Supplementary Material
 Principal Component Hierarchy for Sparse Quadratic Programs

A Additional Numerical Experiments

A. 1 Comparison of Computational Time to warm start

We study the impact of the sample size N on the recovery quality of the solution. We fix $n=1000, s=10, \rho=0.5$, $\mathrm{SNR}=6$ and $\eta=10$. We showcase the computational time of our methods and of the warm start in Figure A, the computational time is defined as the time needed to generate x^{\star}. Note that the BR method uses MOSEK to obtain the solution to x^{\star} because it does not converge to a single set z for $\eta=10$, so the solver time is also included in the computational time. We run the BR method for $T_{\mathrm{BR}}=20$ iterations, and we run the DP method for $T_{\mathrm{DP}}=500$ iterations.

Figure A: Computational time over different sample sizes averaged over 25 replications

We observe that the computational time of the DP method increases monotonically with the sample size N. Note that $T_{\mathrm{BR}} \ll T_{\mathrm{DP}}$ so calculating Z_{BR} requires less time than Z_{DP}. We observe that when $N=100$ the BR and the warm start have a higher computational time than for $N=500$. For the BR, this is because the number of non-zero elements in Z (i.e., $\|Z\|_{0}$) is larger for $N=100$ than for $N=500$, hence MOSEK takes more time for $N=100$. The MSE of all methods is similar when $N \geq 500$, when $N=100$ the MSE of all methods differs significantly at every instance. This is also observed by Bertsimas \& van Parys (2017), which states that the computational time and MSE deteriorate as N gets smaller relative to n.
We observe that BR and DP perform particularly well in terms of computational time in ranges where $N>n$ compared to the warm start. The running time of our method is less susceptive to the number of samples N. This is in stark contrast to the warm start, in which the kernel matrix of dimension N-by- N is stored.

A. 2 Comparison for Different SNR and s

We extend the comparison made in the paper for different values of SNR and s. In Table A and B we observe that the MSE over different SNR and s is very similar for all methods. This is due to the fact that all methods find a

Table A: MSE over different SNR averaged over 25 independent replications. Lower is better.

	DP $k=400$	BR $k=400$	warm start	Beck Alg 7	KDD
$\mathrm{SNR}=20$	0.588	0.588	0.588	0.588	0.588
$\mathrm{SNR}=6$	1.767	1.767	1.767	1.767	1.767
$\mathrm{SNR}=3$	3.452	3.452	3.452	3.452	3.452
$\mathrm{SNR}=1$	10.190	10.190	10.190	10.198	10.205
$\mathrm{SNR}=0.05$	194.592	194.561	194.560	194.756	199.928

Table B: MSE over different s averaged over 25 independent replications. Lower is better.

	DP $k=400$	BR $k=400$	warm start	Beck Alg 7	KDD
$s=5$	0.887	0.887	0.887	0.887	0.887
$s=10$	1.767	1.767	1.767	1.767	1.767
$s=20$	3.435	3.435	3.435	3.557	3.450
$s=30$	5.050	5.050	5.058	5.888	5.440
$s=40$	6.919	6.928	6.918	8.290	8.560

similar support z^{\star}. Using this support all problems solve the same convex quadratic programming problem. We also observe that the reduced size $\left\|Z_{\mathrm{BR}}\right\|_{0} \approx 2 s$ and $\left\|Z_{\mathrm{DP}}\right\|_{0} \approx s$. So as the problem in $\left(\mathcal{P}_{Z}\right)$ increases with s, MOSEK takes more time to solve $\left(\mathcal{P}_{Z}\right)$ and because $\left\|Z_{\mathrm{BR}}\right\|_{0}>\left\|Z_{\mathrm{DP}}\right\|_{0}$ the DP is faster for large s.

A. 3 Real Datasets

For the real datasets listed in the main paper, we present the out-sample MSE for the different methods in Table C.
Table C: Out-sample MSE on real datasets, averaged over 50 independent train-test splits. Lowest error for each dataset is highlighted in grey.

	DP $k=40$	DP $k=\hat{k}$	BR $k=40$	BR $k=\hat{k}$	warm start	screening	BH Alg 7	KDD
(FB)	3.026×10^{-4}	3.025×10^{-4}	3.022×10^{-4}	$\mathbf{3 . 0 2 0} \times \mathbf{1 0}^{-4}$	out of memory	3.022×10^{-4}	3.203×10^{-4}	3.409×10^{-4}
(ON)	$\mathbf{1 . 7 9 6 \times \mathbf { 1 0 } ^ { - 4 }}$	1.797×10^{-4}	1.803×10^{-4}	1.803×10^{-4}				
(SC)	1.263×10^{-2}	1.263×10^{-2}	1.398×10^{-2}	1.370×10^{-2}	1.326×10^{-2}	$\mathbf{1 . 2 5 7} \times \mathbf{1 0}^{-\mathbf{2}}$	1.454×10^{-2}	1.473×10^{-2}
(CR)	2.892×10^{-2}	2.891×10^{-2}	2.893×10^{-2}	2.894×10^{-2}	2.900×10^{-2}	$\mathbf{2 . 8 6 8} \times \mathbf{1 0}^{-\mathbf{2}}$	3.103×10^{-2}	3.148×10^{-2}
(UJ)	$\mathbf{2 . 1 4 9 \times \mathbf { 1 0 } ^ { - \mathbf { 2 } }}$	2.324×10^{-2}	2.684×10^{-2}	2.691×10^{-2}	2.468×10^{-2}	2.291×10^{-2}	3.848×10^{-2}	3.080×10^{-2}

Similar to the in-sample MSE, Table C shows that DP delivers a lower out-sample MSE than BR in 4 out of 5 datasets, and DP also has a lower out-sample MSE than the warm start, BH Alg 7 and KDD for all datasets. The screening method outperforms the DP on the (SC) and (CR) dataset, however as explained in the main paper for $\eta=\sqrt{N_{\text {train }}}$ the result of screening in Table Con the (SC) and (CR) datasets is essentially the results obtained by applying the MOSEK solver to the original problem (reaching a time limit of 300 seconds).

B Proof of Proposition 3.1

We provide the proof of Proposition 3.1, which is not included in the main paper.
Proof. Using the big- M equivalent formulation, we have

$$
\begin{array}{llll}
\mathcal{J}_{k}^{\star}=\min _{\substack{z \in\{0,1\}^{n} \\
\sum z_{j} \leq s}} \min & \sum_{i=1}^{k} \lambda_{i} y_{i}^{2}+\langle c, x\rangle+\eta^{-1}\|x\|_{2}^{2} & \\
& \text { s.t. } & x \in \mathbb{R}^{n}, y \in \mathbb{R}^{k} & \\
& \sqrt{\lambda_{i}} y_{i}=\sqrt{\lambda_{i}}\left\langle v_{i}, x\right\rangle & i \in[k] \\
& \left|x_{j}\right| \leq M z_{j} & j \in[n] \\
& A x \leq b . &
\end{array}
$$

Fix a feasible solution for z and consider the inner minimization problem. By associating the first two constraints with the dual variables α and β, the Lagrangian function is defined as

$$
\begin{aligned}
\mathcal{L}(x, y, \alpha, \beta) & =\sum_{i=1}^{k} \lambda_{i} y_{i}^{2}+\langle c, x\rangle+\eta^{-1}\|x\|_{2}^{2}+\sum_{i=1}^{k} \alpha_{i} \sqrt{\lambda_{i}}\left(\left\langle v_{i}, x\right\rangle-y_{i}\right)+\beta^{\top}(A x-b) \\
& =-\beta^{\top} b+y^{\top} \Lambda y-\alpha^{\top} \sqrt{\Lambda} y+\left\langle c+V \sqrt{\Lambda} \alpha+A^{\top} \beta, x\right\rangle+\eta^{-1}\|x\|_{2}^{2}
\end{aligned}
$$

in which $\Lambda=\operatorname{diag}\left\{\lambda_{1}, \cdots, \lambda_{k}\right\}$. For any feasible solution z, the inner minimization problem is a convex quadratic optimization problem and we have

$$
\mathcal{J}_{k}^{\star}=\min _{\substack{z \in\{0,1\}^{n} \\ \sum z_{j} \leq s}} \max _{\substack{\alpha \in \mathbb{R}^{k} \\ \beta \in \mathbb{R}_{+}^{m}}} L(z, \alpha, \beta)
$$

where the objective function L is defined as

$$
L(z, \alpha, \beta):=-\beta^{\top} b+\min _{y \in \mathbb{R}^{k}} y^{\top} \Lambda y-\alpha^{\top} \sqrt{\Lambda} y+\min _{\substack{x \in \mathbb{R}^{n} \\\left|x_{j}\right| \leq M z_{j} \forall j}}\left\langle c+V \sqrt{\Lambda} \alpha+A^{\top} \beta, x\right\rangle+\eta^{-1}\|x\|_{2}^{2}
$$

We will reformulate the two optimization subproblems in the definition of L. For any feasible pair $\beta \in \mathbb{R}_{+}^{m}$ and $\alpha \in \mathbb{R}^{k}$, the subproblem over y is an unconstrained convex quadratic optimization problem. The corresponding optimal solution for y is

$$
y^{\star}(\alpha, \beta)=\frac{1}{2}(\sqrt{\Lambda})^{-1} \alpha
$$

Consequently, the optimal value of the y-subproblem is given by

$$
\min _{y \in \mathbb{R}^{k}} y^{\top} \Lambda y-\alpha^{\top} \sqrt{\Lambda} y=-\frac{1}{4}\|\alpha\|_{2}^{2}
$$

Next, consider the x-subproblem. Let $\gamma:=c+V \sqrt{\Lambda} \alpha+A^{\top} \beta$ and let γ_{j} denote the j-th element of γ. The big- M equivalent formulation for the x-subproblem admits the form

$$
\min _{\substack{x \in \mathbb{R}^{n} \\\left|x_{j}\right| \leq M z_{j} \forall j}} \sum_{j=1}^{n} \gamma_{j} x_{j}+\frac{x_{j}^{2}}{\eta}=\sum_{j=1}^{n} \min _{\substack{x \in \mathbb{R}^{n} \\\left|x_{j}\right| \leq M z_{j} \forall j}} \gamma_{j} x_{j}+\frac{x_{j}^{2}}{\eta}=\sum_{j=1}^{n}-\frac{\eta}{4} \gamma_{j}^{2} z_{j},
$$

where the last equality exploits the fact that the optimal solution of x_{j} is

$$
x_{j}^{\star}\left(z_{j}\right)= \begin{cases}-\frac{\eta}{2} \gamma_{j} & \text { if } z_{j}=1 \\ 0 & \text { if } z_{j}=0\end{cases}
$$

We thus have

$$
L(z, \alpha, \beta)=-\beta^{\top} b-\frac{1}{4} \sum_{i=1}^{k} \alpha_{i}^{2}-\sum_{j=1}^{n} \frac{\eta}{4} \gamma_{j}^{2} z_{j}
$$

where $\gamma=c+V \sqrt{\Lambda} \alpha+A^{\top} \beta$ and γ_{j} is the j-th element of γ. Rewriting the summations using norm and matrix multiplications completes the proof.

C Principal Component Hierarchy for Sparsity-Penalized Quadratic Programs

The approach proposed in the main paper can be extended to solve the $\|\cdot\|_{0}$-penalized problem of the form

$$
\begin{array}{cl}
\min & \langle c, x\rangle+\langle x, Q x\rangle+\eta^{-1}\|x\|_{2}^{2}+\theta\|x\|_{0} \\
\text { s.t. } & x \in \mathbb{R}^{n}, A x \leq b
\end{array}
$$

for some sparsity-inducing parameter $\theta>0$. The corresponding approximation using k principal components of the matrix Q is

$$
\begin{array}{rll}
\mathcal{U}_{k}^{\star} \triangleq & \min & \langle c, x\rangle+\sum_{i=1}^{k} \lambda_{i} y_{i}^{2}+\eta^{-1}\|x\|_{2}^{2}+\theta\|x\|_{0} \\
& \text { s.t. } & x \in \mathbb{R}^{n}, y \in \mathbb{R}^{k} \tag{k}\\
& A x \leq b \\
& \sqrt{\lambda_{i} y_{i}}=\sqrt{\lambda_{i}}\left\langle v_{i}, x\right\rangle \quad i \in[k]
\end{array}
$$

Proposition C. 1 (Min-max characterization). For each $k \leq n$, the optimal value of problem (W) is equal to

$$
\mathcal{U}_{k}^{\star}=\min _{z \in\{0,1\}^{n}} \max _{\substack{\alpha \in \mathbb{R}^{k} \\ \beta \in \mathbb{R}_{+}^{m}}} H(z, \alpha, \beta)
$$

where the objective function H is defined as

$$
\begin{equation*}
H(z, \alpha, \beta) \triangleq \theta \sum_{j=1}^{n} z_{j}-\beta^{\top} b-\frac{1}{4}\|\alpha\|_{2}^{2}-\frac{\eta}{4}\left(c+V \sqrt{\Lambda} \alpha+A^{\top} \beta\right)^{\top} \operatorname{diag}(z)\left(c+V \sqrt{\Lambda} \alpha+A^{\top} \beta\right) \tag{C.1}
\end{equation*}
$$

Proof of Proposition C.1. The sparsity-penalized principal component approximation problem can be rewritten using the big- M formulation as

$$
\begin{array}{rlll}
\min _{z \in\{0,1\}^{n}} & \min & \langle c, x\rangle+\sum_{i=1}^{k} \lambda_{i} y_{i}^{2}+\eta^{-1}\|x\|_{2}^{2}+\theta \sum_{j=1}^{n} z_{j} \\
& \text { s.t. } & x \in \mathbb{R}^{n}, y \in \mathbb{R}^{k} & \\
& \sqrt{\lambda_{i}} y_{i}=\sqrt{\lambda_{i}}\left\langle v_{i}, x\right\rangle & i \in[k] \\
& \left|x_{j}\right| \leq M z_{j} & j \in[n] \\
& A x \leq b &
\end{array}
$$

For any feasible solution z, the inner minimization problem is a convex quadratic optimization problem. By strong duality, we have the equivalent problem

$$
\mathcal{U}_{k}^{\star}=\min _{z \in\{0,1\}^{n}} \max _{\substack{\alpha \in \mathbb{R}^{k} \\ \beta \in \mathbb{R}_{+}^{m}}} H(z, \alpha, \beta)
$$

where the objective function H is
$H(z, \alpha, \beta)=-\beta^{\top} b+\min _{y \in \mathbb{R}^{k}} y^{\top} \sqrt{\Lambda} y-\alpha^{\top} \operatorname{diag}(\sqrt{\Lambda}) y+\min _{\substack{x \in \mathbb{R}^{n} \\\left|x_{j}\right| \leq M z_{j} \\ \forall j}}\left\langle c+V \operatorname{diag}(\sqrt{\Lambda}) \alpha+A^{\top} \beta, x\right\rangle+\eta^{-1}\|x\|_{2}^{2}+\theta \sum_{j=1}^{n} z_{j}$.
Following proposition 3.1 we can calculate the optimal values for y^{\star} and x^{\star}. Considering the x-subproblem, let $\gamma=c+V \sqrt{\Lambda} \alpha+A^{\top} \beta$ and γ_{j} be the j-th element of γ. The big- M equivalent formulation for the x-subproblem admits the form

$$
\begin{align*}
\min _{\substack{x \in \mathbb{R}^{n} \\
\left|x_{j}\right| \leq M z_{j} \forall j}} \sum_{j=1}^{n} \gamma_{j} x_{j}+\frac{x_{j}^{2}}{\eta}+\theta z_{j} & =\sum_{j=1}^{n} \min _{\substack{x \in \mathbb{R}^{n} \\
\left|x_{j}\right| \leq M z_{j} \forall j}} \gamma_{j} x_{j}+\frac{x_{j}^{2}}{\eta}+\theta z_{j} \\
& =\sum_{j=1}^{n}\left(-\frac{\eta}{4} \gamma_{j}^{2}+\theta\right) z_{j} \tag{C.2}
\end{align*}
$$

where the last equality exploits the fact that the optimal solution of x_{j} is

$$
x_{j}^{\star}\left(z_{j}\right)= \begin{cases}-\frac{\eta}{2} \gamma_{j} & \text { if } \frac{\eta}{4} \gamma_{j}^{2}>\theta \\ 0 & \text { if } \frac{\eta}{4} \gamma_{j}^{2} \leq \theta\end{cases}
$$

As a consequence, we have

$$
H(z, \alpha, \beta)=-\beta^{\top} b-\frac{1}{4} \sum_{i=1}^{k} \alpha_{i}^{2}+\sum_{j=1}^{n}\left(-\frac{\eta}{4} \gamma_{j}^{2}+\theta\right) z_{j}
$$

where $\gamma=c+V \sqrt{\Lambda} \alpha+A^{\top} \beta$ and γ_{j} is the j-th element of γ. Rewriting the summations using norm and matrix multiplications completes the proof.

Lemma C. 2 (Closed-form minimizer). Given any pair (α, β), the minimizer of the function H defined in (C.1) can be computed as

$$
\arg \min _{z \in\{0,1\}^{n}} H(z, \alpha, \beta)=\mathbb{I}\left\{\frac{\eta}{4} \operatorname{diag}\left(\left(c+V \sqrt{\Lambda} \alpha+A^{\top} \beta\right)\left(c+V \sqrt{\Lambda} \alpha+A^{\top} \beta\right)^{\top}\right)>\theta\right\},
$$

where \mathbb{I} is the component-wise indicator function and the diag operator here returns the vector of diagonal elements of the input matrix.
This lemma immediately follows from C.1.

References

Bertsimas, D. and van Parys, B. Sparse high-dimensional regression: Exact scalable algorithms and phase transitions. The Annals of Statistics, 48:300-323, 2017.

