
Learning and Planning in Average-Reward Markov Decision Processes

Yi Wan * 1 Abhishek Naik * 1 Richard S. Sutton 1 2

Abstract
We introduce learning and planning algorithms
for average-reward MDPs, including 1) the first
general proven-convergent off-policy model-free
control algorithm without reference states, 2) the
first proven-convergent off-policy model-free pre-
diction algorithm, and 3) the first off-policy learn-
ing algorithm that converges to the actual value
function rather than to the value function plus
an offset. All of our algorithms are based on us-
ing the temporal-difference error rather than the
conventional error when updating the estimate of
the average reward. Our proof techniques are a
slight generalization of those by Abounadi, Bert-
sekas, and Borkar (2001). In experiments with an
Access-Control Queuing Task, we show some of
the difficulties that can arise when using methods
that rely on reference states and argue that our
new algorithms can be significantly easier to use.

1. Average-Reward Learning and Planning
The average-reward formulation of Markov decision pro-
cesses (MDPs) is arguably the most important for reinforce-
ment learning and artificial intelligence (see, e.g., Sutton
& Barto 2018 Chapter 10, Naik et al. 2019) yet has re-
ceived much less attention than the episodic and discounted
formulations. In the average-reward setting, experience is
continuing (not broken up into episodes) and the agent seeks
to maximize the average reward per step, or reward rate,
with equal weight given to immediate and delayed rewards.
In addition to this control problem, there is also the pre-
diction problem of estimating the value function and the
reward rate for a given target policy. Solution methods for
these problems can be divided into those that are driven by
experiential data, called learning algorithms, those that are
driven by a model of the MDP, called planning algorithms,
and combined methods that first learn a model and then plan

*Equal contribution. 1University of Alberta and Alberta
Machine Intelligence Institute (Amii), Edmonton, Canada.
2DeepMind. Correspondence to: Yi Wan <wan6@ualberta.ca>,
Abhishek Naik <abhishek.naik@ualberta.ca>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

with it. For learning and combined methods, both control
and prediction problems can be further subdivided into on-
policy versions, in which data is gathered using the target
policy, and off-policy versions, in which data is gathered
using a second policy, called the behavior policy. In gen-
eral, both policies may be non-stationary. For example, in
the control problem, the target policy should converge to a
policy that maximizes the reward rate. Useful surveys of
average-reward learning are given by Mahadevan (1996)
and Dewanto et al. (2020).

On-policy problems are generally easier than off-policy
problems and permit more capable algorithms with con-
vergence guarantees. For example, on-policy prediction
algorithms with function approximation and convergence
guarantees include average-cost TD(λ) (Tsitsiklis & Van
Roy 1999), LSTD(λ) (Konda 2002), and LSPE(λ) (Yu &
Bertsekas 2009). On-policy control algorithms that have
been proved to converge asymptotically or to achieve sub-
linear regret or to be probably approximately correct under
various conditions include tabular learning algorithms (e.g.,
Wheeler & Narendra 1986, Abbasi-Yadkori et al. 2019a,b),
tabular combined algorithms (e.g., Kearns & Singh 2002,
Brafman & Tennenholtz 2002, Auer & Ortner 2006, Jaksch
et al. 2010), and policy gradient algorithms (e.g., Sutton et
al. 1999, Marbach & Tsitsiklis 2001, Kakade 2001, Konda
2002).

The off-policy learning control problem is particularly chal-
lenging, and theoretical results are available only for the tab-
ular, discrete-state setting without function approximation.
The most important prior algorithm is RVI Q-learning, in-
troduced by Abounadi, Bertsekas, and Borkar (1998, 2001).
The same paper also introduced SSP Q-learning, but SSP
Q-learning was limited to MDPs with a special state that
is recurrent under all stationary policies, whereas RVI Q-
learning is convergent for more general MDPs. Ren and
Krogh (2001) presented a tabular algorithm and proved
its convergence, but their algorithm required knowledge
of properties of the MDP which are not in general known.
Gosavi (2004) also introduced an algorithm and proved its
convergence, but it was limited in the same way as SSP
Q-learning. Yang et al. (2016) presented an algorithm and
claimed to prove its convergence, but their proof is not
correct (as we detail in Appendix D). The earliest tabular
average-reward off-policy learning control algorithms that

Learning and Planning in Average-Reward Markov Decision Processes

we know of were those introduced (without convergence
proofs) by Schwartz (1993) and Singh (1994). Bertsekas and
Tsitsiklis (1996) and Das et al. (1999) introduced off-policy
learning control algorithms with function approximation,
but did not provide convergence proofs.

Abounadi et al.’s RVI Q-learning is actually a family of
off-policy algorithms, a particular member of which is deter-
mined by specifying a function that references the estimated
values of specific state–action pairs and produces an esti-
mate of the reward rate. We call this function the reference
function. Examples include a weighted average of the value
estimates of all state–action pairs, or in the simplest case,
the estimate of a single state–action pair’s value. For best re-
sults, the referenced state–action pairs should be frequently
visited; otherwise convergence can be unduly slow (as we
illustrate in Section 3). However, if the behavior policy is
linked to the target policy (as in ε-greedy behavior policies),
then knowing which state–action pairs will be frequently
visited may be to know a substantial part of the problem’s
solution. For example, in learning an optimal path through
a maze from diverse starting points, the frequently visited
state–action pairs are likely to be those on the shortest paths
to the goal state. To know these would be tantamount to
knowing a priori the best paths to the goal. This observation
motivates the search for a general learning algorithm that
does not require a reference function.

Our first contribution is to introduce such a learning con-
trol algorithm without a reference function. Our Differen-
tial Q-learning algorithm is convergent for general MDPs,
which we prove by slightly generalizing the theory of RVI
Q-learning (Abounadi et al. 2001). Unlike RVI Q-learning,
Differential Q-learning does not involve reference states.
Instead, it maintains an explicit estimate of the reward rate
(as in Schwartz 1993, Singh 1994).

Our second contribution is Differential TD-learning, the first
off-policy model-free prediction learning algorithm proved
convergent to the reward rate and differential value function
of the target policy. There are a number of algorithms
that estimate the reward rate (e.g., Wen et al. 2020, Liu
et al. 2018, Tang et al. 2019, Mousavi et al. 2020, Zhang
et al. 2020a,b), but none that estimate the value function.
These algorithms also differ from Differential TD-learning
in that are not online algorithms; they operate on a fixed
batch of data. Finally, they differ in that they estimate
the ratio of the steady-state occupancy distributions under
the target and behavior policies, whereas Differential TD-
learning does not.

Planning algorithms for average-reward MDPs have been
known at least since the setting was introduced by Howard
in 1960. However, most of these, including value iteration
(Bellman 1957), policy iteration (Howard 1960), and rela-
tive value iteration (RVI, White 1963), are ill-suited for use

in reinforcement learning because they involve sub-steps
whose complexity is order the number of states or more.
Jalali and Ferguson (1989, 1990) were among the first to
explore more incremental methods, though their algorithms
are limited to special-case MDPs and require a reference
state–action pair. In planning, as in learning, the state of
the art appears to be RVI Q-learning, now applied as a plan-
ning algorithm to a stream of experience generated by the
model. When our Differential Q-learning algorithm is ap-
plied in the same way, we call it Differential Q-planning; it
improves over the RVI Q-learning’s planner in that it omits
reference states, with concomitant efficiencies just as in the
learning case. In the prediction case we have Differential
TD-planning. Both of these algorithms are fully incremental
and well suited for use in reinforcement learning architec-
tures (e.g., Dyna (Sutton 1990)).

All the aforementioned average-reward algorithms converge
not to the actual value function, but to the value function
plus an offset that depends on initial conditions or on a refer-
ence state or state–action pair. The offset is not necessarily
a problem because only the relative values of states (or of
state–action pairs) are used to determine policies. However,
the actual value function of any policy is centered, meaning
that the mean value of states encountered under the policy
is zero. Although it is easy to center an estimated value
function in the on-policy case, in the off-policy case it is
not. Our final contribution is to extend our off-policy algo-
rithms to centered versions that converge to the actual value
function without an offset.

2. Learning and Planning for Control
We formalize an agent’s interaction with its environment
by a finite Markov decision process, defined by the tuple
M .

= (S,A,R, p), where S is a set of states, A is a set of
actions,R is a set of rewards, and p : S×R×S×A → [0, 1]
is the dynamics of the environment. At each of a sequence
of discrete time steps t = 0, 1, 2, . . . , the agent receives an
indication of a state of the MDP St ∈ S and selects, using
behavior policy b : A× S → [0, 1], an action At ∈ A, then
receives from the environment a reward Rt+1 ∈ R and the
next state St+1 ∈ S , and so on. The transition dynamics are
such that p(s′, r | s, a)

.
= Pr(St+1 = s′, Rt+1 = r | St =

s,At = a) for all s, s′ ∈ S, a ∈ A, and r ∈ R. All policies
we consider in the paper are in the set of stationary Markov
policies Π.

Technically, for an unconstrained MDP, the best reward rate
depends on the start state. For example, the MDP may have
two disjoint sets of states with no policy that passes from
one to the other; in this case there are effectively two MDPs,
with unrelated rates of reward. A learning algorithm would
have no difficulty with such cases—it would optimize for
whichever sub-MDP it found itself in—but it is complex

Learning and Planning in Average-Reward Markov Decision Processes

to state formally what is meant by an optimal policy. To
remove this complexity, it is commonplace to rule out such
cases by assuming that the MDP is communicating, which
just means that there are no states from which it is impossi-
ble to get back to the others.

Communicating Assumption: For every pair of states,
there exists a policy that transitions from one to the other in
a finite number of steps with non-zero probability.

Under the communicating assumption, there exists a unique
optimal reward rate r∗ that does not depend on the start state.
To define r∗, we will need the reward rate for an arbitrary
policy π and a given start state s:

r(π, s)
.
= lim
n→∞

1

n

n∑
t=1

E[Rt | S0 = s,A0:t−1 ∼ π]. (1)

It turns out that the best reward rate from s, supπ r(π, s),
does not depend on s (see, e.g., Puterman 1994), and we
define it as r∗. We seek a learning algorithm which achieves
r∗.

Our Differential Q-learning algorithm updates a table of
estimates Qt : S ×A → R as follows:

Qt+1(St, At)
.
= Qt(St, At) + αtδt, (2)

Qt+1(s, a)
.
= Qt(s, a), ∀s, a 6= St, At,

where αt is a step-size sequence, and δt, the temporal-
difference (TD) error, is:

δt
.
= Rt+1 − R̄t + max

a
Qt(St+1, a)−Qt(St, At), (3)

where R̄t is a scalar estimate of r∗, updated by:

R̄t+1
.
= R̄t + ηαtδt, (4)

and η is a positive constant.

The following theorem shows that R̄t converges to r∗ and
Qt converges to a solution of q in the Bellman equation:

q(s, a) =
∑
s′,r

p(s′, r | s, a)(r − r̄ + max
a′

q(s′, a′)), (5)

for all s ∈ S and a ∈ A. The unique solution for r̄ is r∗. To
guarantee that Qt converges to a unique point, we need to
assume that the solution of q is unique up to a constant.
Theorem 1 (Informal). If 1) the MDP is communicating, 2)
the solution of q in (5) is unique up to a constant, 3) the step
sizes, specific to each state–action pair, are decreased appro-
priately, 4) all the state–action pairs are updated an infinite
number of times, and 5) the ratio of the update frequency of
the most-updated state–action pair to the update frequency
of the least-updated state–action pair is finite, then the Dif-
ferential Q-learning algorithm (2)–(4) converges, almost
surely, R̄t to r∗, Qt to a solution of q in (5), and r(πt, s) to
r∗, for all s ∈ S, where πt is any greedy policy w.r.t. Qt.

Proof. (Sketch; complete proof in Appendix B) Our proof
comprises two steps. First, we combine our algorithm’s two
updates to obtain a single update that is similar to the RVI
Q-learning’s update. Second, we extend the family of RVI-
learning algorithms so that the aforementioned single update
is a member of the extended family and show convergence
for the extended family.

Define Σt
.
=
∑
s,aQt(s, a). At each time step, the incre-

ment to R̄t is η times the increment to Qt and hence to Σt.
Therefore, the cumulative increment can be written as:

R̄t − R̄0 =

t−1∑
i=0

ηαiδi = η (Σt − Σ0)

=⇒ R̄t = ηΣt − c, where c
.
= ηΣ0 − R̄0. (6)

Next, substitute R̄t in (2) with (6):

Qt+1(St, At) = Qt(St, At) +

αt
(
Rt+1 + max

a
Qt(St+1, a)−Qt(St, At)− ηΣt + c

)
= Qt(St, At) +

αt
(
R̃t+1 + max

a
Qt(St+1, a)−Qt(St, At)− ηΣt

)
, (7)

where R̃t+1
.
= Rt+1 + c. Now (7) is in the same form as

RVI Q-learning’s update:

Qt+1(St, At) = Qt(St, At) +

αt
(
Rt+1 + max

a
Qt(St+1, a)−Qt(St, At)− f(Qt)

)
,

(8)

with f(Qt) = ηΣt for a slightly different MDP M̃ whose
rewards are all shifted by c.

Note that the convergence of Qt in (7) cannot be obtained
using the convergence theorem of RVI Q-learning because
ηΣt = η

∑
s,aQt(s, a) in general does not satisfy con-

ditions on f allowed by Assumption 2.2 of Abounadi et
al. (2001). However, by extending the family of RVI
Q-learning algorithms to cover the case of f(Qt) =
η
∑
s,aQt(s, a) ∀η ∈ R, we show that the convergence of

Qt in (7) holds. In particular, we show that Qt converges al-
most surely to a solution, denoted as q∞, which is the unique
solution for q in (5) under MDP M̃ and η

∑
s,a q(s, a) =

r∗+ c. It can be shown that q∞ is also a solution for q in (5)
inM. Additionally, because ηΣt = η

∑
s,aQt(s, a) con-

verges to η
∑
s,a q∞(s, a) = r∗+ c, we have R̄t = ηΣt− c

converges to r∗ almost surely. The almost-sure convergence
of r(πt, s) to r∗, ∀s then follows from a variant of Theorem
8.5.5 by Puterman (1994), the continuous mapping theorem,
and the convergence of Qt.

Remark: Interestingly, RVI Q-learning and Differential
Q-learning make the same updates to Qt in special cases.

Learning and Planning in Average-Reward Markov Decision Processes

For RVI Q-learning, the special case is when the reference
function is the mean of all state–action pairs’ values. For
Differential Q-learning, the special case is when η = 1

|S||A| .
These special cases are not particularly good for either al-
gorithm, and therefore their special-case equivalence tells
us little about the relationship between the algorithms in
practice. In RVI Q-learning, it is generally better for the
reference function to emphasize state–action pairs that are
frequently visited rather than to weight all state–action pairs
equally (an example of this is shown and discussed in Sec-
tion 3). In Differential Q-learning, the special-case setting
of η = 1

|S||A| would often be much too small on problems
with large state and action spaces.

If Differential Q-learning is applied to simulated experience
generated from a model of the environment, then it becomes
a planning algorithm, which we call Differential Q-planning.
Formally, the model is a function p̂ : S × R × S × A →
[0, 1], analogous to p, that, like p, sums to 1:

∑
s′,r p̂(s

′, r |
s, a) = 1 for all s, a. A model MDP can be thus constructed
using p̂ and S,A,R. If the model MDP is communicating,
then there is a unique optimal reward rate r̂∗. The simulated
transitions are generated as follows: at each planning step
n, the agent arbitrarily chooses a state Sn and an action An,
and applies p̂ to generate a simulated resulting state and
reward S′n, Rn ∼ p̂(·, · | Sn, An).

Like Differential Q-learning, Differential Q-planning main-
tains a table of action-value estimates Qn : S × A → R
and a reward-rate estimate R̄n. At each planning step n,
these estimates are updated by (2)–(4), just as in Differen-
tial Q-learning, except now using Sn, An, Rn, S′n instead
of St, At, Rt+1, St+1.

Theorem 2 (Informal). Under the same assumptions made
in Theorem 1 (except now for the model MDP corresponding
to p̂ rather than p) the Differential Q-planning algorithm
converges, almost surely, R̄n to r̂∗ and Qn to a solution of
q in the Bellman equation (cf. (5)) for the model MDP.

Proof. Essentially as in Theorem 1. Full proof in Appendix
B.

3. Empirical Results for Control
In this section we present empirical results with both Dif-
ferential Q-learning and RVI Q-learning algorithms on the
Access-Control Queuing task (Sutton & Barto 2018). This
task involves customers queuing up to access to one of 10
servers. The customers have differing priorities (1, 2, 4, or
8), which are also the rewards received if and when their
service is complete. At each step, the customer at the head
of queue is either accepted and allocated a free server (if
any) or is rejected (in which case a reward of 0 is received).
This decision is made based on the priority of the customer

and the number of currently free servers, which together
constitute the state of this average-reward MDP. The rest of
the details of this test problem are exactly as described by
Sutton and Barto (2018).

We applied RVI Q-learning and Differential Q-learning
(pseudocodes for both algorithms are in Appendix A) to
this task, each for 30 runs of 80,000 steps, and each for
a range of step sizes α. Differential Q-learning was run
with a range of η values, and RVI Q-learning was run with
three kinds of reference functions suggested by Abounadi
et al. (2001): (1) the value of a single reference state–action
pair, for which we considered all possible 88 state–action
pairs, (2) the maximum value of the action-value estimates,
and (3) the mean of the action-value estimates. Both algo-
rithms used an ε-greedy behavior policy with ε = 0.1. The
rest of the experimental details are in Appendix C.

A typical learning curve is shown in Figure 1. While this
learning curve is for Differential Q-learning, the learning
curves for both algorithms typically started at around 2.2
and plateaued at around 2.6, with different parameter set-
tings leading to different rates of learning. A reward rate of
2.2 corresponds to a policy that accepts every customer irre-
spective of their priority or the number of free servers—with
positive rewards for every accept action, such a policy is
learned rapidly in the first few timesteps starting from a zero
initialization of value estimates (i.e., a random policy). The
optimal performance was close to 2.7 (note both algorithms
use an ε-greedy policy without annealing ε).

Figure 2 shows parameter studies for each algorithm. Plot-
ted is the reward rate averaged over all 80,000 steps, re-
flecting their rates of learning. The error bars denote one
standard error.

Reward
rate

(30 runs)

Timesteps

Differential Q-learning

Figure 1: A typical learning curve for the Access-Control
Queuing task. A point on the solid line denotes reward rate
over the last 2000 timesteps, and the shaded region indicates
one standard error.

Learning and Planning in Average-Reward Markov Decision Processes

α

η = 0.125 η = 2

η = 1

η = 0.5
η = 0.25

Differential Q-learning

Reward
rate
over

80k steps
(30 runs)

α

RVI Q-learning

Ref: s-a#43

Ref
: s

-a
#6

3

Ref:
 s-

a#
55

Reward
rate
over

80k steps
(30 runs) Ref: m

ean

Ref: max

Ref
: s

-a#
16

Ref: s
-a#21

Ref: s-a #54

Ref: s-a#87

Figure 2: Parameter studies showing the sensitivity of the two algorithms’ performance to their parameters. The error bars
indicate one standard error, which at times is less than the width of the solid lines. Left: Differential Q-learning’s rate of
learning varied little over a broad range of its parameters. Right: RVI Q-learning’s rate of learning depended strongly on
the choice of the reference function. The solid greyed-out lines mark the performance for each of the 88 state–action pairs
considered individually as the single reference pair, with a few representative ones highlighted (labelled as ‘Ref: s-a’). The
dotted lines correspond to the reference function being the mean or the max of all the action-value estimates.

We saw that Differential Q-learning performed well on this
task for a wide range of parameter values (left panel). Its
two parameters did not interact strongly; the best value of
α was independent of the choice of η. Moreover, the best
performance for different η values was roughly the same.

RVI Q-learning also performed well on this task for the best
choice of the reference state–action pair, but its performance
varied significantly for the various choices of the reference
function and state–action pairs (right panel).

A closer look at the data revealed a correlation between
the performance of a particular reference state–action pair
and how frequently it occurs under an optimal policy. For
example, state–action pairs 55 and 54 occurred frequently
and also resulted in good performance. They correspond
to states when only two servers are free and the customer
at the front of the queue has priority 8 and 4 respectively,
and the action is to accept. This is the optimal action in
this state. On the other hand, the performance was poor
with state–action pairs 43 and 87, which occurred rarely.
They correspond to states when all 10 servers are free, a
condition that rarely occurs in this problem. Finally, the
mean of value estimates of all state–action pairs performs
moderately well as a reference function. These observations
lead us to a conjecture: an important factor determining
the performance of RVI Q-learning with a single reference
state–action pair is how often that pair occurs under an
optimal policy. This is problematic because knowing which
state–action pairs will occur frequently under an optimal
policy is tantamount to knowing the solution of the problem
we set out to solve.

The conjecture might lead us to think that the reference func-
tion that is the max over all action-value estimates would
always lead to good performance because the correspond-
ing state–action pair would occur most frequently under an
optimal policy, but this is not true in general. For exam-
ple, consider an MDP with a state that rarely occurs under
any policy. Let all rewards in the MDP be zero except a
positive reward from that state. Then the highest action
value among all state–action pairs is corresponding to this
rarely-occurring state.

To conclude, our experiments with the Access-Control
Queuing task show that the performance of RVI Q-learning
can vary significantly over the range of reference functions
and state–action pairs. On the other hand, Differential Q-
learning does not use a reference function and can be signif-
icantly easier to use.

4. Learning and Planning for Prediction
In this section, we define the problem setting for the pre-
diction problem and then present our new algorithms for
learning and planning.

In the prediction problem, we deal with Markov chains
induced by the target and the behavior policies when applied
to an MDP. The MDP interactions are the same as described
earlier (Section 2).

As before, it is convenient to rule out the possibility of the
reward rate of the target policy depending on the start state.
In particular, we assume that under the target policy there
is only one possible limiting distribution for the resulting

Learning and Planning in Average-Reward Markov Decision Processes

Markov chain, independent of the start state. This is known
as the Markov chain being unichain. The reward rate of the
target policy then does not depend on the start state. We
denote it as r(π), where π is the target policy:

r(π)
.
= lim
n→∞

1

n

n∑
t=1

E[Rt | A0:t−1 ∼ π]. (9)

The differential state-value function (also called bias; see,
e.g., Puterman 1994) vπ : S → R for a policy π is:

vπ(s)
.
=

lim
n→∞

1

n

n∑
k=1

k∑
t=1

E [Rt − r(π) | S0 = s,A0:t−1 ∼ π] ,

for all s ∈ S . As usual, the differential state-value function
satisfies a recursive Bellman equation:

v(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r | s, a)
(
r − r̄ + v(s′)

)
, (10)

for all s ∈ S. The unique solution for r̄ is r(π) and the
solutions for v : S → R are unique up to an additive
constant.

As usual in off-policy prediction learning, we need an as-
sumption of coverage. In this case we assume that every
state–action pair for which π(a|s) > 0 occurs an infinite
number of times under the behavior policy.

Our Differential TD-learning algorithm updates a table of
estimates Vt : S → R as follows:

Vt+1(St)
.
= Vt(St) + αtρtδt, (11)

Vt+1(s)
.
= Vt(s), ∀s 6= St,

where αt is a step-size sequence, ρt
.
= π(At|St)/b(At|St)

is the importance-sampling ratio, and δt is the TD error:

δt
.
= Rt+1 − R̄t + Vt(St+1)− Vt(St), (12)

where R̄t is a scalar estimate of r(π), updated by:

R̄t+1
.
= R̄t + ηαtρtδt, (13)

and η is a positive constant.

The following theorem shows that R̄t converges to r(π) and
Vt converges to a solution of v in (10).

Theorem 3 (Informal). If 1) the Markov chain induced by
the target policy π is unichain, 2) every state–action pair for
which π(a|s) > 0 occurs an infinite number of times under
the behavior policy, 3) the step sizes, specific to each state,
are decreased appropriately, and 4) the ratio of the update
frequency of the most-updated state to the update frequency
of the least-updated state is finite, then the Differential TD-
learning algorithm (11)–(13) converges, almost surely, R̄t
to r(π) and Vt to a solution of v in the Bellman equation
(10).

Proof. Essentially as in Theorem 1. Full proof in Appendix
B.

Note that this result applies to both on-policy and off-policy
problems. In off-policy problems, Differential TD-learning
is the first model-free average-reward algorithm proved to
converge to the true reward rate.

The planning version of Differential TD-learning, called
Differential TD-planning, uses simulated transitions gen-
erated just as in Differential Q-planning, except that Dif-
ferential TD-planning chooses actions according to pol-
icy b and not arbitrarily. Differential TD-planning main-
tains a table of value estimate Vn : S → R and a re-
ward rate estimate R̄n and updates them just as in Differen-
tial TD-learning (11)–(13) using Sn, An, Rn, S′n instead of
St, At, Rt+1, St+1.

Theorem 4 (Informal). Under the same assumptions made
in Theorem 3 (except now for the model MDP corresponding
to p̂ rather than p) the Differential TD-planning algorithm
converges, almost surely, R̄n to r̂(π) and Vn to a solution
of v in the state-value Bellman equation (cf. (10)) for the
model MDP.

Proof. Essentially as in Theorem 1. Full proof in Appendix
B.

5. Empirical Results for Prediction
In this section we present empirical results with average-
reward prediction learning algorithms using the Two Loop
task shown in the upper right of Figure 3 (cf. Mahadevan
1996, Naik et al. 2019). This is a continuing MDP with only
one action in every state except state 0. Action left in
state 0 gives an immediate reward of +1 and action right
leads to a delayed reward of +2 after five steps. The optimal
policy is to take the action right in state 0 to obtain a
reward rate of 0.4 per step. The easier-to-find sub-optimal
policy of going left results in a reward rate of 0.2.

We performed two prediction experiments: on-policy and
off-policy. For the first on-policy experiment, the policy
π to be evaluated was the one that randomly picks left
or right in state 0 with probability 0.5. The reward rate
corresponding to this policy is 0.3. In addition to the on-
policy version of Differential TD-learning, we ran Tsitsiklis
and Van Roy’s (1999) Average Cost TD-learning. It is an
on-policy algorithm with the following updates:

Vt+1(St)
.
= Vt(St) + αtδt,

R̄t+1
.
= R̄t + ηαt

(
Rt+1 − R̄t

)
, (14)

where δt is the TD error as in (12). Both algorithms have the
same two step-size parameters. For each parameter setting,
30 runs of 10,000 steps each were performed.

Learning and Planning in Average-Reward Markov Decision Processes

We evaluated the accuracy of the estimated value function
as well as the estimated reward rate of the target policy. The
top-left panel in Figure 3 shows the learning curves of the
two algorithms (blue and orange) in terms of root-mean-
squared value error (RMSVE) w.r.t. timesteps. We used
Tsitsiklis and Van Roy’s (1999) variant of RMSVE which
measures the distance of the estimated values to the near-
est solution that satisfies the state-value Bellman equation
(10). We denote this metric by ‘RMSVE (TVR)’. Details
on how it was computed are provided in Appendix C along
with the complete experimental details. We saw that the
RMSVE (TVR) went to zero in a few thousand steps for
both on-policy Differential TD-learning and Average Cost
TD-learning. The top-right panel shows the learning curves
of the two algorithms (blue and orange) in terms of squared
error in the estimate of the reward rate w.r.t. the true re-
ward rate of the target policy ((r(π) − R̄t)

2, denoted as
reward rate error or ‘RRE’), which also went to zero for
both algorithms.

The plots in the bottom row indicate the sensitivity of the
performance of these two algorithms to the two step-size
parameters α and η. The average RMSVE (TVR) over all
the 10k timesteps was equal or lower for Differential TD-
learning than Average Cost TD-learning across the range
of parameters tested. In addition, on-policy Differential
TD-learning was less sensitive to the values of both α and η
than Average Cost TD-learning. This was also the case with
RRE, the plots for which are reported in Appendix C.

The green learning curves in the top row of Figure 3 corre-
spond to the off-policy version of Differential TD-learning.
This was used in the second off-policy experiment: the same
policy as in the on-policy experiment was evaluated (i.e.,
target policy takes either action in state 0 with probability
0.5), now using data collected with a behavior policy that
picks the left and right actions with probabilities 0.9
and 0.1 respectively. Both RMSVE (TVR) and RRE went to
zero for off-policy Differential TD-learning within a reason-

Differential TD-learning
(off-policy)

Timesteps

Differential TD-learning
(on-policy)

Average Cost TD-learningRMSVE
(TVR)

(30 runs)

Differential TD-learning
(off-policy)

Timesteps

Differential
TD-learning
(on-policy)

Average Cost
TD-learning

Reward
Rate
Error

(30 runs)

left right

α

η = 0.125η = 2 η = 1

η = 0.5η = 0.25

Differential TD-learning
(on-policy)

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

α

Average Cost TD-learning

Average
RMSVE
(TVR)
over

10k steps
(30 runs)

η = 0.125

η = 2
η = 1

η = 0.5

η = 0.25

Figure 3: Learning curves and parameter studies for Differential TD-learning and Average Cost TD-learning on the Two
Loop task (inset top-right). The standard errors are thinner than width of the solid lines. Top: Exemplary learning curves
showing all three algorithms tend to zero errors in terms of RMSVE (TVR) and RRE. Bottom: Parameter studies showing
the performance of Differential TD-learning in terms of average RMSVE (TVR) is less sensitive to the choice of parameters
α and η than Average Cost TD-learning. The black circles in the bottom row denote the parameter configurations for which
the learning curves in the top row are shown.

Learning and Planning in Average-Reward Markov Decision Processes

able amount of time. Its parameter studies for both RMSVE
(TVR) and RRE are presented in Appendix C along with
additional experimental details.1

Our experiments show that our on- and off-policy Differ-
ential TD-learning algorithms can accurately estimate the
value function and the reward rate of a given target policy,
as expected from Theorem 3. In addition, on-policy Differ-
ential TD-learning can be easier to use than Average Cost
TD-learning.

6. Estimating the Actual Differential Value
Function

All average-reward algorithms, including the ones we pro-
posed, converge to an uncentered differential value function,
in other words, the actual differential value function plus
some unknown offset that depends on the algorithm itself
and design choices such as initial values or reference states.

We now introduce a simple technique to compute the offset
in the value estimates for both on- and off-policy learning
and planning. Once the offset is computed, it can simply be
subtracted from the value estimates to obtain the estimate
of the actual (centered) differential value function.

We demonstrate how the offset can be eliminated in Differen-
tial TD-learning; the other cases (Differential TD-planning,
Differential Q-learning and Differential Q-planning) are
shown in Appendix B. For this purpose, we introduce, in ad-
dition to the first estimator (11)–(13), a second estimator for
which the rewards are the value estimates of the first estima-
tor. The second estimator maintains an estimate of the scalar
offset V̄t, an auxiliary table of estimates Ft(s),∀s ∈ S , and
uses the following update rules:

Ft+1(St)
.
= Ft(St) + βtρt∆t, (15)

Ft+1(s)
.
= Ft(s), ∀s 6= St,

where βt is a step-size sequence, ∆t is the TD error of the
second estimator:

∆t
.
= Vt(St)− V̄t + Ft(St+1)− Ft(St), (16)

where:

V̄t+1
.
= V̄t + κβtρt∆t, (17)

and κ is a positive constant. We call (11)–(13) with
(15)–(17) Centered Differential TD-learning. Before pre-
senting the convergence theorem, we briefly give some intu-
ition on why this technique can successfully compute the off-
set. By Theorem 3, R̄t converges to r(π) and Vt converges

1Average Cost TD-learning cannot be extended to the off-policy
setting due to the use of a sample average of the observed rewards
to estimate the reward rate (14). For more details, please refer to
Appendix D.

to some v∞ almost surely, where v∞(s) = vπ(s) + c,∀s ∈
S for some offset c ∈ R. In Appendix B, we show∑
s dπ(s)vπ(s) = 0, where dπ is the limiting state distribu-

tion following policy π, which implies
∑
s dπ(s)v∞(s) = c.

As Vt converges to v∞,
∑
s dπ(s)Vt(s) converges to c. Now

note that
∑
s dπ(s)Vt(s) and r(π) =

∑
s dπ(s)rπ(s) are of

the same form. Therefore
∑
s dπ(s)Vt(s) can be estimated

similar to how r(π) is estimated, using Vt as the reward.
This leads to the second estimator: (15)–(17).

Theorem 5 (Informal). If the assumptions in Theorem
3 hold, and the step sizes, specific to each state, are
decreased appropriately, then Centered Differential TD-
learning (15)–(17) converges, almost surely, Vt(s)− V̄t to
vπ(s) for all s and R̄t to r(π).

The proof is presented in Appendix B. We also demonstrate
how this technique can be used to learn the actual differential
value function with an experiment in Appendix C (with full
pseudocode in Appendix A).

7. Discussion and Future Work
We have presented several new learning and planning al-
gorithms for average-reward MDPs. Our algorithms differ
from previous work in that they do not involve reference
functions, they apply in off-policy settings for both predic-
tion and control, and they find centered value functions. In
our opinion, these changes make the average-reward formu-
lation more appealing for use in reinforcement learning.

The most important way in which our work is limited is
that it treats only the tabular case, whereas some form of
function approximation is necessary for large-scale appli-
cations and the larger ambitions of artificial intelligence.
Indeed, the need for function approximation is a large part
of the motivation for studying the average-reward setting.
We present some ideas for extending our algorithms to linear
function approximation in Appendix E. However, the the-
ory and practice are both more challenging in the function
approximation setting, and much future research is needed.

Our work is also limited in ways that are unrelated to func-
tion approximation. One is that we treat only one-step meth-
ods and not n-step, λ-return, or sophisticated eligibility-
trace methods (van Seijen et al. 2016, Sutton & Barto 2018).
Another important direction for future work is to extend
these algorithms to semi-Markov decision processes so that
they can be used with temporal abstractions like options
(Sutton, Precup, & Singh 1999).

Acknowledgements
The authors were supported by DeepMind, Amii, NSERC,
and CIFAR. The authors wish to thank Vivek Borkar,
Huizhen Yu, Martha White, Csaba Szepesvári, Dale Schu-

Learning and Planning in Average-Reward Markov Decision Processes

urmans, and Benjamin Van Roy for their valuable feedback
during various stages of the work. Computing resources
were provided by Compute Canada.

References
Abounadi, J., Bertsekas, D., Borkar, V. S. (1998). Stochastic

Approximation for Nonexpansive Maps: Application
to Q-Learning, Report LIDS-P-2433, Laboratory for
Information and Decision Systems, MIT.

Abounadi, J., Bertsekas, D., Borkar, V. S. (2001). Learning
algorithms for Markov decision processes with aver-
age cost. SIAM Journal on Control and Optimization,
40(3):681–698.

Abbasi-Yadkori, Y., Bartlett, P., Bhatia, K., Lazic, N.,
Szepesvari, C., Weisz, G. (2019a). POLITEX: Regret
bounds for policy iteration using expert prediction. In
Proceedings of the International Conference on Machine
Learning, pp. 3692–3702.

Abbasi-Yadkori, Y., Lazic, N., Szepesvari, C., Weisz,
G. (2019b). Exploration-enhanced POLITEX.
ArXiv:1908.10479.

Auer, R., Ortner, P. (2006). Logarithmic online regret
bounds for undiscounted reinforcement learning. In
Advances in Neural Information Processing Systems,
pp. 49–56.

Bellman, R. E. (1957). Dynamic Programming. Princeton
University Press.

Bertsekas, D. P., Tsitsiklis, J. N. (1996). Neuro-dynamic
Programming. Athena Scientific.

Borkar, V. S. (1998). Asynchronous stochastic approxi-
mations. SIAM Journal on Control and Optimization,
36(3):840–851.

Borkar, V. S. (2009). Stochastic Approximation: A Dynami-
cal Systems Viewpoint. Springer.

Brafman, R. I., Tennenholtz, M. (2002). R-MAX — a
general polynomial time algorithm for near-optimal re-
inforcement learning. Journal of Machine Learning
Research, 3(10):213–231.

Das, T. K., Gosavi, A., Mahadevan, S. Marchalleck, N.
(1999). Solving semi-Markov decision problems using
average reward reinforcement learning. Management
Science, 45(4):560–574.

Dewanto, V., Dunn, G., Eshragh, A., Gallagher, M., Roosta,
F. (2020). Average-reward model-free reinforcement
learning: a systematic review and literature mapping.
ArXiv:2010.08920.

Gosavi, A. (2004). Reinforcement learning for long-run av-
erage cost. European Journal of Operational Research,

155(3):654–674.

Howard, R. A. (1960). Dynamic Programming and Markov
Processes. MIT Press.

Jalali, A., Ferguson, M. J. (1989). Computationally effi-
cient adaptive control algorithms for Markov chains. In
Proceedings of the IEEE Conference on Decision and
Control, pp. 1283–1288.

Jalali, A., Ferguson, M. J. (1990). A distributed asyn-
chronous algorithm for expected average cost dynamic
programming. In Proceedings of the IEEE Conference
on Decision and Control, pp. 1394–1395.

Jaksch, T., Ortner, R., Auer, P. (2010). Near-optimal Re-
gret Bounds for Reinforcement Learning. Journal of
Machine Learning Research, 11(4):1563–1600.

Kakade, S. M. (2001). A natural policy gradient. In
Advances in Neural Information Processing Systems,
pp. 1531–1538.

Kearns, M., Singh, S. (2002). Near-optimal reinforce-
ment learning in polynomial time. Machine Learning,
49(2):209–232.

Konda, V. R., (2002). Actor-critic algorithms. Ph.D. disser-
tation, MIT.

Liu, Q., Li, L., Tang, Z., Zhou, D. (2018). Breaking the
curse of horizon: Infinite-horizon off-policy estimation.
In Advances in Neural Information Processing Systems,
pp. 5356–5366.

Mahadevan, S. (1996). Average reward reinforcement learn-
ing: Foundations, algorithms, and empirical results. Ma-
chine Learning, 22(1–3):159–195.

Marbach, P., Tsitsiklis, J. N. (2001). Simulation-based op-
timization of Markov reward processes. IEEE Transac-
tions on Automatic Control, 46(2):191–209.

Mousavi, A., Li, L., Liu, Q., Zhou, D. (2020). Black-box
off-policy estimation for infinite-horizon reinforcement
learning. ArXiv:2003.11126.

Naik, A., Shariff, R., Yasui, N., Sutton, R. S. (2019). Dis-
counted reinforcement learning is not an optimization
problem. Optimization Foundations for Reinforcement
Learning Workshop at the Conference on Neural Infor-
mation Processing Systems. Also arXiv:1910.02140.

Puterman, M. L. (1994). Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. John Wiley &
Sons.

Ren, Z., Krogh, B. H. (2001). Adaptive control of Markov
chains with average cost. IEEE Transactions on Auto-
matic Control, 46(4):613–617.

Schwartz, A. (1993). A reinforcement learning method
for maximizing undiscounted rewards. In Proceedings

Learning and Planning in Average-Reward Markov Decision Processes

of the International Conference on Machine Learning,
pp. 298–305.

Schweitzer, P. J., & Federgruen, A. (1978). The Func-
tional Equations of Undiscounted Markov Renewal Pro-
gramming. Mathematics of Operations Research, 3(4),
pp. 308–321.

Singh, S. P. (1994). Reinforcement learning algorithms
for average-payoff Markovian decision processes. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, pp. 700–705.

Sutton, R. S. (1990). Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming. In Proceedings of the International Con-
ference on Machine Learning, pp. 216–224.

Sutton, R. S., McAllester, D. A., Singh, S. P., Mansour,
Y. (1999). Policy gradient methods for reinforcement
learning with function approximation. In Advances in
Neural Information Processing Systems, pp. 1057–1063.

Sutton, R. S., Barto, A. G. (2018). Reinforcement Learning:
An Introduction. MIT Press.

Tang, Z., Feng, Y., Li, L., Zhou, D., Liu, Q. (2019). Dou-
bly robust bias reduction in infinite horizon off-policy
estimation. ArXiv:1910.07186.

Tsitsiklis, J. N., Van Roy, B. (1999). Average cost temporal-
difference learning. Automatica, 35(11):1799–1808.

van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado,
M. C., Sutton, R. S. (2016). True online temporal-
difference learning. Journal of Machine Learning Re-
search, 17(145):1–40.

Wen, J., Dai, B., Li, L., Schuurmans, D. (2020). Batch
Stationary Distribution Estimation. In Proceedings of
the International Conference on Machine Learning,
pp. 10203–10213.

Wheeler, R., Narendra, K. (1986). Decentralized learning in
finite Markov chains. IEEE Transactions on Automatic
Control, 31(6):519–526.

White, D. J. (1963). Dynamic programming, Markov chains,
and the method of successive approximations. Journal
of Mathematical Analysis and Applications, 6(3):373–
376.

Yang, S., Gao, Y., An, B., Wang, H., Chen, X. (2016).
Efficient average reward reinforcement learning using
constant shifting values. In Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 2258–2264.

Yu, H., & Bertsekas, D. P. (2009). Convergence results
for some temporal difference methods based on least
squares. IEEE Transactions on Automatic Control,
54(7):1515–1531.

Zhang, R., Dai, B., Li, L., Schuurmans, D. (2020a). Gen-
DICE: Generalized offline estimation of stationary val-
ues. ArXiv:2002.09072.

Zhang, S., Liu, B., Whiteson, S. (2020b). GradientDICE:
Rethinking generalized offline estimation of stationary
values. In Proceedings of the International Conference
on Machine Learning, pp. 11194–11203.

