to quantify the variance of the estimator:

tr(Var(ĝ)) = tr(E[ĝĝ>]− E[ĝ]E[ĝ]>) (31)

= E[ĝ>ĝ]︸ ︷︷ ︸
1©
−E[ĝ]>E[ĝ]︸ ︷︷ ︸

2©
(32)

Term 2© is easy to compute, because we know that our estimator is unbiased, so E[ĝ] = ∇θL(θ). Thus,

2© = E[ĝ]>E[ĝ] = ∇θL(θ)>∇θL(θ) = ||∇θL(θ)||22 (33)

To compute term 1©, which is E[ĝ>ĝ], we will first expand ĝ>ĝ:

ĝ>ĝ =
1

σ4
(ξ1ε

>
1 g1 + ξ2ε

>
2 g2 + · · ·+ ξT ε>T gT)>(ξ1ε

>
1 g1 + ξ2ε

>
2 g2 + · · ·+ ξT ε>T gT) (34)

=
1

σ4
[(ξ1ε

>
1 g1)>(ξ1ε

>
1 g1)︸ ︷︷ ︸

a©
+ (ξ1ε

>
1 g1)>(ξ2ε

>
2 g2)︸ ︷︷ ︸

b©
+ · · ·+ (ξT ε

>
T gT)>(ξT ε

>
T gT)] (35)

We have two types of terms appearing in the expression above:

• a© Terms where i = j: (ξiε
>
i gi)

>(ξiε
>
i gi) = g>i εiξ

>
i ξiε

>
i gi

• b© Cross-terms (i 6= j) of the form: (ξiε
>
i gi)

>(ξjε
>
j gj) = g>i εiξ

>
i ξjε

>
j gj

Looking at terms of type a©, we can first expand ξ>i ξi as follows:

ξ>i ξi = (ε1 + · · ·+ εi)>(ε1 + · · ·+ εi) (36)

= ε>1 ε1 + ε>2 ε2 + · · ·+ ε>1 εi + · · ·+ ε>i εi (37)

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

Then, plugging in the expanded form of ξ>i ξi and taking the expectation, we have:

E[εiξ
>
i ξiε

>
i] = E[εi(ε

>
1 ε1 + ε>1 ε2 + · · ·+ ε>1 εi + · · ·+ ε>i εi)ε>i] (38)

= E[εiε
>
1 ε1ε

>
i + εiε

>
1 ε2ε

>
i + · · ·+ εiε>1 εiε>i + · · ·+ εiε>i εiε>i] (39)

= E[εiε
>
1 ε1ε

>
i]︸ ︷︷ ︸

Pσ2I

+E[εiε
>
1 ε2ε

>
i]︸ ︷︷ ︸

0

+ · · ·+ E[εiε
>
1 εiε

>
i]︸ ︷︷ ︸

0

+ · · ·+ E[εiε
>
i εiε

>
i]︸ ︷︷ ︸

(P+2)σ4I

(40)

Terms like E[εiε
>
1 ε1ε

>
i] have the following form:

Ea,b [ab>ba>] = Ea[Eb[ab>ba>]] = Ea[aEb[b>b]︸ ︷︷ ︸
Pσ2

a>] = nσ2 Ea[aa>]︸ ︷︷ ︸
σ2I

= Pσ4I (41)

Where we obtained Eb[b>b] = Pσ2 via:

Eb[b>b] = Eb[tr(b>b)] = Eb[tr(bb>)] = tr
(
Eb[bb>]

)
= tr(σ2I) = Pσ2 (42)

Terms like E[εiε
>
1 ε2ε

>
i] have the following form:

Eabc[ab>ca>] = Ea[Eb[Ec[ab>ca>]]] (43)

= Ea[Eb[ab> Ec[c]︸︷︷︸
µ=0

a>]] (44)

= 0 (45)

Finally, for the single term where all the ε’s are equal, E[εiε
>
i εiε

>
i], we used the following identity, which was derived

in Appendix A.2 of (Maheswaranathan et al., 2018). The εi are assumed to be drawn from N (0,Σ), where in our case
Σ = σ2I:

E[εiε
>
i εiε

>
i] = tr(Σ)Σ + 2Σ2 (46)

= tr(σ2I)(σ2I) + 2(σ2I)2 (47)

= Pσ4I + 2σ4I (48)

= (P + 2)σ4I (49)

Now we need to figure out how many of each type of terms we have. There are two types of terms we are interested in (that
are not equal to 0): 1) ones with repeated middle terms like: E[εiε

>
1 ε1ε

>
i] and E[εiε

>
2 ε2ε

>
i]; and 2) ones with all terms

equal like E[εiε
>
i εiε

>
i] Any terms that have “mixed” middle terms like E[εiε

>
1 ε2ε

>
i] will disappear. For a given i, we have

one term E[εiε
>
i εiε

>
i] and i− 1 terms E[εiε

>
1 ε1ε

>
i]. Thus, we have:

E[εiξ
>
i ξiε

>
i] = (i− 1)Pσ4I + (P + 2)σ4I = [(i− 1)Pσ4 + (P + 2)σ4]I

What about terms of type b©, e.g. cross-terms: E[εiξ
>
i ξjε

>
j] where i 6= j? First, we can expand ξ>i ξj as follows:

ξ>i ξj = (ε1 + ε2 + · · ·+ εi)>(ε1 + ε2 + · · ·+ εj) (50)

= ε>1 ε1 + ε>1 ε2 + · · ·+ ε>1 εj + · · ·+ ε>i εj (51)

Plugging in this expansion into the expectation, we have:

E[εi(ε
>
1 ε1 + ε>1 ε2 + · · ·+ ε>1 εj + · · ·+ ε>i εj)ε>j] = E[εiε

>
1 ε1εj] + E[εiε

>
1 ε2εj] + · · ·+ E[εiε

>
i εjε

>
j] (52)

= E[εiε
>
i εjε

>
j] (53)

= E[εiε
>
i]E[εjε

>
j] (54)

= (σ2I)(σ2I) (55)

= σ4I (56)

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

Putting this together, we have:

E[ĝ>ĝ] =
1

σ4
E[(ξ1ε

>
1 g1)>(ξ1ε

>
1 g1)] + E[(ξ1ε

>
1 g1)>(ξ2ε

>
2 g2)] + · · ·+ E[(ξT ε

>
T gT)>(ξT ε

>
T gT)] (57)

=
1

σ4

(
g>1 E[ε1ξ

>
1 ξ1ε

>
1]g1 + g>1 E[ε1ξ

>
1 ξ2ε

>
2]g2 + · · ·

)
(58)

=
1

σ4

 T∑
t=1

g>t [((t− 1)Pσ4 + (P + 2)σ4)I]gt + σ4
∑
i 6=j

g>i gj

 (59)

=

T∑
t=1

g>t [((t− 1)P + (P + 2))I]gt +
∑
i 6=j

g>i gj (60)

=

T∑
t=1

||gt||2(Pt+ 2) +
∑
i 6=j

g>i gj (61)

To compute the total variance, we have:

tr(Var(ĝ)) = E[ĝ>ĝ]− E[ĝ]>E[ĝ] =

T∑
t=1

||gt||2(Pt+ 2) +

�
�
�
��∑

i 6=j

g>i gj −
T∑
t=1

g>t gt −

�
�
�
��∑

i 6=j

g>i gj (62)

=

T∑
t=1

||gt||2(Pt+ 2)−
T∑
t=1

||gt||2 (63)

=

T∑
t=1

||gt||2(Pt+ 1) (64)

G.1. Considering the dependence on T

Now we consider the dependence of the variance on the total number of unrolls T . Here, we denote by g the gradient of L,
that is g = ∇θL(θ) =

∑T
t=1∇θLt(θ) =

∑T
t=1 gt. Consider two likely scenarios. For the first scenario, assume that the

gradients for each unroll are i.i.d. In that case:

E
[
||gt||

2
]

=
1

T
E
[
||g||2

]
(65)

tr(Var(ĝ)) =
||g||2

T

T∑
t=1

(Pt+ 1) (66)

=
||g||2

T

(
1

2
PT (T + 1) + T

)
(67)

= ||g||2
(

1

2
P (T + 1) + 1

)
(68)

= ||g||2
(

1

2
PT +

1

2
P + 1

)
(69)

For the second scenario, assume that the gradients for each unroll are identical to each other. Then we have:

gt =
1

T
g (70)

||gt||
2

=
1

T 2
||g||2 (71)

tr(Var(ĝ)) = ||g||2
(

1

2
P +

P

2T
+

1

T

)
. (72)

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

Figure 16 shows the empirical variance for several potential scenarios. We performed an analysis similar to that in Section 4,
measuring the variance of the PES gradient with respect to the number of unrolls for a small LSTM on the Penn TreeBank
(PTB) dataset. We constructed synthetic data sequences to illustrate different scenarios: in Figure 16a we used a 103 length
sequence consisting of characters sampled uniformly at random from the PTB vocabulary, simulating the first scenario;
in Figure 16b we used a 103 length sequence consisting of a single repeated character, simulating the second scenario;
Figure 16c shows the variance for real data—the first 103 characters of PTB—which exhibits characteristics of both synthetic
scenarios.

100 101 102 103

Unrolls
100

101

102

103

104

105

106

Va
ria

nc
e

N=10
N=30

N=100
N=1000

(a) Random sequence

100 101 102 103

Unrolls

100

101

102

103

Va
ria

nc
e

N=10
N=30

N=100
N=1000

(b) Single character repeated

100 101 102 103

Unrolls

100

101

102

103

Va
ria

nc
e

N=10
N=30

N=100
N=1000

(c) Real PTB sequence

Figure 16. Empirical variance measurements for three scenarios.

H. Reducing Variance by Incorporating the Analytic Gradient
For functions L that are differentiable, we can use the analytic gradient from the most recent partial unroll (e.g., backpropa-
gating through the last K-step unroll) to reduce the variance of the PES gradient estimates. Below, we show how we can
incorporate the analytic gradient in the ES estimate for ∂Lt(Θ)

∂θ :

∂Lt(Θ)

∂θ
≈ 1

σ2
Eε

∑
τ≤t

ετ

Lt(Θ + ε)

 (73)

=
1

σ2
Eε

[(∑
τ<t

ετ

)
Lt(Θ + ε)

]
+

1

σ2
Eε[εtLt(Θ + ε)] (74)

=
1

σ2
Eε

[(∑
τ<t

ετ

)
Lt(Θ + ε)

]
+
∂Lt(Θ)

∂θt︸ ︷︷ ︸
≡pt

(75)

=
1

σ2
Eε

[(∑
τ<t

ετ

)
Lt(Θ + ε)

]
+ pt −

1

σ2
Eε

[(∑
τ<t

ετ

)
ε>t pt

]
︸ ︷︷ ︸

=0

(76)

=
1

σ2
Eε

[(∑
τ<t

ετ

)
(Lt(Θ + ε)− ε>t pt)

]
+ pt (77)

We call the resulting estimator PES+Analytic. Algorithm 4 describes the implementation of this estimator, which requires
a few simple changes from the standard PES estimator. We repeated the empirical variance measurement described in
Section 4 and Appendix G.1 using the PES+Analytic estimator, for each of the three scenarios from Appendix G.1, shown
in Figure 18. Similarly to the other variance measurements, we report variance normalized by the squared norm of the
true gradient. We found that variance increases with the number of unrolls, but the PES+Analytic variance is 1-2 orders of
magnitude smaller than the standard PES variance.

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

Algorithm 3 Original persistent evolution strategies (PES)
estimator, identical to Section 4.

Input: s0, initial state
K, truncation length for partial unrolls
N , number of particles
σ, standard deviation of perturbations
α, learning rate for PES optimization

Initialize s = s0

Initialize s(i) = s0 for i ∈ {1, . . . , N}
Initialize ξ(i) ← 0 for i ∈ {1, . . . , N}
repeat
s, L← unroll(s,θ,K)
p← ∇θL
ĝPES ← 0
for i = 1, . . . , N do

ε(i) ←
{

draw from N (0, σ2I) i odd
−ε(i−1) i even

s(i), L̂(i)
K ← unroll(s(i),θ + ε(i),K)

ξ(i) ← ξ(i) + ε(i)

ĝPES ← ĝPES + ξ(i)L̂
(i)
K

end for
ĝPES ← 1

Nσ2 ĝ
PES

θ ← θ − αĝPES

Algorithm 4 PES + analytic gradient. Differences from
PES are highlighted in purple.

Input: s0, initial state
K, truncation length for partial unrolls
N , number of particles
σ, standard deviation of perturbations
α, learning rate for PES optimization

Initialize s = s0

Initialize s(i) = s0 for i ∈ {1, . . . , N}
Initialize ξ(i) ← 0 for i ∈ {1, . . . , N}
repeat
s, L← unroll(s,θ,K)
p← ∇θL
ĝPES ← 0
for i = 1, . . . , N do

ε(i) ←
{

draw from N (0, σ2I) i odd
−ε(i−1) i even

s(i), L̂(i)
K ← unroll(s(i),θ + ε(i),K)

ĝPES ← ĝPES + ξ(i)(L̂
(i)
K − ε(i)>p)

ξ(i) ← ξ(i) + ε(i)

end for
ĝPES ← 1

Nσ2 ĝ
PES + p

θ ← θ − αĝPES

Figure 17. A comparison of the PES and PES+Analytic gradient estimators, applied to partial unrolls of a computation graph. The
conditional statement for ε(i) is used to implement antithetic sampling. For clarity, we describe the meta-optimization updates to θ using
SGD, but we typically use Adam in practice.

100 101 102 103

Unrolls

10 2

10 1

100

101

102

103

Va
ria

nc
e

N=10
N=30

N=100
N=1000

(a) Random sequence

100 101 102 103

Unrolls

10 2

10 1

100

101

Va
ria

nc
e

N=10
N=30

N=100
N=1000

(b) Single character repeated

100 101 102 103

Unrolls

10 2

10 1

100

101

Va
ria

nc
e

N=10
N=30

N=100
N=1000

(c) Real PTB sequence

Figure 18. Empirical variance measurements for three scenarios, incorporating the analytic gradient from the most recent unroll
to reduce variance.

I. Connection to Gradient Estimation in Stochastic Computation Graphs
In this section, we show how PES can be derived using the framework for gradient estimation in stochastic computation
graphs introduced in (Schulman et al., 2015). We follow their notation for this exposition: in Figure 19, squares represent
deterministic nodes, which are functions of their parents; circles represent stochastic nodes which are distributed conditionally
on their parents, and nodes not in squares or circles represent inputs. For notational simplicity, in the following exposition
we consider 1-dimensional θ. We represent the unrolled computation graph in terms of an input node θ, that gives rise to a
stochastic variable θt at each time step; the sampled θt is used to compute the state st, which is a deterministic function
of the previous state st−1 and the current parameters θt. The losses Lt are designated as cost nodes, and our objective is
L =

∑
t Lt.

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

Figure 19. Unrolled stochastic computation graph for PES, in the notation of (Schulman et al., 2015).

Theorem 1 from (Schulman et al., 2015) gives the following general form for the gradient of the sum of cost nodes in such a
stochastic computation graph. Here, C is the set of cost nodes; S is the set of stochastic nodes; DEPSw denotes the set of
nodes that w depends on; a ≺D b indicates that node a node depends deterministically on node b (note that this relationship
holds as long as there are no stochastic nodes along a path from a to b; in our case, θ ≺D θt holds for all t); and Q̂w is the
sum of cost nodes downstream from node w.

∂

∂θ
E

[∑
c∈C

c

]
= E

 ∑
w∈S,θ≺Dw

(
∂

∂θ
log p(w|DEPSw)

)
Q̂w +

∑
c∈C,θ≺Dc

∂

∂θ
c(DEPSc)

 (78)

For the computation graph in Figure 19, θ does not deterministically influence any of the cost nodes Lt, so the second term
in the expectation in Eq. 78 will be 0. In addition, each stochastic node θt, depends only on θ, e.g. DEPSθt = {θ},∀t. Thus,
our gradient estimate is:

∂

∂θ
E

[
T∑
t=1

Lt

]
= E

[
T∑
t=1

(
∂

∂θ
log p(θt|θ)

)
Q̂θt

]
(79)

Q̂θt is the sum of cost nodes downstream of θt, thus Q̂θt =
∑T
i=t Li. Now, each θt ∼ N (θ, σ2), so we have:

log p(θt | θ) = logN (θt | θ, σ2) = log
1√
2πσ

− 1

2σ2
(θt − θ)2 (80)

Then,

∂

∂θ
log p(θt | θ) = − 1

2σ2
· 2(θt − θ) · (−1) (81)

=
1

σ2
(θt − θ) (82)

=
1

σ2
(θ + εt − θ) (83)

=
1

σ2
εt (84)

where we used the reparameterization θt = θ + εt with εt ∼ N (0, σ2). Plugging this into Eq. 79, we have:

∂

∂θ
E

[
T∑
t=1

Lt

]
= E

[
T∑
t=1

1

σ2
εtQ̂θt

]
(85)

=
1

σ2
E [ε1(L1 + L2 + · · ·+ LT) + ε2(L2 + L3 + · · ·+ LT) + · · ·+ εTLT] (86)

=
1

σ2
E[ε1L1 + (ε1 + ε2)L2 + (ε1 + ε2 + ε3)L3 + · · ·+ (ε1 + · · ·+ εT)LT] (87)

=
1

σ2
E

[
T∑
t=1

(
t∑

τ=1

ετ

)
Lt

]
(88)

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

Eq. 88 recovers the PES estimator.

J. Derivations and Compute/Memory Costs
BPTT, TBPTT, ARTBP. Backpropagating through a full unroll of T steps requires T forward and backward passes,
yielding compute T (F +B); all T states must be stored in memory to be available for gradient computation during backprop,
yielding memory cost TS. Similarly, because TBPTT unrolls the computation graph for K steps, it requires K forward
and backward passes, yielding computation K(F +B), and requires storing K states in memory, yielding memory cost
KS. ARTBP is identical to TBPTT except that it randomly samples the truncation length in a theoretically-justified way to
reduce or eliminate truncation bias. In theory, the sampled truncation lengths must allow for maximum length T , yielding
worst-case compute T (F +B) and memory cost TS. However, in practice this is often intractable, so truncation lengths
may be sampled within a restricted range centered around K—this is no longer unbiased, but yields average case compute
K(F +B) and memory cost KS (which is reported in Table 1).

RTRL. We begin by deriving RTRL, which simply corresponds to forward-mode differentiation. Let the state be st ∈ RS
and the parameters be θ ∈ RP . We have a dynamical system defined by:

st = f(st−1,xt,θ) (89)

and our objective is L =
∑T
t=1 Lt. In order to optimize this objective, we need the gradient∇θL =

∑T
t=1

dLt
dθ . The loss at

step t is a function of st, so we have:
dLt(st)

dθ
=
∂Lt
∂st

dst
dθ

(90)

Using Eq. 89 and the chain rule, we have:

dst
dθ

=
df(st−1,xt,θ)

dθ
(91)

=
∂st
∂st−1

dst−1

dθ
+
∂st
∂xt�

�
�7

0
dxt
dθ

+
∂st
∂θ �

�
��
1

dθ

dθ
(92)

=
∂st
∂st−1

dst−1

dθ
+
∂st
∂θ

(93)

Thus, we have the recurrence relation:
dst
dθ︸︷︷︸
Gt

=
∂st
∂st−1︸ ︷︷ ︸
Ht

dst−1

dθ︸ ︷︷ ︸
Gt−1

+
∂st
∂θ︸︷︷︸
Ft

(94)

Here, Gt is S × P , Ht is S × S, and Ft is S × P . RTRL maintains the Jacobian Gt, which requires memory SP ;
furthermore, instantiating the matrices Ht and Ft requires memory S2 and SP , respectively, so the total memory cost of
RTRL is 2SP + S2. The matrix multiplication HtGt−1 has computational complexity S2P . The cost of computing the
Jacobian Ft is approximately min{S(F + B), P (F + B)}, depending on which of S or P is smaller-dimensional (and
correspondingly whether we use forward-mode or reverse-mode automatic differentiation to compute the rows/columns of
the Jacobian). Similarly, the cost of computing the Jacobian Ht is approximately S(F +B) (using either forward or reverse
mode autodiff). Thus, the total computational cost of RTRL is: S2P + S(F +B) + min{S(F +B) + P (F +B)}.

Note that, in general, it matters which of st or θ is higher dimensional. In the case of unrolled optimization, S is usually
larger than P , causing RTRL to be particularly memory-intensive due to the S × S Jacobian Ht. The computation and
memory costs we have derived here are expressed in a general form for state and parameter dimensions S and P , respectively.
In the case of RNN training, most prior work (such as (Tallec & Ollivier, 2017a; Mujika et al., 2018; Benzing et al., 2019))
assumes that the RNN parameters are of dimensionality S2, where S is the size of the hidden state. 5

5This is a simplification of the parameter count for RNNs, assuming that it is dominated by the hidden-to-hidden weight matrix.

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

UORO. Unbiased Online Recurrent Optimization (UORO) (Tallec & Ollivier, 2017a) approximates RTRL by maintaining
a rank-1 estimate of the Jacobian Gt as:

Gt ≈ s̃tθ̃
>
t (95)

where s̃t and θ̃t are vectors of dimensions S and P , respectively. Ultimately, we are interested in the gradient ∂Lt∂θ . Using
the UORO approximation to Gt, we can write the gradient as follows:

∂Lt
∂θ

=
∂Lt
∂st

dst
dθ

(96)

=
∂Lt
∂st

Gt (97)

=
∂Lt
∂st

(HtGt−1 + Ft) (98)

=
∂Lt
∂st

(Ht(s̃tθ̃
>
t) + Ft) (99)

=
∂Lt
∂st

(Ht(s̃tθ̃
>
t)) +

∂Lt
∂st

Ft (100)

=
∂Lt
∂st

(Ht(s̃tθ̃
>
t)) +

∂Lt
∂st

∂st
∂θ

(101)

=
∂Lt
∂st

(Ht(s̃tθ̃
>
t)) +

∂Lt
∂θ

(102)

=

(
∂Lt
∂st

Hts̃t

)
︸ ︷︷ ︸

1×1

θ̃
>
t +

∂Lt
∂θ︸︷︷︸

1×P

(103)

Here, ∂Lt∂st
is 1× S, Ht is S × S, s̃t is S × 1, θ̃t is 1× P , and Ft is S × P .

This leads to a total computation cost of F +B+S2 +P . We require one pass of backprop to compute the partial derivative,
a vector-matrix product size S by S × S (S2), then element-wise operations on the full parameter space (P). The memory
cost of storing both s̃t and θ̃t is S + P .

Reparameterization. The reparameterization gradient estimator is ĝreparam = 1
N

∑N
i=1∇θL(θ + σε(i)), where ε(i) ∼

N (0, I). With respect to computational complexity, this is equivalent to BPTT: its compute cost is T (F + B) and its
memory cost is TS.

ES. ES applied to an unroll of length K requires performing K forward passes—it does not require any backward passes,
since ES is not gradient-based (e.g., it is a zeroth-order optimization algoritm). Because ES does not require backprop,
it does not need to store the intermediate states in memory, only the most recent state, yielding memory cost S that is
independent of the unroll length. Using ES with N particles yields total compute and memory costs NKF and NS,
respectively.

PES. As PES is an evolutionary strategies-based method, it also does not require backward passes; applied to unrolls
of length K, PES has compute cost KF . In addition to storing the current state of size S as in ES, PES also maintains
a perturbation accumulator for each particle; thus, the memory cost of a single PES chain is S + P . Using PES with N
particles yields total compute and memory costs NKF and N(S + P), respectively.

PES+Analytic. Similarly to standard PES, we need to maintain a collection ofN states, each of size S, andN perturbation
accumulators, each of size P , yielding memory cost N(S + P); unrolling each state for K steps requires computational
cost NKF . To incorporate the analytic gradient, we need to maintain one additional particle that is unrolled using the
mean θ rather than a perturbed version θ + ε; this adds memory cost S. The main computational and memory overhead
comes from the gradient computation through the partial unroll of length K: similarly to TBPTT, this requires storing K
intermediate states, yielding memory cost KS, and requires K forward and K backward operations, yielding computational
cost K(F + B). Combined with the memory and computational cost of standard PES, we have total compute cost
NKF +K(F +B) and total memory cost N(S + P) + (K + 1)S.

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

K. Diagrammatic Representation of Algorithms
Figure 20 provides diagrammatic representations of ES and PES. For each partial unroll, vanilla ES starts from a shared
initial state s(0) that is evolved in parallel using perturbed parameters θ + ε(i). After each truncated unroll, the mean
parameters θ are used to update the state, which then becomes the initial state for the next truncated unroll; no information
is passed between truncated unrolls for vanilla ES. In contrast, PES maintains a set of states s(i) that are evolved in parallel,
each according to a different perturbation of the parameters θ in each truncated unroll. Intuitively, these states maintain
their history between truncated unrolls, since we accumulate the perturbations experienced by each state over the course
of meta-optimization; when we reach the end of an inner problem, the states are reset to the same initialization, and the
perturbation accumulators are reset to 0.

ES PESES Gradient EstimateUnroll from same init w/ perturbed outer-params

K-step or T-step unroll K-step unroll K-step unroll

Particles
evolving

in parallel

Figure 20. Left: Evolution strategies (ES). Right: Persistent evolution strategies (PES).

L. Ablation Studies
In this section, we show an ablation study over the the number of particles N , and the truncation length K (which controls
the number of unrolls per inner-problem). In Figure 21 we show the sensitivity of PES to these meta-parameters for a
version of the 2D regression problem (from Section 5.4) with total inner problem length T = 10, 000.

101 102 103 104 105

Inner Problem Steps

104

105

106

107

M
et

a-
Ob

je
ct

iv
e

K=1
K=10
K=100

101 102 103 104 105

Inner Problem Steps

104

105

106

107

M
et

a-
Ob

je
ct

iv
e

N=10
N=102

N=103

N=104

N=105

(a) (b)

Figure 21. Ablation over meta-parameters for PES applied to the toy 2D regression task with total number of inner steps T = 10, 000.
Here we vary the truncation length K and number of particles N ; all other meta-parameters are fixed: we used Adam with learning
rate 3e-2 for meta-optimization, and perturbation standard deviation 0.1. (a) Decreasing K yields shorter truncations, which allow for
more frequent meta-updates, improving performance compared to longer truncations. For these runs, N = 104. (b) As in standard ES,
increasing the particle count for PES reduces variance and can yield substantial improvements in terms of inner iterations performed, or
wall-clock time. For these runs, K = 1.

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

M. Implementation
Code Listing 1 presents a simple JAX implementation of the toy 2D regression meta-learning problem from Section 5.4, in a
self-contained, runnable example. PES is easy to implement efficiently in JAX by making use of the construct jax.vmap
(or jax.pmap in settings with multiple workers) to parallelize the unrolling computations over N particles.

Listing 1. Simplified PES implementation in JAX, for the 2D regression problem from Section 5.4.
from functools import partial
import jax
import jax.numpy as jnp

def loss(x):
"""Inner loss."""
return jnp.sqrt(x[0]**2 + 5) - jnp.sqrt(5) + jnp.sin(x[1])**2 * \

jnp.exp(-5*x[0]**2) + 0.25*jnp.abs(x[1] - 100)

Gradient of inner loss
loss_grad = jax.grad(loss)

def update(state, i):
"""Performs a single inner problem update, e.g., a single unroll step.
"""
(L, x, theta, t_curr, T, K) = state
lr = jnp.exp(theta[0]) * (T - t_curr) / T + jnp.exp(theta[1]) * t_curr / T
x = x - lr * loss_grad(x)
L += loss(x) * (t_curr < T)
t_curr += 1
return (L, x, theta, t_curr, T, K), x

@partial(jax.jit, static_argnums=(3,4))
def unroll(x_init, theta, t0, T, K):

"""Unroll the inner problem for K steps.

Args:
x_init: the initial state for the unroll
theta: a 2-dimensional array of outer parameters (log_init_lr, log_final_lr)
t0: initial time step to unroll from
T: maximum number of steps for the inner problem
K: number of steps to unroll

Returns:
L: the loss resulting from the unroll
x_curr: the updated state at the end of the unroll

"""
L = 0.0
initial_state = (L, x_init, theta, t0, T, K)
state, outputs = jax.lax.scan(update, initial_state, None, length=K)
(L, x_curr, theta, t_curr, T, K) = state
return L, x_curr

@partial(jax.jit, static_argnums=(5,6,7,8))
def pes_grad(key, xs, pert_accum, theta, t0, T, K, sigma, N):

"""Compute PES gradient estimate.

Args:
key: JAX PRNG key
xs: Nx2 array of particles/states to be updated
pert_accum: Nx2 array of accumlated perturbations for each particle
theta: a 2-dimensional array of outer parameters (log_init_lr, log_final_lr)
t0: initial time step for the current unroll
T: maximum number of steps for the inner problem
K: truncation length for the unroll
sigma: standard deviation of the Gaussian perturbations
N: number of perturbations (as N//2 antithetic pairs)

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

Returns:
theta_grad: PES gradient estimate
xs: Nx2 array of updates particles/states
pert_accum: Nx2 array of updated perturbations for each particle

"""
Generate antithetic perturbations
pos_perts = jax.random.normal(key, (N//2, theta.shape[0])) * sigma # Antithetic

positives
neg_perts = -pos_perts # Antithetic negatives
perts = jnp.concatenate([pos_perts, neg_perts], axis=0)

Unroll the inner problem for K steps using the antithetic perturbations of theta
L, xs = jax.vmap(unroll, in_axes=(0,0,None,None,None))(xs, theta + perts, t0, T, K)
Add the perturbations from this unroll to the perturbation accumulators
pert_accum = pert_accum + perts
Compute the PES gradient estimate
theta_grad = jnp.mean(pert_accum * L.reshape(-1, 1) / (sigma**2), axis=0)
return theta_grad, xs, pert_accum

opt_params = { ’lr’: 1e-2, ’b1’: 0.99, ’b2’: 0.999, ’eps’: 1e-8,
’m’: jnp.zeros(2),
’v’: jnp.zeros(2) }

def outer_optimizer_step(params, grads, opt_params, t):
lr = opt_params[’lr’]
b1 = opt_params[’b1’]
b2 = opt_params[’b2’]
eps = opt_params[’eps’]
opt_params[’m’] = (1 - b1) * grads + b1 * opt_params[’m’]
opt_params[’v’] = (1 - b2) * (grads**2) + b2 * opt_params[’v’]
mhat = opt_params[’m’] / (1 - b1**(t+1))
vhat = opt_params[’v’] / (1 - b2**(t+1))
updated_params = params - lr * mhat / (jnp.sqrt(vhat) + eps)
return updated_params, opt_params

T = 100 # Total inner problem length
K = 10 # Truncation length for partial unrolls
N = 100 # Number of particles in total (N//2 antithetic pairs)
sigma = 0.1 # Standard deviation of perturbations

t = 0
theta = jnp.log(jnp.array([0.01, 0.01]))
x = jnp.array([1.0, 1.0])
xs = jnp.ones((N, 2)) * jnp.array([1.0, 1.0])
pert_accum = jnp.zeros((N, theta.shape[0]))

key = jax.random.PRNGKey(3)
for i in range(10000):

key, skey = jax.random.split(key)
if t >= T:

Reset the inner problem: the inner iteration, inner parameters, and perturbation
accumulator

t = 0
xs = jnp.ones((N, 2)) * jnp.array([1.0, 1.0])
x = jnp.array([1.0, 1.0])
pert_accum = jnp.zeros((N, theta.shape[0]))

theta_grad, xs, pert_accum = pes_grad(skey, xs, pert_accum, theta, t, T, K, sigma, N)
theta, opt_params = outer_optimizer_step(theta, theta_grad, opt_params, i)
t += K

if i % 100 == 0:
L, _ = unroll(jnp.array([1.0, 1.0]), theta, 0, T, T) # Run a full unroll to get the

cost

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

print(i, jnp.exp(theta), theta_grad, L)

