
Supplementary Material

Principal Component Hierarchy for Sparse Quadratic Programs

A Additional Numerical Experiments

A.1 Comparison of Computational Time to warm start

We study the impact of the sample size N on the recovery quality of the solution. We fix n = 1000, s = 10, ρ = 0.5,
SNR = 6 and η = 10. We showcase the computational time of our methods and of the warm start in Figure A, the
computational time is defined as the time needed to generate x?. Note that the BR method uses MOSEK to obtain
the solution to x? because it does not converge to a single set z for η = 10, so the solver time is also included in
the computational time. We run the BR method for TBR = 20 iterations, and we run the DP method for TDP = 500
iterations.
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Figure A: Computational time over different sample sizes averaged over 25 replications

We observe that the computational time of the DP method increases monotonically with the sample size N . Note
that TBR � TDP so calculating ZBR requires less time than ZDP. We observe that when N = 100 the BR and the warm

start have a higher computational time than for N = 500. For the BR, this is because the number of non-zero
elements in Z (i.e., ‖Z‖0) is larger for N = 100 than for N = 500, hence MOSEK takes more time for N = 100. The
MSE of all methods is similar when N ≥ 500, when N = 100 the MSE of all methods differs significantly at every
instance. This is also observed by Bertsimas & van Parys (2017), which states that the computational time and
MSE deteriorate as N gets smaller relative to n.
We observe that BR and DP perform particularly well in terms of computational time in ranges where N > n compared
to the warm start. The running time of our method is less susceptive to the number of samples N . This is in stark
contrast to the warm start, in which the kernel matrix of dimension N -by-N is stored.

A.2 Comparison for Different SNR and s

We extend the comparison made in the paper for different values of SNR and s. In Table A and B we observe that
the MSE over different SNR and s is very similar for all methods. This is due to the fact that all methods find a
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Table A: MSE over different SNR averaged over 25 independent replications. Lower is better.

DP k = 400 BR k = 400 warm start Beck Alg 7 KDD

SNR = 20 0.588 0.588 0.588 0.588 0.588
SNR = 6 1.767 1.767 1.767 1.767 1.767
SNR = 3 3.452 3.452 3.452 3.452 3.452
SNR = 1 10.190 10.190 10.190 10.198 10.205
SNR = 0.05 194.592 194.561 194.560 194.756 199.928

Table B: MSE over different s averaged over 25 independent replications. Lower is better.

DP k = 400 BR k = 400 warm start Beck Alg 7 KDD

s = 5 0.887 0.887 0.887 0.887 0.887
s = 10 1.767 1.767 1.767 1.767 1.767
s = 20 3.435 3.435 3.435 3.557 3.450
s = 30 5.050 5.050 5.058 5.888 5.440
s = 40 6.919 6.928 6.918 8.290 8.560

similar support z?. Using this support all problems solve the same convex quadratic programming problem. We also
observe that the reduced size ‖ZBR‖0 ≈ 2s and ‖ZDP‖0 ≈ s. So as the problem in (PZ) increases with s, MOSEK
takes more time to solve (PZ) and because ‖ZBR‖0 > ‖ZDP‖0 the DP is faster for large s.

A.3 Real Datasets

For the real datasets listed in the main paper, we present the out-sample MSE for the different methods in Table C.

Table C: Out-sample MSE on real datasets, averaged over 50 independent train-test splits. Lowest error for each
dataset is highlighted in grey.

DP k = 40 DP k = k̂ BR k = 40 BR k = k̂ warm start screening BH Alg 7 KDD

(FB) 3.026× 10−4 3.025× 10−4 3.022× 10−4 3.020 × 10−4 out of memory 3.022× 10−4 3.203× 10−4 3.409× 10−4

(ON) 1.796 × 10−4 1.797× 10−4 1.797× 10−4 1.797× 10−4 1.797× 10−4 1.797× 10−4 1.803× 10−4 1.803× 10−4

(SC) 1.263× 10−2 1.263× 10−2 1.398× 10−2 1.370× 10−2 1.326× 10−2 1.257 × 10−2 1.454× 10−2 1.473× 10−2

(CR) 2.892× 10−2 2.891× 10−2 2.893× 10−2 2.894× 10−2 2.900× 10−2 2.868 × 10−2 3.103× 10−2 3.148× 10−2

(UJ) 2.149 × 10−2 2.324× 10−2 2.684× 10−2 2.691× 10−2 2.468× 10−2 2.291× 10−2 3.848× 10−2 3.080× 10−2

Similar to the in-sample MSE, Table C shows that DP delivers a lower out-sample MSE than BR in 4 out of 5 datasets,
and DP also has a lower out-sample MSE than the warm start, BH Alg 7 and KDD for all datasets. The screening

method outperforms the DP on the (SC) and (CR) dataset, however as explained in the main paper for η =
√
Ntrain

the result of screening in Table C on the (SC) and (CR) datasets is essentially the results obtained by applying
the MOSEK solver to the original problem (reaching a time limit of 300 seconds).

B Proof of Proposition 3.1

We provide the proof of Proposition 3.1, which is not included in the main paper.

Proof. Using the big-M equivalent formulation, we have

J ?

k = min
z∈{0,1}n∑

zj≤s

min

k∑
i=1

λiy
2
i + 〈c, x〉+ η−1‖x‖22

s.t. x ∈ Rn, y ∈ Rk√
λiyi =

√
λi 〈vi, x〉 i ∈ [k]

|xj | ≤Mzj j ∈ [n]
Ax ≤ b.
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Fix a feasible solution for z and consider the inner minimization problem. By associating the first two constraints
with the dual variables α and β, the Lagrangian function is defined as

L(x, y, α, β) =

k∑
i=1

λiy
2
i + 〈c, x〉+ η−1‖x‖22 +

k∑
i=1

αi
√
λi (〈vi, x〉 − yi) + β>(Ax− b)

= −β>b+ y>Λy − α>
√

Λy +
〈
c+ V

√
Λα+A>β, x

〉
+ η−1‖x‖22,

in which Λ = diag{λ1, · · · , λk}. For any feasible solution z, the inner minimization problem is a convex quadratic
optimization problem and we have

J
?

k = min
z∈{0,1}n∑

zj≤s

max
α∈Rk

β∈Rm
+

L(z, α, β),

where the objective function L is defined as

L(z, α, β) := −β>b+ min
y∈Rk

y>Λy − α>
√

Λy + min
x∈Rn

|xj |≤Mzj ∀j

〈
c+ V

√
Λα+A>β, x

〉
+ η−1‖x‖22.

We will reformulate the two optimization subproblems in the definition of L. For any feasible pair β ∈ Rm+ and
α ∈ Rk, the subproblem over y is an unconstrained convex quadratic optimization problem. The corresponding
optimal solution for y is

y?(α, β) =
1

2
(
√

Λ)−1α.

Consequently, the optimal value of the y-subproblem is given by

min
y∈Rk

y>Λy − α>
√

Λy = −1

4
‖α‖22.

Next, consider the x-subproblem. Let γ := c+ V
√

Λα+A>β and let γj denote the j-th element of γ. The big-M
equivalent formulation for the x-subproblem admits the form

min
x∈Rn

|xj |≤Mzj ∀j

n∑
j=1

γjxj +
x2j
η

=

n∑
j=1

min
x∈Rn

|xj |≤Mzj ∀j

γjxj +
x2j
η

=

n∑
j=1

−η
4
γ2j zj ,

where the last equality exploits the fact that the optimal solution of xj is

x?j (zj) =

{
−η2γj if zj = 1,

0 if zj = 0.

We thus have

L(z, α, β) = −β>b− 1

4

k∑
i=1

α2
i −

n∑
j=1

η

4
γ2j zj ,

where γ = c+ V
√

Λα+ A>β and γj is the j-th element of γ. Rewriting the summations using norm and matrix
multiplications completes the proof.

C Principal Component Hierarchy for Sparsity-Penalized Quadratic
Programs

The approach proposed in the main paper can be extended to solve the ‖ · ‖0-penalized problem of the form

min 〈c, x〉+ 〈x,Qx〉+ η−1‖x‖22 + θ‖x‖0
s.t. x ∈ Rn, Ax ≤ b
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for some sparsity-inducing parameter θ > 0. The corresponding approximation using k principal components of the
matrix Q is

U?

k , min 〈c, x〉+

k∑
i=1

λiy
2
i + η−1‖x‖22 + θ‖x‖0

s.t. x ∈ Rn, y ∈ Rk
Ax ≤ b√
λiyi =

√
λi 〈vi, x〉 i ∈ [k].

(Wk)

Proposition C.1 (Min-max characterization). For each k ≤ n, the optimal value of problem (Wk) is equal to

U
?

k = min
z∈{0,1}n

max
α∈Rk

β∈Rm
+

H(z, α, β),

where the objective function H is defined as

H(z, α, β) , θ

n∑
j=1

zj − β>b−
1

4
‖α‖22 −

η

4
(c+ V

√
Λα+A>β)>diag(z)(c+ V

√
Λα+A>β). (C.1)

Proof of Proposition C.1. The sparsity-penalized principal component approximation problem can be rewritten
using the big-M formulation as

min
z∈{0,1}n

min 〈c, x〉+

k∑
i=1

λiy
2
i + η−1‖x‖22 + θ

n∑
j=1

zj

s.t. x ∈ Rn, y ∈ Rk√
λiyi =

√
λi 〈vi, x〉 i ∈ [k]

|xj | ≤Mzj j ∈ [n]
Ax ≤ b.

For any feasible solution z, the inner minimization problem is a convex quadratic optimization problem. By strong
duality, we have the equivalent problem

U
?

k = min
z∈{0,1}n

max
α∈Rk

β∈Rm
+

H(z, α, β),

where the objective function H is

H(z, α, β) = −β>b+ min
y∈Rk

y>
√

Λy − α>diag(
√

Λ)y + min
x∈Rn

|xj |≤Mzj ∀j

〈
c+ V diag(

√
Λ)α+A>β, x

〉
+ η−1‖x‖22 + θ

n∑
j=1

zj .

Following proposition 3.1 we can calculate the optimal values for y? and x?. Considering the x-subproblem, let
γ = c+ V

√
Λα+ A>β and γj be the j-th element of γ. The big-M equivalent formulation for the x-subproblem

admits the form

min
x∈Rn

|xj |≤Mzj ∀j

n∑
j=1

γjxj +
x2j
η

+ θzj =

n∑
j=1

min
x∈Rn

|xj |≤Mzj ∀j

γjxj +
x2j
η

+ θzj

=

n∑
j=1

(−η
4
γ2j + θ)zj , (C.2)

where the last equality exploits the fact that the optimal solution of xj is

x?j (zj) =

{
−η2γj if η

4γ
2
j > θ,

0 if η
4γ

2
j ≤ θ.
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As a consequence, we have

H(z, α, β) = −β>b− 1

4

k∑
i=1

α2
i +

n∑
j=1

(−η
4
γ2j + θ)zj ,

where γ = c+ V
√

Λα+ A>β and γj is the j-th element of γ. Rewriting the summations using norm and matrix
multiplications completes the proof.

Lemma C.2 (Closed-form minimizer). Given any pair (α, β), the minimizer of the function H defined in (C.1) can
be computed as

arg min
z∈{0,1}n

H(z, α, β) = I
{η

4
diag((c+V

√
Λα+A>β)(c+V

√
Λα+A>β)>) > θ

}
,

where I is the component-wise indicator function and the diag operator here returns the vector of diagonal elements
of the input matrix.

This lemma immediately follows from (C.1).
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