
In the appendix, we first give the missing proofs for the theorems in the main paper. Later in Appendix F we give
details for the experiments.

Notations: Besides the notations defined in Section 2, we define more notations that will be used in the proofs.
For a matrix X ∈ Rn×d with n ≤ d, we denote its singular values as σ1(X) ≥ · · · ≥ σn(X).

For a positive semi-definite matrix A ∈ Rd×d, we denote u>Au as ‖u‖2A . For a matrix X ∈ Rd×n, let ProjX ∈
Rd×d be the projection matrix onto the column span of X . That means, ProjX = SS>, where the columns of S form
an orthonormal basis for the column span of X.

For any event E , we use 1 {E} to denote its indicator function: 1 {E} equals 1 when E holds and equals 0 otherwise.
We use Ē to denote the complementary event of E .

A Proofs for Section 3 – alleviating gradient explosion/vanishing problem
for quadratic objective

In this section, we prove the results in Section 3. Recall the meta learning problem as follows:
The inner task is a fixed quadratic problem, where the starting point is fixed at w0, and the loss function is

f(w) = 1
2w
>Hw for some fixed positive definite matrix H ∈ Rd×d. Suppose the eigenvalue decomposition of H

is
∑d
i=1 λiuiu

>
i . In this section, we assume L = λ1(H) and α = λd(H) are the largest and smallest eigenvalues

of H with L > α. We assume the starting point w0 has unit `2 norm. For each i ∈ [d], let ci be 〈w0, ui〉 and let
cmin = min(|c1|, |cd|). We assume cmin > 0 for simplicity, which is satisfied if w0 is chosen randomly from the unit
sphere.

Let {wτ,η} be the GD sequence running on f(w) starting from w0 with step size η. For the meta-objective, we
consider using the loss of the last point directly, or using the log of this value. In Section A.1, we first show that
although choosing F̂ (η) = f(wt,η) does not have any bad local optimal solution, it has the gradient explosion/vanishing
problem (Theorem 3). Then, in Section A.2, we show choosing F̂ (η) = 1

t log f(wt,η) leads to polynomially bounded
meta-gradient and further show meta-gradient descent converges to the optimal step size (Theorem 4). Although
the meta-gradient is polynomially bounded, if we simply use back-propogation to compute the meta-gradient, the
intermediate results can still be exponentially large/small (Corollary 1). This is also proved in Section A.2.

A.1 Meta-gradient vanishing/explosion
In this section, we show although choosing F̂ (η) = f(wt,η) does not have any bad local optimal solution, it has the
meta-gradient explosion/vanishing problem. Recall Theorem 3 as follows.

Theorem 3. Let the meta-objective be F̂ (η) = f(wt,η), we know F̂ (η) is a strictly convex function in η with an unique
minimizer. However, for any step size 0 < η < 2/L,

|F̂ ′(η)| ≤ tL2 max(|1− ηα|2t−1, |1− ηL|2t−1);

for any step size η > 2/L,
|F̂ ′(η)| ≥ c21L2t(ηL− 1)2t−1 − L2t.

Intuitively, if we write wt,η in the basis of the eigen-decomposition of H , then each coordinate evolve exponentially
in t. The gradient of the standard objective is therefore also exponential in t.
Proof of Theorem 3. According to the gradient descent iterations, we have

wt,η = wt−1,η − η∇f(wt−1,η) = wt−1,η − ηHwt−1,η = (I − ηH)wt−1,η = (I − ηH)tw0.

Therefore, F̂ (η) := f(wt,η) = 1
2w
>
0 (I − ηH)2tHw0. Taking the derivative of F̂ (η),

F̂ ′(η) = −tw>0 (I − ηH)2t−1H2w0 = −t
d∑
i=1

c2iλ
2
i (1− ηλi)2t−1,
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where ci = 〈w0, ui〉 . Taking the second derivative of F (η),

F ′′(η) =t(2t− 1)w>0 (I − ηH)2t−2H3w0 = t(2t− 1)

d∑
i=1

c2iλ
3
i (1− ηλi)2t−2.

Since L > α, we have F̂ ′′(η) > 0 for any η. That means F̂ (η) is a strictly convex function in η with a unique
minimizer.

For any fixed η ∈ (0, 2/L) we know |1− ηλi| < 1 for all i ∈ [d]. We have

∣∣∣F̂ ′(η)
∣∣∣ ≤t d∑

i=1

c2iλ
2
i |1− ηλi|2t−1

≤t
d∑
i=1

c2i max
i∈[d]

(
λ2
i |1− ηλi|2t−1

)
≤tL2 max

(
|1− ηα|2t−1, |1− ηL|2t−1

)
,

where the last inequality uses
∑d
i=1 c

2
i = 1. Note for η ∈ (0, 2/L), it’s guaranteed that |1− ηλi| takes the maximum at

|1− ηα| or |1− ηL|.
For any fixed η ∈ (2/L,∞), we know ηL− 1 > 1. We have

F̂ ′(η)

=− tc21L2(1− ηL)2t−1 − t
∑

i 6=1:(1−ηλi)≤0

c2iλ
2
i (1− ηλi)2t−1 − t

∑
i 6=1:(1−ηλi)>0

c2iλ
2
i (1− ηλi)2t−1

≥tc21L2(ηL− 1)2t−1 − t
d∑
i=1

c2iλ
2
i ≥ tc21L2(ηL− 1)2t−1 − L2t,

where the last inequality uses
∑d
i=1 c

2
i = 1. �

A.2 Alleviating meta-gradient vanishing/explosion
We prove when the the meta objective is chosen as 1

t log f(wt,η), the meta-gradient is polynomially bounded. Fur-
thermore, we show meta-gradient descent can converge to the optimal step size within polynomial iterations. Recall
Theorem 4 as follows.

Theorem 4. Let the meta-objective be F̂ (η) = 1
t log f(wt,η). We know F̂ (η) has a unique minimizer η∗ and

F̂ ′(η) = O
(

L3

c2minα(L−α)

)
for all η ≥ 0. Let {ηk} be the GD sequence running on F̂ with meta step size µk = 1/

√
k.

Suppose the starting step size η0 ≤M. Given any 1/L > ε > 0, there exists k′ = M6

ε2 poly( 1
cmin

, L, 1
α ,

1
L−α ) such that

for all k ≥ k′, |ηk − η∗| ≤ ε.

When we take the log of the function value, the derivative of the function value with respect to η becomes much more
stable. We will first show some structural result on F̂ (η) – it has a unqiue minimizer and the gradient is polynomially
bounded. Further the gradient is only close to 0 when the point η is close to the unique minimizer. Then using such
structural result we prove that meta-gradient descent converges.
Proof of Theorem 4. The proof consists of three claims. In the first claim, we show that F̂ has a unique minimizer and
the minus meta derivative always points to the minimizer. In the second claim, we show that F̂ has bounded derivative.
In the last claim, we show that for any η that is outside the ε-neighborhood of η∗, |F̂ ′(η)| is lower bounded. Finally, we
combine these three claims to finish the proof.

Claim 4. The meta objective F̂ has only one stationary point that is also its unique minimizer η∗. For any η ∈ [0, η∗),
F̂ ′(η) < 0 and for any η ∈ (η∗,∞), F̂ ′(η) > 0. Furthermore, we know η∗ ∈ [1/L, 1/α].
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We can compute the derivative of F̂ in η as follows,

F̂ ′(η) =
−2w>0 (I − ηH)2t−1H2w0

w>0 (I − ηH)2tHw0
=
−2
∑d
i=1 c

2
iλ

2
i (1− ηλi)2t−1∑d

i=1 c
2
iλi(1− ηλi)2t

. (5)

It’s not hard to verify that the denominator
∑d
i=1 c

2
iλi(1−ηλi)2t is always positive. Denote the numerator−2

∑d
i=1 c

2
iλ

2
i (1−

ηλi)
2t−1 as g(η). Since g′(η) > 0 for any η ∈ [0,∞), we know g(η) is strictly increasing in η. Combing with the fact

that g(0) < 0 and g(∞) > 0, we know there is a unique point (denoted as η∗) where g(η∗) = 0 and g(η) < 0 for all
η ∈ [0, η∗) and g(η) > 0 for all η ∈ (η∗,∞). Since the denominator in F̂ ′(η) is always positive and the numerator
equals g(η), we know there is a unique point η∗ where F̂ ′(η∗) = 0 and F̂ ′(η) < 0 for all η ∈ [0, η∗) and F̂ ′(η) > 0
for all η ∈ (η∗,∞). It’s clear that η∗ is the minimizer of F̂ .

Also, it’s not hard to verify that for any η ∈ [0, 1/L), F̂ ′(η) < 0 and for any η ∈ (1/α,∞), F̂ ′(η) > 0. This
implies that η∗ ∈ [1/L, 1/α].

Claim 5. For any η ∈ [0,∞), we have

|F̂ ′(η)| ≤ 4L3

c2minα(L− α)
:= Dmax.

For any η ∈ [0, 2
α+L ], we have |1− ηλi| ≤ 1− ηα for all i. Dividing the numerator and denominator in F̂ ′(η) by

(1− ηα)2t, we have

∣∣∣F̂ ′(η)
∣∣∣ = 2

∣∣∣∑d
i=1

c2iλ
2
i

1−ηα ( 1−ηλi
1−ηα )2t−1

∣∣∣
c2dα+

∑d−1
i=1 c

2
iλi(

1−ηλi
1−ηα )2t

≤
2
∑d
i=1 c

2
iλ

2
i

c2dα(1− ηα)
≤

2(α+ L)
∑d
i=1 c

2
iλ

2
i

c2dα(L− α)
≤ 4L3

c2dα(L− α)
,

where the second last inequality uses η ≤ 2
α+L .

Similarly for any η ∈ ( 2
α+L ,∞), we have |1− ηλi| ≤ ηL− 1 for all i. Dividing the numerator and denominator in

F̂ ′(η) by (ηL− 1)2t, we have

F̂ ′(η) = 2

∣∣∣∑d
i=1

c2iλ
2
i

ηL−1 ( 1−ηλi
ηL−1 )2t−1

∣∣∣
c21L+

∑d
i=2 c

2
iλi(

1−ηλi
ηL−1 )2t

≤
2
∑d
i=1 c

2
iλ

2
i

c21L(ηL− 1)
≤

2(α+ L)
∑d
i=1 c

2
iλ

2
i

c21L(L− α)
≤ 4L3

c21L(L− α)

where the last inequality uses η ≥ 2
α+L .

Overall, we know for any η ≥ 0,

|F̂ ′(η)| ≤ 4L3

L− α
max

(
1

c2dα
,

1

c21L

)
≤ 4L3

c2minα(L− α)
.

Claim 6. Given M̂ ≥ 2/α and 1/L > ε > 0, for any η ∈ [0, η∗ − ε] ∪ [η∗ + ε, M̂ ], we have

|F ′(η)| ≥ min

(
2εc2dα

3

L
,

2εc21L
2

(M̂L− 1)2

)
≥ 2εc2min min

(
α3

L
,

1

M̂2

)
:= Dmin(M̂).

If η ∈ [0, η∗ − ε] and η ≤ 2
α+L , we have

F̂ ′(η) = −2

∑d
i=1 c

2
iλ

2
i (1− ηλi)2t−1∑d

i=1 c
2
iλi(1− ηλi)2t

= −2

∑d
i=1 c

2
iλ

2
i (1− ηλi)2t−1 −

∑d
i=1 c

2
iλ

2
i (1− η∗λi)2t−1∑d

i=1 c
2
iλi(1− ηλi)2t

,

where the second equality holds because
∑d
i=1 c

2
iλ

2
i (1− η∗λi)2t−1 = 0. For the numerator, we have

d∑
i=1

c2iλ
2
i (1− ηλi)2t−1 −

d∑
i=1

c2iλ
2
i (1− η∗λi)2t−1 ≥c2dα2

(
(1− ηα)2t−1 − (1− η∗α)2t−1

)
≥c2dα2

(
(1− ηα)2t−1 − (1− ηα− εα)2t−1

)
;
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for the denominator, we have

d∑
i=1

c2iλi(1− ηλi)2t ≤

(
d∑
i=1

c2iλi

)
(1− ηα)2t,

where the second inequality holds because |1 − ηλi| ≤ 1 − ηα for all i. Overall, we have when η ∈ [0, η∗ − ε] and
η ≤ 2

α+L , ∣∣∣F̂ ′(η)
∣∣∣ ≥2

c2dα
2
(
(1− ηα)2t−1 − (1− ηα− εα)2t−1

)(∑d
i=1 c

2
iλi

)
(1− ηα)2t

≥ 2εc2dα
3(∑d

i=1 c
2
iλi

)
(1− ηα)

≥ 2εc2dα
3

L
,

where the last inequality holds because (1− ηα) ≤ 1 and
∑d
i c

2
iλi ≤ L.

Similarly, if η ∈ [0, η∗ − ε] and η ≥ 2
α+L , we have

∣∣∣F̂ ′(η)
∣∣∣ ≥2

c21L
2
(
(1− ηL)2t−1 − (1− ηL− εL)2t−1

)(∑d
i=1 c

2
iλi

)
(1− ηL)2t

=2
c21L

2
(
(ηL+ εL− 1)2t−1 − (ηL− 1)2t−1

)(∑d
i=1 c

2
iλi

)
(ηL− 1)2t

≥ 2εc21L
3(∑d

i=1 c
2
iλi

)
(ηL− 1)2

≥ 2εc21α
2L2

(L− α)2
,

where the last inequality holds because η ≤ η∗ − ε ≤ 1/α and
∑d
i c

2
iλi ≤ L.

If η ∈ [η∗ + ε,∞) and η ≤ 2
α+L , we have

∣∣∣F̂ ′(η)
∣∣∣ ≥2

c2dα
2
(
(1− ηα+ εα)2t−1 − (1− ηα)2t−1

)(∑d
i=1 c

2
iλi

)
(1− ηα)2t

≥2εc2dα
3

L
,

If η ∈ [η∗ + ε,∞) and η ≥ 2
α+L , we have

∣∣∣F̂ ′(η)
∣∣∣ ≥2

c21L
2
(
(1− ηL+ ηε)2t−1 − (1− ηL)2t−1

)(∑d
i=1 c

2
iλi

)
(1− ηL)2t

≥ 2εc21L
3(∑d

i=1 c
2
iλi

)
(ηL− 1)2

≥ 2εc21L
2

(M̂L− 1)2
,

where the last inequality uses the assumption that η ≤ M̂.
With the above three claims, we are ready to prove the optimization result. By Claim 4, we know F ′(η) < 0 for any

η ∈ [0, η∗) and F ′(η) > 0 for any η ∈ (η∗,∞). So the opposite gradient descent always points to the minimizer.
Since µk = 1/

√
k, when k ≥ k1 :=

D2
max

ε2 we know µk ≤ ε
Dmax

. By Claim 5, we know |F̂ ′(η)| ≤ Dmax for
all η ≥ 0, which implies |µkF̂ ′(η)| ≤ ε for all k ≥ k1. That means, meta gradient descent will never overshoot the
minimizer by more than ε when k ≥ k1. In other words, after k1 meta iterations, once η enters the ε-neighborhood of
η∗, it will never leave this neighborhood.
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We also know that at meta iteration k1, we have ηk1 ≤ max(1/α+Dmax,M) := M̂. Here, 1/α+Dmax comes
from the case that the eta starts from the left of η∗ and overshoot to the right of η∗ by Dmax. Since η∗ ∈ [1/L, 1/α], we
have |ηk1 − η∗| ≤ max(1/α, 1/α+Dmax − 1/L,M − 1/L) := R. By Claim 6, we know that |F̂ ′(η)| ≥ Dmin(M̂)

for any η ∈ [0, η∗ − ε] ∪ [η∗ + ε, M̂ ]. Choosing some k2 satisfying
∑k2
k=k1

1/
√
k ≥ R

Dmin
, we know for any

k ≥ k2, |ηk − η∗| ≤ ε. Plugging in all the bounds for Dmin, Dmax from Claim 6 and Claim 5, we know there exists
k1 = 1

ε2 poly( 1
cmin

, L, 1
α ,

1
L−α ), k2 = M6

ε2 poly( 1
cmin

, L, 1
α ,

1
L−α ) satisfying these conditions. �

Next, we show although the meta-gradient is polynomailly bounded, the intermediate results can still vanish or
explode if we use back-propogation to compute the meta-gradient.

Corollary 1. If we choose the meta-objective as F̂ (η) = 1
t log f(wt,η), when computing the meta-gradient using

back-propagation, there are intermediate results that are exponentially large/small in number of inner-steps t.

Proof of Corollary 1. This is done by direct calculation. If we use back-propagation to compute the derivative
of 1

t log(f(wt,η)), we need to first compute ∂f(wt,η)
∂

1
t log(f(wt,η)) that equals 1

tf(wt,η) . Same as the analysis in
Theorem 3, we can show 1

tf(wt,η) is exponentially large when η < 2/L and is exponentially small when η > 2/L. �

B Proofs of train-by-train v.s. train-by-validation (GD)
In this section, we show when the number of samples is small and when the noise level is a large constant, train-by-train
overfits to the noise in training tasks while train-by-validation generalizes well. We separately prove the results
for train-by-train and train-by-validation in Theorem 7 and Theorem 8, respectively. Then, Theorem 5 is simply a
combination of Theorem 7 and Theorem 8.

Recall that in the train-by-train setting, each task P contains a training set Strain with n samples. The inner
objective is defined as f̂(w) = 1

2n

∑
(x,y)∈Strain

(〈w, x〉 − y)
2
. Let {wτ,η} be the GD sequence running on f̂(w)

from initialization 0 (with truncation). The meta-loss on task P is defined as the inner objective of the last point,
∆TbT (n)(η, P ) = f̂(wt,η) = 1

2n

∑
(x,y)∈Strain

(〈wt,η, x〉 − y)
2
. The empirical meta objective F̂TbT (n)(η) is the average

of the meta-loss across m different tasks. We show that under F̂TbT (n)(η), the optimal step size is a constant and the
learned weight is far from ground truth w∗ on new tasks. We prove Theorem 7 in Section B.2.

Theorem 7. Let the meta objective F̂TbT (n)(η) be as defined in Equation 3 with n ∈ [d/4, 3d/4]. Assume noise level
σ is a large constant c1. Assume unroll length t ≥ c2, number of training tasks m ≥ c3 log(mt) and dimension
d ≥ c4 log(m) for certain constants c2, c3, c4. With probability at least 0.99 in the sampling of the training tasks, we
have

η∗train = Θ(1) and E
∥∥wt,η∗train

− w∗
∥∥2

= Ω(1)σ2,

for all η∗train ∈ arg minη≥0 F̂TbT (n)(η), where the expectation is taken over new tasks.

In Theorem 7, Ω(1) is an absolute constant independent with σ. Intuitively, the reason that train-by-train performs
badly in this setting is because there is a way to set the step size to a constant such that gradient descent converges very
quickly to the empirical risk minimizer, therefore making the train-by-train objective very small. However, when the
noise is large and the number of samples is smaller than the dimension, the empirical risk minimizer (ERM) overfits to
the noise and is not the best solution.

In the train-by-validation setting, each task P contains a training set Strain with n1 samples and a validation set
with n2 samples. The inner objective is defined as f̂(w) = 1

2n1

∑
(x,y)∈Strain

(〈w, x〉 − y)
2
. Let {wτ,η} be the GD

sequence running on f̂(w) from initialization 0 (with truncation). For each task P , the meta-loss ∆TbV (n1,n2)(η, P )
is defined as the loss of the last point wt,η evaluated on the validation set Svalid. That is, ∆TbV (n1,n2)(η, P ) =

1
2n2

∑
(x,y)∈Svalid

(〈wt,η, x〉 − y)
2
. The empirical meta objective F̂TbV (n1,n2)(η) is the average of the meta-loss across

m different tasks P1, P2, ..., Pm. We show that under F̂TbV (n1,n2)(η), the optimal step size is Θ(1/t) and the learned
weight is better than initialization 0 by a constant on new tasks. Theorem 8 is proved in Section B.3.
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Theorem 8. Let the meta objective F̂TbV (n1,n2)(η) be as defined in Equation 4 with n1, n2 ∈ [d/4, 3d/4]. Assume
noise level σ is a large constant c1. Assume unroll length t ≥ c2, number of training tasks m ≥ c3 and dimension
d ≥ c4 log(t) for certain constants c2, c3, c4. With probability at least 0.99 in the sampling of training tasks, we have

η∗valid = Θ(1/t) and E
∥∥wt,η∗valid

− w∗
∥∥2

= ‖w∗‖2 − Ω(1)

for all η∗valid ∈ arg minη≥0 F̂TbV (n1,n2)(η), where the expectation is taken over new tasks.

Intuitively, train-by-validation is optimizing the right objective. As long as the meta-training problem has good
generalization performance (that is, good performance on a few tasks implies good performance on the distribution of
tasks), then train-by-validation should be able to choose the optimal learning rate. The step size of Θ(1/t) here serves
as regularization similar to early-stopping, which allows gradient descent algorithm to achieve better error on test data.

Notations We define more quantities that are useful in the analysis. In the train by train setting, given a task
Pk := (D(w∗k), S

(k)
train, `). The training set S(k)

train contains n samples {x(k)
i , y

(k)
i }ni=1 with y(k)

i =
〈
w∗k, x

(k)
i

〉
+ ξ

(k)
i .

Let X(k)
train be an n× d matrix with its i-th row as (x

(k)
i )>. Let H(k)

train := 1
n (X

(k)
train)>X

(k)
train be the covariance matrix

of the inputs in S(k)
train. Let ξ(k)

train be an n-dimensional column vector with its i-th entry equal to ξ(k)
i .

Since n ≤ d, with probability 1, we know X
(k)
train is full row rank. Therefore, X(k)

train has pseudo-inverse (X
(k)
train)†

such that X(k)
train(X

(k)
train)† = In. It’s not hard to verify that there exists w(k)

train = Proj
(X

(k)
train )>

w∗k + (X
(k)
train)†ξ

(k)
train such that

y
(k)
i =

〈
w

(k)
train, x

(k)
i

〉
for every (x

(k)
i , y

(k)
i ) ∈ S(k)

train. Here, Proj
(X

(k)
train )>

is the projection matrix onto the column span

of (X
(k)
train)>. We also denote Proj

(X
(k)
train )>

w∗k as (w
(k)
train)∗. We use B(k)

t,η to denote (I − (I − ηH(k)
train)t). Let w(k)

t,η be the

weight obtained by running GD on S(k)
train with step size η (with truncation).

With the above notations, it’s not hard to verify that for task Pk, the inner objective f̂(w) = 1
2

∥∥∥w − w(k)
train

∥∥∥2

H
(k)
train

.

The meta-loss on task Pk is just ∆TbT (n)(η, Pk) = 1
2

∥∥∥wt,η − w(k)
train

∥∥∥2

H
(k)
train

.

In the train-by-validation setting, each task Pk contains a training set S(k)
train with n1 samples and a validation set

S
(k)
valid with n2 samples. Similar as above, for the training set S(k)

train, we can define ξ(k)
train, X

(k)
train, H

(k)
train, w

(k)
train, B

(k)
t,η , w

(k)
t,η ;

for the validation set S(k)
valid, we can define ξ(k)

valid, X
(k)
valid, H

(k)
valid, w

(k)
valid. With these notations, the inner objective is

f̂(w) = 1
2

∥∥∥w − w(k)
train

∥∥∥2

H
(k)
train

and the meta-loss is ∆TbV (n1,n2)(η, Pk) = 1
2

∥∥∥wt,η − w(k)
valid

∥∥∥2

H
(k)
valid

.

We also use these notations without index k to refer to the quantities defined on task P. In the proofs, we ignore the
subsripts on n, n1, n2 and simply write ∆TbT (η, Pk),∆TbV (η, Pk), F̂TbT , F̂TbV , FTbT , FTbV .

B.1 Overall Proof Strategy
In this section (and the next), we follow similar proof strategies that consists of three steps.

Step 1: First, we show for both train-by-train and train-by-validation, there is a good step size that achieves small
empirical meta-objective (however the step sizes and the empirical meta-objective they achieve are different in the two
settings). This does not necessarily mean that the actual optimal step size is exactly the good step size that we propose,
but it gives an upperbound on the empirical meta-objective for the optimal step size.

Step 2: Second, we define a threshold step size such that for any step size larger than it, the empirical meta-objective
must be higher than what was achieved at the good step size in Step 1. This immediately implies that the optimal step
size cannot exceed this threshold step size.
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Step 3: Third, we show the meta-learning problem has good generalization performance, that is, if a learning rate η
performs well on the training tasks, it must also perform well on the task distribution, and vice versa. Thanks to Step 1
and Step 2, we know the optimal step size cannot exceed certain threshold and then only need to prove generalization
result within this range. The generalization result is not surprising as we only have a single trainable parameter η,
however we also emphasize that this is non-trivial as we will not restrict the step size η to be small enough that the
algorithms do not diverge. Instead we use a truncation to alleviate the diverging problem (this allows us to run the
algorithm on distribution of data whose largest possible learning rate is unknown).

Combing Step 1, 2, 3, we know the population meta-objective has to be small at the optimal step size. Finally, we
show that as long as the population meta-objective is small, the performance of the algorithms satisfy what we stated in
Theorem 5. The last step is easier for the train-by-validation setting, because its meta-objective is exactly the correct
measure that we are looking at; for the train-by-train setting we instead look at the property of empirical risk minimizer
(ERM), and show that anything close to the ERM is going to behave similarly.

B.2 Train-by-train (GD)
Recall Theorem 7 as follows.

Theorem 7. Let the meta objective F̂TbT (n)(η) be as defined in Equation 3 with n ∈ [d/4, 3d/4]. Assume noise level
σ is a large constant c1. Assume unroll length t ≥ c2, number of training tasks m ≥ c3 log(mt) and dimension
d ≥ c4 log(m) for certain constants c2, c3, c4. With probability at least 0.99 in the sampling of the training tasks, we
have

η∗train = Θ(1) and E
∥∥wt,η∗train

− w∗
∥∥2

= Ω(1)σ2,

for all η∗train ∈ arg minη≥0 F̂TbT (n)(η), where the expectation is taken over new tasks.

According to the data distribution, we know Xtrain is an n× d random matrix with each entry i.i.d. sampled from
standard Gaussian distribution. In the following lemma, we show that the covariance matrix Htrain is approximately
isotropic when d/4 ≤ n ≤ 3d/4. Specifically, we show

√
d√
L
≤ σi(Xtrain) ≤

√
Ld and 1

L ≤ λi(Htrain) ≤ L for
all i ∈ [n] with L = 100. We use letter L to denote the upper bound of ‖Htrain‖ to emphasize that this bounds the
smoothness of the inner objective. Throughout this section, we use letter L to denote constant 100. The proof of
Lemma 7 follows from random matrix theory. We defer its proof into Section B.2.4.

Lemma 7. Let X ∈ Rn×d be a random matrix with each entry i.i.d. sampled from standard Gaussian distribution. Let
H := 1/nX>X. Assume n = cd with c ∈ [ 1

4 ,
3
4 ]. Then, with probability at least 1− exp(−Ω(d)), there exists constant

L = 100 such that √
d√
L
≤ σi(X) ≤

√
Ld and

1

L
≤ λi(H) ≤ L,

for all i ∈ [n].

In this section, we always assume the size of each training set is within [d/4, 3d/4] so Lemma 7 holds. Since
‖Htrain‖ is upper bounded by L with high probability, we know the GD sequence converges to wtrain for η ∈ [0, 1/L].
In Lemma 1, we prove that the empirical meta objective F̂TbT monotonically decreases as η increases until 1/L. Also,
we show F̂TbT is exponentially small in t at step size 1/L. This serves as step 1 in Section B.1. The proof is deferred
into Section B.2.1.

Lemma 1. With probability at least 1 − m exp(−Ω(d)), F̂TbT (η) is monotonically decreasing in [0, 1/L] and
F̂TbT (1/L) ≤ 2L2σ2

(
1− 1

L2

)t
.

When the step size is larger than 1/L, the GD sequence can diverge, which incurs a high loss in meta objective.
Later in Definition 1, we define a step size η̃ such that the GD sequence gets truncated with descent probability for any
step size that is larger than η̃. In Lemma 2, we show with high probability, the empirical meta objective is high for all
η > η̃. This serves as step 2 in the proof strategy described in Section B.1. The proof is deferred into Section B.2.2.
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Lemma 2. With probability at least 1− exp(−Ω(m)), F̂TbT (η) ≥ σ2

10L8 for all η > η̃.

By Lemma 1 and Lemma 2, we know the optimal step size must lie in [1/L, η̃]. We can also show 1/L < η̃ < 3L,
so η∗train is a constant. To relate the empirical loss at η∗train to the population loss. We prove a generalization result for
step sizes within [1/L, η̃]. The following lemma is a formal version of Lemma 3. This serves as step 3 in Section B.1.
The proof is deferred into Section B.2.3.

Lemma 8. Suppose σ is a large constant c1. Assume t ≥ c2, d ≥ c4 for certain constants c2, c4. With probability at
least 1−m exp(−Ω(d))−O(t+m) exp(−Ω(m)),

|FTbT (η)− F̂TbT (η)| ≤ σ2

L3
,

for all η ∈ [1/L, η̃],

Combining the above lemmas, we know the population meta objective FTbT is small at η∗train, which means wt,η∗train

is close to the ERM solution. Since the ERM solution overfits to the noise in training tasks, we know
∥∥wt,η∗train

− w∗
∥∥

has to be large. We present the proof of Theorem 7 as follows.
Proof of Theorem 7. We assume σ is a large constant in this proof. According to Lemma 1, we know with probability
at least 1−m exp(−Ω(d)), F̂TbT (η) is monotonically decreasing in [0, 1/L] and F̂TbT (1/L) ≤ 2L2σ2(1− 1/L2)t.
This implies that the optimal step size η∗train ≥ 1/L and F̂TbT (η∗train) ≤ 2L2σ2(1 − 1/L2)t. By Lemma 2, we know
with probability at least 1− exp(−Ω(m)), F̂TbT (η) ≥ σ2

10L8 for all η > η̃, where η̃ is defined in Definition 1. As long
as t ≥ c2 for certain constant c2, we know σ2

10L8 > 2L2σ2(1− 1/L2)t, which then implies that the optimal step size
η∗train lies in [1/L, η̃]. According to Lemma 10, we know η̃ ∈ (1/L, 3L). Therefore η∗train is a constant.

According to Lemma 8, we know with probability at least 1−m exp(−Ω(d))−O(t+m) exp(−Ω(m)), |FTbT (η)−
F̂TbT (η)| ≤ σ2

L3 , for all η ∈ [1/L, η̃]. As long as t is larger than some constant, we have F̂TbT (η∗train) ≤ σ2

L3 . Combing
with the generalization result, we have FTbT (η∗train) ≤ 2σ2

L3 . Next, we show that under a small population loss,
E
∥∥wt,η∗train

− w∗
∥∥2

has to be large.
Let E1 be the event that

√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and

√
dσ/4 ≤

‖ξtrain‖ ≤
√
dσ. We have

E
∥∥wt,η∗train

− wtrain
∥∥2

Htrain
≥ 1

L
E
∥∥wt,η∗train

− wtrain
∥∥2
1 {E1}

≥ 1

L

(
E
∥∥wt,η∗train

− w∗train − (Xtrain)†ξtrain
∥∥1 {E1})2

≥ 1

L

(
E
∥∥(Xtrain)†ξtrain

∥∥1 {E1} − E
∥∥wt,η∗train

− w∗train

∥∥1 {E1})2 .
Since E

∥∥wt,η∗train
− wtrain

∥∥2

Htrain
≤ 4σ2

L3 , this then implies

E
∥∥(Xtrain)†ξtrain

∥∥1 {E1} − E
∥∥wt,η∗train

− w∗train

∥∥1 {E1} ≤√L4σ2

L3
=

2σ

L
.

Conditioning on E1, we can lower bound
∥∥(Xtrain)†ξtrain

∥∥ by σ
4
√
L
. According to Lemma 7 and Lemma 49, we know

Pr[E1] ≥ 1 − exp(−Ω(d)). As long as d is at least certain constant, we have Pr[E1] ≥ 0.9. This then implies
E
∥∥(Xtrain)†ξtrain

∥∥1 {E1} ≥ 9σ
40
√
L
. Therefore, we have

E
∥∥wt,η∗train

− w∗train

∥∥1 {E1} ≥ 9σ

40
√
L
− 2σ

L
=

9σ

4L
− 2σ

L
=

σ

4L
,

where the first equality uses L = 100. Then, we have

E
∥∥wt,η∗train

− w∗
∥∥2 ≥ E

∥∥wt,η∗train
− w∗train

∥∥2
1 {E1} ≥

(
E
∥∥wt,η∗train

− w∗train

∥∥1 {E1})2 ≥ σ2

16L2
,
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where the first inequality holds because for any Strain, w
∗
train is the projection of w∗ on the subspace of Strain and wt,η∗train

is also in this subspace. Taking a union bound for all the bad events, we know this result holds with probability at least
0.99 as long as σ is a large constant c1 and t ≥ c2,m ≥ c3 log(mt) and d ≥ c4 log(m) for certain constants c2, c3, c4.

�

B.2.1 Behavior of F̂TbT for η ∈ [0, 1/L]

In this section, we prove the empirical meta objective F̂TbT is monotonically decreasing in [0, 1/L]. Furthermore, we
show F̂TbT (1/L) is exponentially small in t.

Lemma 1. With probability at least 1 − m exp(−Ω(d)), F̂TbT (η) is monotonically decreasing in [0, 1/L] and
F̂TbT (1/L) ≤ 2L2σ2

(
1− 1

L2

)t
.

Proof of Lemma 1. For each k ∈ [m], let Ek be the event that
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L

for all i ∈ [n] and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. Here, L is constant 100 from Lemma 7. According to Lemma 7 and

Lemma 49, we know for each k ∈ [m], Ek happens with probability at least 1− exp(−Ω(d)). Taking a union bound
over all k ∈ [m], we know ∩k∈[m]Ek holds with probability at least 1 −m exp(−Ω(d)). From now on, we assume
∩k∈[m]Ek holds.

Let’s first consider each individual loss function ∆TbT (η, Pk). Let {ŵ(k)
τ,η} be the GD sequence without truncation.

We have

ŵ(k)
τ,η − w

(k)
train =ŵ

(k)
τ−1,η − w

(k)
train − ηH

(k)
train(ŵ

(k)
τ−1,η − w

(k)
train)

=(I − ηH(k)
train)(ŵ

(k)
τ−1,η − w

(k)
train) = −(I − ηH(k)

train)tw
(k)
train.

For any η ∈ [0, 1/L], we have
∥∥∥ŵ(k)

τ,η

∥∥∥ ≤ ∥∥∥w(k)
train

∥∥∥ =
∥∥∥(w

(k)
train)∗ + (X

(k)
train)†ξ

(k)
train

∥∥∥ ≤ 2
√
Lσ for any τ. Therefore,

∥∥∥w(k)
t,η

∥∥∥
never exceeds the norm threshold and never gets truncated.

Noticing that ∆TbT (η, Pk) = 1
2 (w

(k)
t,η − w

(k)
train)>H

(k)
train(w

(k)
t,η − w

(k)
train), we have

∆TbT (η, Pk) =
1

2
(w

(k)
train)>H

(k)
train(I − ηH(k)

train)2tw
(k)
train.

Taking the derivative of ∆TbT (η, Pk) in η, we have

∂

∂η
∆TbT (η, Pk) = −t(w(k)

train)>(H
(k)
train)2(I − ηH(k)

train)2t−1w
(k)
train.

Conditioning on Ek, we know 1/L ≤ λi(H
(k)
train) ≤ L for all i ∈ [n] and H(k)

train is full rank in the row span of X(k)
train.

Therefore, we know ∂
∂η∆TbT (η, Pk) < 0 for all η ∈ [0, 1/L). Here, we assume

∥∥∥w(k)
train

∥∥∥ > 0, which happens with
probability 1.

Overall, we know that conditioning on ∩k∈[m]Ek, every ∆TbT (η, Pk) is strictly decreasing for η ∈ [0, 1/L]. Since
F̂TbT (η) := 1

m

∑m
k=1 ∆TbT (η, Pk), we know F̂TbT (η) is strictly decreasing when η ∈ [0, 1/L].

At step size η = 1/L, we have

∆TbT (η, Pk) =
1

2
(w

(k)
train)>H

(k)
train(I − ηH(k)

train)2tw
(k)
train

≤1

2
L

(
1− 1

L2

)t ∥∥∥w(k)
train

∥∥∥2

≤ 2L2σ2

(
1− 1

L2

)t
,

where we upper bound
∥∥∥w(k)

train

∥∥∥2

by 4Lσ2 at the last step. Therefore, we have F̂TbT (1/L) ≤ 2L2σ2(1− 1
L2 )t. �
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B.2.2 Lower bounding F̂TbT for η ∈ (η̃,∞)

In this section, we prove that the empirical meta objective is lower bounded by Ω(σ2) with high probability for
η ∈ (η̃,∞). Step size η̃ is defined such that there is a descent probability of diverging for any step size larger than η̃.
Then, we show the contribution from these truncated sequence will be enough to provide an Ω(σ2) lower bound for
F̂TbT . The proof of Lemma 2 is given at the end of this section.

Lemma 2. With probability at least 1− exp(−Ω(m)), F̂TbT (η) ≥ σ2

10L8 for all η > η̃.

We define η̃ as the smallest step size such that the contribution from the truncated sequence in the population meta
objective exceeds certain threshold. The precise definition is as follows.

Definition 1. Given a training task P, let E1 be the event that
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L

for all i ∈ [n] and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. Let Ē2(η) be the event that the GD sequence is truncated with step size

η. Define η̃ as follows,

η̃ = inf

{
η ≥ 0

∣∣∣∣E1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
≥ σ2

L6

}
.

In the next lemma, we prove that for any fixed training set, 1
{
E1 ∩ Ē2(η′)

}
≥ 1

{
E1 ∩ Ē2(η)

}
for any η′ ≥ η.

This immediately implies that Pr[E1 ∩ Ē2(η)] and E 1
2 ‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
is non-decreasing in η.

Basically we need to show, conditioning on E1, if a GD sequence gets truncated at step size η, it must be also
truncated for larger step sizes. Let {w′τ,η} be the GD sequence without truncation. We only need to show that for any τ,
if
∥∥w′τ,η∥∥ exceeds the norm threshold,

∥∥w′τ,η′∥∥ must also exceed the norm threshold for any η′ ≥ η. This is easy to
prove if τ is odd because in this case

∥∥w′τ,η∥∥ is always non-decreasing in η. The case when τ is even is trickier because
there indeed exists certain range of η such that

∥∥w′τ,η∥∥ is decreasing in η. We manage to prove that this problematic
case cannot happen when

∥∥w′τ,η∥∥ is at least 4
√
Lσ. The full proof of Lemma 9 is deferred into Section B.2.4.

Lemma 9. Fixing a task P, let E1 and Ē2(η) be as defined in Definition 1. We have

1
{
E1 ∩ Ē2(η′)

}
≥ 1

{
E1 ∩ Ē2(η)

}
,

for any η′ ≥ η.

In the next Lemma, we prove that η̃ must lie within (1/L, 3L). We prove this by showing that the GD sequence
never gets truncated for η ∈ [0, 2/L] and almost always gets truncated for η ∈ [2.5L,∞). The proof is deferred into
Section B.2.4.

Lemma 10. Let η̃ be as defined in Definition 1. Suppose σ is a large constant c1. Assume t ≥ c2, d ≥ c4 for some
constants c2, c4. We have

1/L < η̃ < 3L.

Now, we are ready to give the proof of Lemma 2.
Proof of Lemma 2. Let E1 and Ē2(η) be as defined in Definition 1. For the simplicity of the proof, we assume
E 1

2 ‖wt,η̃ − wtrain‖2Htrain
1
{
E1 ∩ Ē2(η̃)

}
≥ σ2

L6 . We will discuss the proof for the other case at the end, which is very
similar.

Conditioning on E1, we know 1
2 ‖wt,η̃ − wtrain‖2Htrain

≤ 18L2σ2. Therefore, we know Pr[E1 ∩ Ē2(η̃)] ≥ 1
18L8 . For

each task Pk, define E(k)
1 and Ē(k)

2 (η) as the corresponding events on training set S(k)
train. By Hoeffding’s inequality, we

know with probability at least 1− exp(−Ω(m)),

1

m

m∑
k=1

1

{
E(k)

1 ∩ Ē(k)
2 (η̃)

}
≥ 1

20L8
.
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By Lemma 9, we know 1

{
E(k)

1 ∩ Ē(k)
2 (η)

}
≥ 1

{
E(k)

1 ∩ Ē(k)
2 (η̃)

}
for any η ≥ η̃. Then, we can lower bound F̂TbT

for any η > η̃ as follows,

F̂TbT (η) =
1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

H
(k)
train

≥ 1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

H
(k)
train

1

{
E(k)

1 ∩ Ē(k)
2 (η)

}
≥2σ2 1

m

m∑
k=1

1

{
E(k)

1 ∩ Ē(k)
2 (η)

}
≥2σ2 1

m

m∑
k=1

1

{
E(k)

1 ∩ Ē(k)
2 (η̃)

}
≥ σ2

10L8
,

where the second inequality lower bounds the loss for one task by 2σ2 when the sequence gets truncated.
We have assumed E 1

2 ‖wt,η̃ − wtrain‖2Htrain
1
{
E1 ∩ Ē2(η̃)

}
≥ σ2

L6 in the proof. Now, we show the proof also works

when E 1
2 ‖wt,η̃ − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η̃)

}
< σ2

L6 with slight changes. According to the definition and Lemma 9,

we know E 1
2 ‖wt,η̃ − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
> σ2

L6 for all η > η̃. At each training set Strain, we can define
1
{
E1 ∩ Ē2(η̃′)

}
as limη→η̃+ 1

{
E1 ∩ Ē2(η)

}
. We also have Pr[E1 ∩ Ē2(η̃′)] ≥ 1

18L8 . The remaining proof is the same
as before as we substitute 1

{
E1 ∩ Ē2(η̃)

}
by 1

{
E1 ∩ Ē2(η̃′)

}
. �

B.2.3 Generalization for η ∈ [1/L, η̃]

In this section, we show empirical meta objective F̂TbT is point-wise close to population meta objective FTbT for all
η ∈ [1/L, η̃].

Lemma 8. Suppose σ is a large constant c1. Assume t ≥ c2, d ≥ c4 for certain constants c2, c4. With probability at
least 1−m exp(−Ω(d))−O(t+m) exp(−Ω(m)),

|FTbT (η)− F̂TbT (η)| ≤ σ2

L3
,

for all η ∈ [1/L, η̃],

In this section, we first show F̂TbT concentrates on FTbT for any fixed η and then construct ε-net for F̂TbT and
FTbT for η ∈ [1/L, η̃]. We give the proof of Lemma 8 at the end.

We first show that for a fixed η, F̂TbT (η) is close to FTbT (η) with high probability. We prove the meta-loss on each
task ∆TbT (η, Pk) is O(1)-subexponential. Then we apply Bernstein’s inequality to get the result. The proof is deferred
into Section B.2.4. We will assume σ is a large constant and t ≥ c2, d ≥ c4 for some constants c2, c4 so that Lemma 10
holds and η̃ is a constant.

Lemma 11. Suppose σ is a constant. For any fixed η and any 1 > ε > 0, with probability at least 1− exp(−Ω(ε2m)),∣∣∣F̂TbT (η)− FTbT (η)
∣∣∣ ≤ ε.

Next, we construct an ε-net for FTbT . By the definition of η̃, we know for any η ≤ η̃, the contribution from truncated
sequences in FTbT (η) is small. We can show the contribution from the un-truncated sequences is O(t)-lipschitz.

Lemma 12. Suppose σ is a large constant c1. Assume t ≥ c2, d ≥ c4 for some constant c2, c4. There exists an 11σ2

L4 -net
N ⊂ [1/L, η̃] for FTbT with |N | = O(t). That means, for any η ∈ [1/L, η̃],

|FTbT (η)− FTbT (η′)| ≤ 11σ2

L4
,

for η′ = arg minη′′∈N,η′′≤η(η − η′′).
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Proof of Lemma 12. Let E1 and Ē2(η) be as defined in Definition 1. For the simplicity of the proof, we assume
E 1

2 ‖wt,η̃ − wtrain‖2Htrain
1
{
E1 ∩ Ē2(η̃)

}
≤ σ2

L6 . We will discuss the proof for the other case at the end, which is very
similar.

We can divide E 1
2 ‖wt,η − wtrain‖2Htrain

as follows,

E
1

2
‖wt,η − wtrain‖2Htrain

=E
1

2
‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)}+ E
1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η̃)

}
+ E

1

2
‖wt,η − wtrain‖2Htrain

1
{
Ē1
}
.

We will construct an ε-net for the first term and show the other two terms are small. Let’s first consider the third term.
Since 1

2 ‖wt,η − wtrain‖2Htrain
isO(1)-subexponential and Pr[Ē1] ≤ exp(−Ω(d)), we have E 1

2 ‖wt,η − wtrain‖2Htrain
1
{
Ē1
}

=

O(1) exp(−Ω(d)). Choosing d to be at least certain constant, we know 1
2 ‖wt,η − wtrain‖2Htrain

1
{
Ē1
}
≤ σ2/L4.

Then we upper bound the second term. Since E 1
2 ‖wt,η̃ − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η̃)

}
≤ σ2

L6 and
1
2 ‖wt,η̃ − wtrain‖2Htrain

≥ 2σ2 when wt,η̃ diverges, we know Pr[E1 ∩ Ē2(η̃)] ≤ 1
2L6 . Then, we can upper bound the

second term as follows,

E
1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η̃)

}
≤ 18L2σ2 1

2L6
=

9σ2

L4

Next, we show the first term 1
2 ‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)} has desirable Lipschitz condition. According
to Lemma 9, we know 1 {E1 ∩ E2(η)} ≥ 1 {E1 ∩ E2(η̃)} for any η ≤ η̃. Therefore, conditioning on E1 ∩ E2(η̃), we
know wt,η never gets truncated for any η ≤ η̃. This means wt,η = Bt,ηwtrain with Bt,η = (I − (I − ηHtrain)t). We can
compute the derivative of 1

2 ‖wt,η − wtrain‖2Htrain
as follows,

∂

∂η

1

2
‖wt,η − wtrain‖2Htrain

=
〈
tHtrain(I − ηHtrain)t−1wtrain, Htrain(wt,η − wtrain)

〉
.

Since ‖wt,η‖ = ‖(I − (I − ηHtrain)t)wtrain‖ ≤ 4
√
Lσ and ‖wtrain‖ ≤ 2

√
Lσ, we have ‖(I − ηHtrain)twtrain‖ ≤

6
√
Lσ. We can bound

∥∥(I − ηHtrain)t−1wtrain
∥∥ with ‖(I − ηHtrain)twtrain‖ + ‖wtrain‖ by bounding the expanding

directions using ‖(I − ηHtrain)twtrain‖ and bounding the shrinking directions using ‖wtrain‖ . Therefore, we can bound
the derivative as follows, ∣∣∣∣ ∂∂η 1

2
‖wt,η − wtrain‖2Htrain

∣∣∣∣ ≤ tL× 8
√
Lσ × 6L

√
Lσ = 48L3σ2t.

Suppose σ is a constant, we know E 1
2 ‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)} is O(t)-lipschitz. Therefore, there exists an
σ2

L4 -net N for E 1
2 ‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)} with size O(t). That means, for any η ∈ [1/L, η̃],∣∣∣∣E1

2
‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)} − E
1

2
‖wt,η′ − wtrain‖2Htrain

1 {E1 ∩ E2(η̃)}
∣∣∣∣ ≤ σ2

L4

for η′ = arg minη′′∈N,η′′≤η(η − η′′). Note we construct the ε-net in a particular way such that η′ is chosen as the
largest step size in N that is at most η.

Combing with the upper bounds on the second term and the third term, we have for any η ∈ [1/L, η̃],

|FTbT (η)− FTbT (η′)| ≤ 11σ2

L4

for η′ = arg minη′′∈N,η′′≤η(η − η′′).
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In the above analysis, we have assumed E 1
2 ‖wt,η̃ − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η̃)

}
≤ σ2

L6 . The proof can be easily
generalized to the other case. We can define 1

{
E1 ∩ Ē2(η̃′)

}
as limη→η̃− 1

{
E1 ∩ Ē2(η)

}
. Then the proof works as

long as we substitute 1
{
E1 ∩ Ē2(η̃)

}
by 1

{
E1 ∩ Ē2(η̃′)

}
. We will also add η̃ into the ε-net. �

In order to prove FTbT is close to F̂TbT point-wise in [1/L, η̃], we still need to construct an ε-net for the empirical
meta objective F̂TbT .

Lemma 13. Suppose σ is a large constant c1. Assume t ≥ c2, d ≥ c4 for certain constants c2, c4. With probability at
least 1−m exp(−Ω(d)), there exists an σ2

L4 -net N ′ ⊂ [1/L, η̃] for F̂TbT with |N | = O(t+m). That means, for any
η ∈ [1/L, η̃],

|F̂TbT (η)− F̂TbT (η′)| ≤ σ2

L4
,

for η′ = arg minη′′∈N ′,η′′≤η(η − η′′).

Proof of Lemma 13. For each k ∈ [m], let E1,k be the event that
√
d/
√
L ≤ σi(X(k)

train) ≤
√
Ld and 1/L ≤ λi(H(k)

train) ≤
L for all i ∈ [n] and

√
dσ/4 ≤

∥∥∥ξ(k)
train

∥∥∥ ≤ √dσ. According to Lemma 7 and Lemma 49, we know with probability at
least 1−m exp(−Ω(d)), E1,k’s hold for all k ∈ [m]. From now on, we assume all these events hold.

Recall that the empirical meta objective as follows,

F̂TbT (η) :=
1

m

m∑
k=1

∆TbT (η, Pk).

For any k ∈ [m], let ηc,k be the smallest step size such that w(k)
t,η gets truncated. If ηc,k > η̂, by similar argument

as in Lemma 12, we know ∆TbT (η, Pk) is O(t)-Lipschitz in [1/L, η̂] as long as σ is a constant. If ηc,k ≤ η̂, by
Lemma 9 we know w

(k)
t,η gets truncated for any η ≥ ηc,k. This then implies that ∆TbT (η, Pk) is a constant function for

η ∈ [ηc,k, η̂]. We can also show that ∆TbT (η, Pk) is O(t)-Lipschitz in [1/L, ηc,k). There might be a discontinuity in
function value at ηc,k, so we need to add ηc,k into the ε-net.

Overall, we know there exists an σ2

L4 -net N ′ with |N ′| = O(t+m) for F̂TbT . That means, for any η ∈ [1/L, η̃],∣∣∣F̂TbT (η)− F̂TbT (η′)
∣∣∣ ≤ σ2

L4

for η′ = arg minη′′∈N ′,η′′≤η(η − η′′). �
Finally, we combine Lemma 11, Lemma 12 and Lemma 13 to prove that F̂TbT is point-wise close to FTbT for

η ∈ [1/L, η̃].

Proof of Lemma 8. We assume σ as a constant in this proof. By Lemma 11, we know with probability at least
1− exp(−Ω(ε2m)),

∣∣∣F̂TbT (η)− FTbT (η)
∣∣∣ ≤ ε for any fixed η. By Lemma 12, we know there exists an 11σ2

L4 -net N

for FTbT with size O(t). By Lemma 13, we know with probability at least 1−m exp(−Ω(d)), there exists an σ2

L4 -net
N ′ for F̂TbT with size O(t + m). According to the proofs of Lemma 12 and Lemma 13, it’s not hard to verify that
N ∪N ′ is still an 11σ2

L4 -net for F̂TbT and FTbT . That means, for any η ∈ [1/L, η̃], we have

|FTbT (η)− FTbT (η′)|, |F̂TbT (η)− F̂TbT (η′)| ≤ 11σ2

L4
,

for η′ = arg minη′′∈N∪N ′,η′′≤η(η − η′′).
Taking a union bound over N ∪N ′, we have with probability at least 1−O(t+m) exp(−Ω(m)),∣∣∣F̂TbT (η)− FTbT (η)

∣∣∣ ≤ σ2

L4

for all η ∈ N ∪N ′.
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Overall, we know with probability at least 1−m exp(−Ω(d))−O(t+m) exp(−Ω(m)), for all η ∈ [1/L, η̃],

|FTbT (η)− F̂TbT (η)|
≤|FTbT (η)− FTbT (η′)|+ |F̂TbT (η)− F̂TbT (η′)|+ |F̂TbT (η′)− FTbT (η′)|

≤23σ2

L4
≤ σ2

L3
,

where η′ = arg minη′′∈N∪N ′,η′′≤η(η − η′′). We use the fact that L = 100 in the last inequality. �

B.2.4 Proofs of Technical Lemmas

Proof of Lemma 7. Recall that Xtrain is an n× d matix with n = cd where c ∈ [1/4, 3/4]. According to Lemma 52,
with probability at least 1− 2 exp(−t2/2), we have

√
d−
√
cd− t ≤ σi(Xtrain) ≤

√
d+
√
cd+ t,

for all i ∈ [n].
Since Htrain = 1/nX>trainXtrain, we know λi(Htrain) = 1/nσ2

i (Xtrain). Since c ∈ [ 1
4 ,

3
4 ], we have 1

cd (
√
d+
√
cd)2 ≤

100 − c′ and 1
cd (
√
d −
√
cd)2 ≥ 1

100 + c′, for some constant c′. Therefore, we know with probability at least 1 −
exp(−Ω(d)),

1

100
≤ λi(Htrain) ≤ 100,

for all i ∈ [n].
Similarly, since there exists constant c′′ such that

√
d+
√
cd ≤ (10− c′′)

√
d and

√
d−
√
cd ≥ (1/10 + c′′)

√
d,

we know with probability at least 1− exp(−Ω(d)),

1

10

√
d ≤ σi(Xtrain) ≤ 10

√
d,

for all i ∈ [n]. Choosing L = 100 finishes the proof. �

Proof of Lemma 9. We prove that for any training set Strain, 1
{
E1 ∩ Ē2(η′)

}
≥ 1

{
E1 ∩ Ē2(η′)

}
for any η′ > η.

This is trivially true if E1 is false on Strain. Therefore, we focus on the case when E1 holds for Strain. Suppose ηc is the
smallest step size such that the GD sequence gets truncated. Let {w′τ,ηc} be the GD sequence without truncation. There
must exists τ ≤ t such that

∥∥w′τ,ηc∥∥ ≥ 4
√
Lσ. We only need to prove that

∥∥w′τ,η∥∥ ≥ 4
√
Lσ for any η ≥ ηc. We prove

this by showing the derivative of
∥∥w′τ,η∥∥2

in η is non-negative assuming
∥∥w′τ,η∥∥2 ≥ 4

√
Lσ.

Recall the recursion of w′τ,η as w′τ,η = wtrain− (I− ηHtrain)τwtrain. If τ is an odd number, it’s clear that ∂
∂η

∥∥w′τ,η∥∥2

is non-negative at any η ≥ 0. From now on, we assume τ is an even number. Actually in this case, ∂
∂η

∥∥w′τ,η∥∥2
can be

negative for some η. However, we can prove the derivative must be non-negative assuming
∥∥w′τ,η∥∥2 ≥ 4

√
Lσ.

Suppose the eigenvalue decomposition of Htrain is
∑n
i=1 λiuiu

>
i with λ1 ≥ · · ·λn. Denote ci as 〈wtrain, ui〉 . Let

λj be the smallest eigenvalue such that (1− ηλj) ≤ −1. This implies λi ≤ 2/η for any i ≥ j + 1. We can write down∥∥w′τ,η∥∥2
as follows

∥∥w′τ,η∥∥2
=

j∑
i=1

(
1− (1− ηλi)t

)2
c2i +

n∑
i=j+1

(
1− (1− ηλi)t

)2
c2i

≤
j∑
i=1

(
1− (1− ηλi)t

)2
c2i + ‖wtrain‖2 .
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Since E1 holds, we know ‖wtrain‖2 ≤ 4Lσ2. Combining with
∥∥w′τ,η∥∥2 ≥ 16Lσ2,we have

∑j
i=1 (1− (1− ηλi)t)

2
c2i ≥

12Lσ2. We can lower bound the derivative as follows,

∂

∂η
‖wτ,η‖2 =

j∑
i=1

2tλi(1− ηλi)t−1
(
1− (1− ηλi)t

)
c2i +

n∑
i=j+1

2tλi(1− ηλi)t−1
(
1− (1− ηλi)t

)
c2i

≥2t

j∑
i=1

λi(1− ηλi)t−1
(
1− (1− ηλi)t

)
c2i − 2t

2

η

n∑
i=j+1

c2i

≥2t

j∑
i=1

λi(1− ηλi)t−1
(
1− (1− ηλi)t

)
c2i − 2t× 8Lσ2/η.

Then, we only need to show that
∑j
i=1 λi(1− ηλi)t−1 (1− (1− ηλi)t) c2i is larger than 8Lσ2/η. We have

j∑
i=1

λi(1− ηλi)t−1
(
1− (1− ηλi)t

)
c2i =

j∑
i=1

λi
(1− ηλi)t−1

1− (1− ηλi)t
(
1− (1− ηλi)t

)2
c2i

=

j∑
i=1

λi
(ηλi − 1)t−1

(ηλi − 1)t − 1

(
1− (1− ηλi)t

)2
c2i

=

j∑
i=1

λi
(ηλi − 1)t

(ηλi − 1)t − 1

1

ηλi − 1

(
1− (1− ηλi)t

)2
c2i

≥
j∑
i=1

1

η

(
1− (1− ηλi)t

)2
c2i ≥ 12Lσ2/η > 8Lσ2/η.

�

Proof of Lemma 10. Similar as the analysis in Lemma 1, conditioning on E1, we know the GD sequence never exceeds
the norm threshold for any η ∈ [0, 2/L]. This then implies

E
1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
= 0,

for all η ∈ [0, 2/L].
Let {w′τ,η} be the GD sequence without truncation. For any step size η ∈ [2.5L,∞], conditioning on E1, we have∥∥w′t,η∥∥ ≥ ((η/L− 1)t − 1

)
‖wtrain‖ ≥

(
1.5t − 1

)( σ

4
√
L
− 1

)
≥ 4
√
Lσ,

where the last inequality holds as long as σ ≥ 5
√
L, t ≥ c2 for some constant c2. Therefore, we know when

η ∈ [2.5L,∞), 1
{
E1 ∩ Ē2(η)

}
= 1 {E1}. Then, we have for any η ≥ 2.5L,

E
1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
≥ 1

2L

(
4
√
Lσ − 2

√
Lσ
)2

Pr[E1] ≥ 2σ2 Pr[E1] ≥ σ2

L3
,

where the last inequality uses Pr[E1] ≥ 1− exp(−Ω(d)) and assume d ≥ c4 for some constant c4.
Overall, we know E 1

2 ‖wt,η − wtrain‖2Htrain
1
{
E1 ∩ Ē2(η)

}
equals zero for all η ∈ [0, 2/L] and is at least σ

2

L3 for all
η ∈ [2.5L,∞). By definition, we know η̃ ∈ (1/L, 3L). �

Proof of Lemma 11. Recall that F̂TbT (η) := 1
m

∑m
k=1 ∆TbT (η, Pk). We prove that each ∆TbT (η, Pk) is O(1)-

subexponential. We can further write ∆TbT (η, Pk) as follows,

∆TbT (η, Pk) =
1

2

∥∥∥w(k)
t,η − w∗k − (X

(k)
train)†ξ

(k)
train

∥∥∥2

H
(k)
train

≤1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2 ∥∥∥H(k)
train

∥∥∥+
1

2n

∥∥∥ξ(k)
train

∥∥∥2

+
∥∥∥w(k)

t,η − w∗k
∥∥∥( 1√

n

∥∥∥ξ(k)
train

∥∥∥)( 1√
n

∥∥∥X(k)
train

∥∥∥) .
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We can write
∥∥∥H(k)

train

∥∥∥ as σ2
max( 1√

n
X

(k)
train). According to Lemma 51, we know σmax(X

(k)
train)− Eσmax(X

(k)
train) is O(1)-

subgaussian, which implies that σmax( 1√
n
X

(k)
train)−Eσmax( 1√

n
X

(k)
train) isO(1/

√
d)-subgaussian. Since Eσmax( 1√

n
X

(k)
train)

is a constant, we know σmax( 1√
n
X

(k)
train) is O(1)-subgaussian and σ2

max( 1√
n
X

(k)
train) is O(1)-subexponential. Similarly,

we know both 1
2n

∥∥∥ξ(k)
train

∥∥∥2

and
(

1√
n

∥∥∥X(k)
train

∥∥∥)( 1√
n

∥∥∥ξ(k)
train

∥∥∥) are O(1)-subexponential.

Suppose σ is a constant, we know
∥∥∥w(k)

t,η − w∗k
∥∥∥ is upper bounded by a constant. Then, we know ∆TbT (η, Pk)

is O(1)-subexponential. Therefore, F̂TbT (η) is the average of m i.i.d. O(1)-subexponential random variables. By
standard concentration inequality, we know for any 1 > ε > 0, with probability at least 1− exp(−Ω(ε2m)),∣∣∣F̂TbT (η)− FTbT (η)

∣∣∣ ≤ ε.
�

B.3 Train-by-validation (GD)
In this section, we show that the optimal step size under F̂TbV is Θ(1/t). Furthermore, we show under this optimal step
size, GD sequence makes constant progress towards the ground truth. Precisely, we prove the following theorem.

Theorem 8. Let the meta objective F̂TbV (n1,n2)(η) be as defined in Equation 4 with n1, n2 ∈ [d/4, 3d/4]. Assume
noise level σ is a large constant c1. Assume unroll length t ≥ c2, number of training tasks m ≥ c3 and dimension
d ≥ c4 log(t) for certain constants c2, c3, c4. With probability at least 0.99 in the sampling of training tasks, we have

η∗valid = Θ(1/t) and E
∥∥wt,η∗valid

− w∗
∥∥2

= ‖w∗‖2 − Ω(1)

for all η∗valid ∈ arg minη≥0 F̂TbV (n1,n2)(η), where the expectation is taken over new tasks.

In this section, we still use L to denote constant 100. We start from analyzing the behavior of the population
meta-objective FTbV for step sizes within [0, 1/L]. We show the optimal step size within this range is Θ(1/t) and GD
sequence moves towards w∗ under the optimal step size. The following lemma is a formal version of Lemma 4. This
serves as step 1 in Section B.1. We defer the proof of Lemma 14 into Section B.3.1.

Lemma 14. Suppose noise level σ is a large enough constant c1. Assume unroll length t ≥ c2 and dimension d ≥ c4
for some constants c2, c4. There exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that

FTbV (η2) ≤ 1

2
‖w∗‖2 − 9

10
C +

σ2

2

FTbV (η) ≥ 1

2
‖w∗‖2 − 6

10
C +

σ2

2
,∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant.

To relate the behavior of FTbV to the behavior of F̂TbV , we prove the following generalization result for step sizes
in [0, 1/L]. The following lemma is a formal version of Lemma 6. This serves as step 3 in Section B.1. The proof is
deferred into Section B.3.2.

Lemma 15. For any 1 > ε > 0, assume d ≥ c4 log(1/ε) for some constant c4. With probability at least 1 −
O(1/ε) exp(−Ω(ε2m)),

|F̂TbV (η)− FTbV (η)| ≤ ε,

for all η ∈ [0, 1/L].

In Lemma 16, we show the empirical meta objective F̂TbV is high for all step size larger than 1/L, which then
implies η∗valid ∈ [0, 1/L]. The following lemma is a formal version of Lemma 5. This serves as step 2 in Section B.1.
We prove this lemma in Section B.3.3.
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Lemma 16. Suppose σ is a large constant. Assume t ≥ c2, d ≥ c4 log(t) for some constants c2, c4. With probability at
least 1− exp(−Ω(m)),

F̂TbV (η) ≥C ′σ2 +
1

2
σ2,

for all η ≥ 1/L, where C ′ is a positive constant independent with σ.

Combining Lemma 14, Lemma 15 and Lemma 16, we give the proof of Theorem 8.
Proof of Theorem 8. According to Lemma 14, we know as long as d and t are larger than certain constants, there
exists η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that

FTbV (η2) ≤ 1

2
‖w∗‖2 − 9

10
C + σ2/2

FTbV (η) ≥ 1

2
‖w∗‖2 − 6

10
C + σ2/2,∀η ∈ [0, η1] ∪ [η3, 1/L],

for some positive constant C.
Choosing ε = min(1, C/10) in Lemma 15, we know as long as d is larger than certain constant, with probability at

least 1− exp(−Ω(m)),
|F̂TbV (η)− FTbV (η)| ≤ C/10,

for all η ∈ [0, 1/L].
Therefore,

F̂TbV (η2) ≤ 1

2
‖w∗‖2 − 8

10
C + σ2/2

F̂TbV (η) ≥ 1

2
‖w∗‖2 − 7

10
C + σ2/2,∀η ∈ [0, η1] ∪ [η3, 1/L].

By Lemma 16, we know as long as t ≥ c2, d ≥ c4 log(t) for some constants c2, c4, with probability at least
1− exp(−Ω(m)),

F̂TbV (η) ≥ C ′σ2 +
1

2
σ2,

for all η ≥ 1/L. As long as σ ≥ 1/
√
C ′, we have F̂TbV (η) ≥ 1 + 1

2σ
2 for all η ≥ 1/L. Combining with F̂TbV (η2) ≤

1
2 ‖w

∗‖2 − 8
10C + σ2/2, we know η∗valid ∈ [0, 1/L]. Furthermore, since F̂TbV (η) ≥ 1

2 ‖w
∗‖2 − 7

10C + σ2/2,∀η ∈
[0, η1] ∪ [η3, 1/L], we have η1 ≤ η∗valid ≤ η3.

Recall that η1, η3 = Θ(1/t), we know η∗valid = Θ(1/t). At the optimal step size, we have

FTbV (η∗valid) ≤ F̂TbV (η∗valid) + C/10 ≤ F̂TbV (η2) + C/10 ≤ 1

2
‖w∗‖2 − 7

10
C + σ2/2.

Since FTbV (η∗valid) = E 1
2

∥∥wt,η∗valid
− w∗

∥∥2
+ σ2/2, we have

E
∥∥wt,η∗valid

− w∗
∥∥2 ≤ ‖w∗‖2 − 7

5
C.

Choosing m to be at least certain constant, this holds with probability at least 0.99. �

B.3.1 Behavior of FTbV for η ∈ [0, 1/L]

In this section, we study the behavior of FTbV when η ∈ [0, 1/L]. We prove the following Lemma.
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Lemma 14. Suppose noise level σ is a large enough constant c1. Assume unroll length t ≥ c2 and dimension d ≥ c4
for some constants c2, c4. There exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that

FTbV (η2) ≤ 1

2
‖w∗‖2 − 9

10
C +

σ2

2

FTbV (η) ≥ 1

2
‖w∗‖2 − 6

10
C +

σ2

2
,∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant.

It’s not hard to verify thatFTbV (η) = E1/2 ‖wt,η − w∗‖2+σ2/2. For convenience, denoteQ(η) := 1/2 ‖wt,η − w∗‖2 .
In order to prove Lemma 14, we only need to show that EQ(η2) ≤ 1

2 ‖w
∗‖2 − 9

10C and EQ(η) ≥ 1
2 ‖w

∗‖2 − 6
10C for

all η ∈ [0, η1] ∪ [η3, 1/L]. In Lemma 17, we first show that this happens with high probability over the sampling of
tasks.

Lemma 17. Suppose noise level σ is a large enough constant c1. Assume unroll length t ≥ c2 for certain constant
c2. Then, with probability at least 1− exp(−Ω(d)) over the sampling of tasks, there exists η1, η2, η3 = Θ(1/t) with
η1 < η2 < η3 such that

Q(η2) :=
1

2
‖wt,η2 − w∗‖

2 ≤ 1

2
‖w∗‖2 − C

Q(η) :=
1

2
‖wt,η − w∗‖2 ≥

1

2
‖w∗‖2 − C

2
,∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant.

Since we are in the small step size regime, we know the GD sequence converges with high probability and will not
be truncated. For now, let’s assume wt,η = Bt,ηw

∗
train +Bt,η(Xtrain)†ξtrain, where Bt,η = I − (I − ηHtrain)t. We have

Q(η) =
1

2

∥∥Bt,ηw∗train +Bt,η(Xtrain)†ξtrain − w∗
∥∥2

=
1

2
‖Bt,ηw∗train − w∗‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

+
〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
=

1

2
‖w∗‖2 +

1

2
‖Bt,ηw∗train‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 − 〈Bt,ηw∗train, w

∗〉

+
〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
.

In Lemma 18, we show that with high probability the crossing term
〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
is negligi-

ble for all η ∈ [0, 1/L]. By Hoeffding’s inequality, we know the crossing term is small for any fixed η. Constructing an
ε-net for the crossing term in η, we can take a union bound and show it’s small for all η ∈ [0, 1/L]. We defer the proof
of Lemma 18 to Section B.3.4.

Lemma 18. Assume σ is a constant. For any 1 > ε > 0, we know with probability at least 1−O(1/ε) exp(−Ω(ε2d)),∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain
〉∣∣ ≤ ε,

for all η ∈ [0, 1/L].

Denote
G(η) :=

1

2
‖w∗‖2 +

1

2
‖Bt,ηw∗train‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 − 〈Bt,ηw∗train, w

∗〉 .

Choosing ε = C/4 in Lemma 18, we only need to show G(η2) ≤ ‖w∗‖2 − 5C/4 and G(η) ≥ ‖w∗‖2 − C/4 for all
η ∈ [0, η1] ∪ [η3, 1/L].

We first show that there exists η2 = Θ(1/t) such that G(η2) ≤ 1
2 ‖w

∗‖2 − 5C/4 for some constant C. It’s not hard
to show that 1

2 ‖Bt,ηw
∗
train‖

2
+ 1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

= O(η2t2σ2). In Lemma 19, we show that the improvement
〈Bt,ηw∗train, w

∗〉 = Ω(ηt) is linear in η. Therefore there exists η2 = Θ(1/t) such that G(η2) ≤ 1
2 ‖w

∗‖2 − 5C/4 for
some constant C. We defer the proof of Lemma 19 to Section B.3.4.
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Lemma 19. For any fixed η ∈ [0, L/t] with probability at least 1− exp(−Ω(d)),

〈Bt,ηw∗train, w
∗〉 ≥ ηt

16L
.

To lower bound G(η) for small η, we notice

G(η) ≥ 1

2
‖w∗‖2 − 〈Bt,ηw∗train, w

∗〉 .

We can show that 〈Bt,ηw∗train, w
∗〉 = O(ηt). Therefore, there exists η1 = Θ(1/t) such that 〈Bt,ηw∗train, w

∗〉 ≤ C/4 for
all η ∈ [0, η1].

To lower bound G(η) for large η, we lower bound G(η) using the noise square term,

G(η) ≥ 1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2
.

We show that with high probability
∥∥Bt,η(Xtrain)†ξtrain

∥∥2
= Ω(σ2) for all η ∈ [log(2)L/t, 1/L]. Therefore, as long as

σ is larger than some constant, there exists η3 = Θ(1/t) such that G(η) ≥ 1
2 ‖w

∗‖2 for all η ∈ [η3, 1/L].
Combing Lemma 18 and Lemma 19, we give a complete proof for Lemma 17.

Proof of Lemma 17. Recall that

Q(η) =
1

2
‖Bt,ηw∗train − w∗‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

+
〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
=G(η) +

〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
We first show that with probability at least 1− exp(−Ω(d)), there exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such
that G(η2) ≤ 1/2 ‖w∗‖2 − 5C/4 and G(η) ≥ 1/2 ‖w∗‖2 − C/4 for all η ∈ [0, η1] ∪ [η3, 1/L].

According to Lemma 7, we know with probability at least 1 − exp(−Ω(d)),
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and

1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] with L = 100.

Upper bounding G(η2): We can expand G(η) as follows:

G(η) :=
1

2
‖Bt,ηw∗train − w∗‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

=
1

2
‖w∗‖2 +

1

2
‖Bt,ηw∗train‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 − 〈Bt,ηw∗train, w

∗〉 .

Recall that Bt,η = I − (I − ηHtrain)t, for any vector w in the span of Htrain,

‖Bt,ηw‖ =
∥∥(I − (I − ηHtrain)t

)
w
∥∥ ≤ Lηt ‖w‖ .

According to Lemma 49, we know with probability at least 1− exp(−Ω(d)), ‖ξtrain‖ ≤
√
dσ. Therefore, we have

1

2
‖Bt,ηw∗train‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 ≤ L2η2t2/2 + L3η2t2σ2/2 ≤ L3η2t2σ2,

where the second inequality uses σ, L ≥ 1. According to Lemma 19, for any fixed η ∈ [0, L/t], with probability at least
1− exp(−Ω(d)), 〈Bt,ηw∗train, w

∗〉 ≥ ηt
16L . Therefore,

G(η) ≤ 1

2
‖w∗‖2 + L3η2t2σ2 − ηt

16L
≤ 1

2
‖w∗‖2 − ηt

32L
,

where the second inequality holds as long as η ≤ 1
32L4σ2t . Choosing η2 := 1

32L4σ2t , we have

G(η2) ≤ 1

2
‖w∗‖2 − 1

1024L5σ2
=

1

2
‖w∗‖2 − 5C

4
,

where C = 1
819.2L5σ2 . Note C is a constant as σ, L are constants.
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Lower bounding G(η) for η ∈ [0, η1] : Now, we prove that there exists η1 = Θ(1/t) with η1 < η2 such that for any
η ∈ [0, η1], G(η) ≥ 1

2 ‖w
∗‖2 − C

4 . Recall that

G(η) =
1

2
‖w∗‖2 +

1

2
‖Bt,ηw∗train‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 − 〈Bt,ηw∗train, w

∗〉 .

≥1

2
‖w∗‖2 − 〈Bt,ηw∗train, w

∗〉 .

Since |〈Bt,ηw∗train, w
∗〉| ≤ Lηt, we know for any η ∈ [0, η1],

G(η) ≥ 1

2
‖w∗‖2 − Lη1t.

Choosing η1 = C
4Lt , we have for any η ∈ [0, η1],

G(η) ≥ 1

2
‖w∗‖2 − C

4
.

Lower bounding G(η) for η ∈ [η3, 1/L]: Now, we prove that there exists η3 = Θ(1/t) with η3 > η2 such that for
all η ∈ [η3, 1/L],

G(η) ≥ 1

2
‖w∗‖2 − C

4
.

Recall that

G(η) =
1

2
‖Bt,ηw∗train − w∗‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 ≥ 1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2
.

According to Lemma 49, we know with probability at least 1− exp(−Ω(d)),
√
dσ

2
√

2
≤ ‖ξtrain‖ . Therefore,

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 ≥

(
1− e−ηt/L

)2 σ2

8L
≥ σ2

32L
,

where the last inequality assumes η ≥ log(2)L/t. As long as t ≥ log(2)L2, we have log(2)L/t ≤ 1/L. Choosing
η3 = log(2)L/t, we know for all η ∈ [η3, 1/L],

G(η) ≥ 1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 ≥ σ2

64L
.

Note that 1
2 ‖w

∗‖2 = 1/2. Therefore, as long as σ ≥ 8
√
L, we have

G(η) ≥ 1

2
‖w∗‖2

for all η ∈ [η3, 1/L].

Overall, we have shown that there exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that G(η2) ≤ 1/2 ‖w∗‖2 −
5C/4 andG(η) ≥ 1/2 ‖w∗‖2−C/4 for all η ∈ [0, η1]∪[η3, 1/L]. Recall thatQ(η) = G(η)+

〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
.

Choosing ε = C/4 in Lemma 18, we know with probability at least 1−exp(−Ω(d)),
∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain

〉∣∣ ≤
C/4 for all η ∈ [0, 1/L]. Therefore, we know Q(η2) ≤ 1/2 ‖w∗‖2 − C and Q(η) ≥ 1/2 ‖w∗‖2 − C/2 for all
η ∈ [0, η1] ∪ [η3, 1/L]. �

Next, we give the proof of Lemma 14.

Proof of Lemma 14. Recall thatFTbV (η) = E1/2 ‖wt,η − w∗‖2+σ2

2 . For convenience, denoteQ(η) := 1/2 ‖wt,η − w∗‖2 .
In order to prove Lemma 14, we only need to show that EQ(η2) ≤ 1

2 ‖w
∗‖2 − 9

10C and EQ(η) ≥ 1
2 ‖w

∗‖2 − 6
10C for

all η ∈ [0, η1] ∪ [η3, 1/L].
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According to Lemma 17, as long as σ is a large enough constant c1 and t is at least certain constant c2, with
probability at least 1− exp(−Ω(d)) over the sampling of Strain, there exists η1, η2, η3 = Θ(1/t) with η1 < η2 < η3

such that

Q(η2) := 1/2 ‖wt,η2 − w∗‖
2 ≤ 1

2
‖w∗‖2 − C

Q(η) := 1/2 ‖wt,η − w∗‖2 ≥
1

2
‖w∗‖2 − C

2
,∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant. Call this event E . Suppose the probability that E happens is 1− δ. We can write EQ(η)
as follows,

EQ(η) = E[Q(η)|E ] Pr[E ] + E[Q(η)|Ē ] Pr[Ē ].

According to the algorithm, we know ‖wt,η‖ is always bounded by 4
√
Lσ. Therefore,Q(η) := 1/2 ‖wt,η − w∗‖2 ≤

13Lσ2. When η = η2, we have

EQ(η2) ≤
(

1

2
‖w∗‖2 − C

)
(1− δ) + 13Lσ2δ

=
1

2
‖w∗‖2 − δ

2
− C + (C + 13Lσ2)δ

≤1

2
‖w∗‖2 − 9C

10
,

where the last inequality assumes δ ≤ C
10C+130Lσ2 .

When η ∈ [0, η1] ∪ [η3, 1/L], we have

EQ(η2) ≥
(

1

2
‖w∗‖2 − C

2

)
(1− δ)− 13Lσ2δ

=
1

2
‖w∗‖2 − δ

2
− (1− δ)C

2
− 13Lσ2δ

≥1

2
‖w∗‖2 − C

2
− (1/2 + 13Lσ2)δ

≥1

2
‖w∗‖2 − 6C

10
,

where the last inequality holds as long as δ ≤ C
5C+130Lσ2 .

According to Lemma 17, we know δ ≤ exp(−Ω(d)). Therefore, the conditions for δ can be satisfied as long as d is
larger than certain constant. �

B.3.2 Generalization for η ∈ [0, 1/L]

In this section, we show F̂TbV is point-wise close to FTbV for all η ∈ [0, 1/L]. Recall Lemma 15 as follows.

Lemma 15. For any 1 > ε > 0, assume d ≥ c4 log(1/ε) for some constant c4. With probability at least 1 −
O(1/ε) exp(−Ω(ε2m)),

|F̂TbV (η)− FTbV (η)| ≤ ε,
for all η ∈ [0, 1/L].

In order to prove Lemma 15, let’s first show that for a fixed η with high probability F̂TbV (η) is close to FTbV (η).
Similar as in Lemma 11, we show each ∆TbV (η, Pk) is O(1)-subexponential. We defer its proof to Section B.3.4.

Lemma 20. Suppose σ is a constant. For any fixed η ∈ [0, 1/L] and any 1 > ε > 0, with probability at least
1− exp(−Ω(ε2m)), ∣∣∣F̂TbV (η)− FTbV (η)

∣∣∣ ≤ ε.
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Next, we show that there exists an ε-net for FTbV with size O(1/ε). By ε-net, we mean there exists a finite set Nε of
step size such that |FTbV (η)− FTbV (η′)| ≤ ε for any η ∈ [0, 1/L] and η′ ∈ arg minη∈Nε |η − η′|. We defer the proof
of Lemma 21 to Section B.3.4.

Lemma 21. Suppose σ is a constant. For any 1 > ε > 0, assume d ≥ c4 log(1/ε) for constant c4. There exists an
ε-net Nε for FTbV with |Nε| = O(1/ε). That means, for any η ∈ [0, 1/L],

|FTbV (η)− FTbV (η′)| ≤ ε,

for η′ ∈ arg minη∈Nε |η − η′|.

Next, we show that with high probability, there also exists an ε-net for F̂TbV with size O(1/ε).

Lemma 22. Suppose σ is a constant. For any 1 > ε > 0, assume d ≥ c4 log(1/ε) for constant c4. With probability at
least 1− exp(−Ω(ε2m)), there exists an ε-net N ′ε for F̂TbV with |Nε| = O(1/ε). That means, for any η ∈ [0, 1/L],

|F̂TbV (η)− F̂TbV (η′)| ≤ ε,

for η′ ∈ arg minη∈Nε |η − η′|.

Combing Lemma 20, Lemma 21 and Lemma 22, now we give the proof of Lemma 15.
Proof of Lemma 15. The proof is very similar as in Lemma 8. By Lemma 20, we know with probability at least
1 − exp(−Ω(ε2m)),

∣∣∣F̂TbV (η)− FTbV (η)
∣∣∣ ≤ ε for any fixed η. By Lemma 21 and Lemma 22, we know as long

as d = Ω(log(1/ε)), with probability at least 1 − exp(−Ω(ε2m)), there exists ε-net Nε and N ′ε for FTbV and F̂TbV
respectively. Here, both of Nε and N ′ε have size O(1/ε). According to the proofs of Lemma 21 and Lemma 22, it’s not
hard to verify that Nε ∪N ′ε is still an ε-net for F̂TbV and FTbV . That means, for any η ∈ [0, 1/L], we have

|FTbV (η)− FTbV (η′)|, |F̂TbV (η)− F̂TbV (η′)| ≤ ε,

for η′ ∈ arg minη∈Nε∪N ′ε |η − η
′|.

Taking a union bound over Nε ∪N ′ε, we have with probability at least 1−O(1/ε) exp(−Ω(ε2m)),∣∣∣F̂TbV (η)− FTbV (η)
∣∣∣ ≤ ε

for any η ∈ Nε ∪N ′ε.
Overall, we know with probability at least 1−O(1/ε) exp(−Ω(ε2m)), for all η ∈ [0, 1/L],

|FTbV (η)− F̂TbV (η)|
≤|FTbV (η)− FTbV (η′)|+ |F̂TbV (η)− F̂TbV (η′)|+ |F̂TbV (η′)− FTbV (η′)|
≤3ε,

where η′ ∈ arg minη∈Nε∪N ′ε |η − η
′|. Changing ε to ε′/3 finishes the proof. �

B.3.3 Lower bounding F̂TbV for η ∈ [1/L,∞)

In this section, we prove F̂TbV is large for any step size η ≥ 1/L. Therefore, the optimal step size η∗valid must be smaller
than F̂TbV .

Lemma 16. Suppose σ is a large constant. Assume t ≥ c2, d ≥ c4 log(t) for some constants c2, c4. With probability at
least 1− exp(−Ω(m)),

F̂TbV (η) ≥C ′σ2 +
1

2
σ2,

for all η ≥ 1/L, where C ′ is a positive constant independent with σ.
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When the step size is very large (larger than 3L), we know the GD sequence gets truncated with high probability,
which immediately implies the loss is high. The proof of Lemma 23 is deferred into Section B.3.4.

Lemma 23. Assume t ≥ c2, d ≥ c4 for some constants c2, c4. With probability at least 1− exp(−Ω(m)),

F̂TbV (η) ≥ σ2,

for all η ∈ [3L,∞)

The case for step size within [1/L, 3L] requires more efforts. We give the proof of Lemma 24 in this section later.

Lemma 24. Suppose σ is a large constant. Assume t ≥ c2, d ≥ c4 log(t) for some constants c2, c4. With probability at
least 1− exp(−Ω(m)),

F̂TbV (η) ≥C4σ
2 +

1

2
σ2,

for all η ∈ [1/L, 3L], where C4 is a positive constant independent with σ.

With the above two lemmas, Lemma 16 is just a combination of them.
Proof of Lemma 16. The result follows by taking a union bound and choosing C ′ = min(C4, 1/2). �

In the remaining of this section, we give the proof of Lemma 24. When the step size is between 1/L and 3L, if the
GD sequence has a reasonable probability of diverging, we can still show the loss is high similar as before. If not, we
need to show the GD sequence overfits the noise in the training set, which incurs a high loss.

Recall that the noise term is roughly 1
2

∥∥(I − (I − ηHtrain)t)(Xtrain)†ξtrain
∥∥2

. When η ∈ [1/L, 3L], the eigenvalues
of I − ηHtrain in Strain subspace can be negative. If all the non-zero n eigenvalues of Htrain have the same value, there
exists a step size such that the eigenvalues of I − ηHtrain in subspace Strain is −1. If t is even, the eigenvalues of
I − (I − ηHtrain)t in Strain subspace are zero, which means GD sequence does not catch any noise in Strain.

Notice that the above problematic case cannot happen when the eigenvalues of Htrain are spread out. Basically,
when there are two different eigenvalues, there won’t exist any large η that can cancel both directions at the same time.
In Lemma 25, we show with constant probability, the eigenvalues of Htrain are indeed spread out. The proof is deferred
into Section B.3.4.

Lemma 25. Let the top n eigenvalues of Htrain be λ1 ≥ · · · ≥ λn. Assume dimension d ≥ c4 for certain constant c4.
There exist positive constants µ, µ′, µ′′ such that with probability at least µ,

λµ′n − λn−µ′n+1 ≥ µ′′.

Next, we utilize this variance in eigenvalues to prove that the GD sequence has to learn a constant fraction of the
noise in training set.

Lemma 26. Suppose noise level σ is a large enough constant c1. Assume unroll length t ≥ c2 and dimension d ≥ c4
for some constants c2, c4. Then, with probability at least C1

‖Bt,ηwtrain − w∗‖2Htrain
≥ C2σ

2,

for all η ∈ [1/L, 3L], where C1, C2 are positive constants.

Proof of Lemma 26. Let E1 be the event that
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n]

and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. Let E3 be the event that

√
d/
√
L ≤ σi(Xvalid) ≤

√
Ld and 1/L ≤ λi(Hvalid) ≤ L for

all i ∈ [n] and
√
dσ/4 ≤ ‖ξvalid‖ ≤

√
dσ. According to Lemma 7 and Lemma 49, we know both E1 and E3 hold with

probability at least 1− exp(−Ω(d)).
Let the top n eigenvalues of Htrain be λ1 ≥ · · · ≥ λn. According to Lemma 25, assuming d is larger than certain

constant, we know there exist positive constants µ1, µ2, µ3 such that with probability at least µ1, λµ2n−λn−µ2n+1 ≥ µ3.
Call this event E2.
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Let S1 and S2 be the span of the bottom and top µ2n eigenvectors of Htrain respectively. According to Lemma 49,
we know ‖ξtrain‖ ≥

√
d

4 σ with probability at least 1− exp(−Ω(d)). Let P1 ∈ Rn×n be a rank-µ2n projection matrix
such that the column span of (Xtrain)†P1 is S1. By Johnson-Lindenstrauss Lemma, we know with probability at least
1 − exp(−Ω(d)),

∥∥ProjP1
ξtrain

∥∥ ≥ √
µ2

2 ‖ξtrain‖ . Taking a union bound, with probability at least 1 − exp(−Ω(d)),∥∥ProjP1
ξtrain

∥∥ ≥ √
µ2dσ
8 . Similarly, we can define P2 for the S2 subspace and show with probability at least 1 −

exp(−Ω(d)),
∥∥ProjP2

ξtrain
∥∥ ≥ √µ2dσ

8 . Call the intersection of both events as E4, which happens with with probability
at least 1− exp(−Ω(d)).

Taking a union bound, we know E1 ∩ E2 ∩ E3 ∩ E4 holds with probability at least µ1/2 as long as d is larger than
certain constant. Through the proof, we assume E1 ∩ E2 ∩ E3 ∩ E4 holds.

Let’s first lower bound ‖Bt,ηwtrain − w∗train‖ as follows,

‖Bt,ηwtrain − w∗train‖ =
∥∥Bt,η (w∗train + (Xtrain)†ξtrain

)
− w∗train

∥∥
≥
(∥∥Bt,η (w∗train + (Xtrain)†ξtrain

)∥∥− 1
)

Recall that we define S1 and S2 as the span of the bottom and top µ2n eigenvectors of Htrain respectively. We rely
on S1 to lower bound ‖wt,η − w∗‖ when η is small and rely on S2 when η is large.

Case 1: Let σS1

min(Bt,η) be the smallest singular value of Bt,η within S1 subspace. If ηλn−µ2n+1 ≤ 2− µ3/(2L),
we have

σS1

min(Bt,η) ≥ min

(
1−

(
1− 1

L2

)t
, 1−

(
1− µ3

2L

)t)
≥ 1

2
,

where the second inequality assumes t ≥ max(L2, 2L/µ3) log 2. Then, we have

‖wt,η − w∗‖ ≥
(
σS1

min(Bt,η)
(∥∥ProjS1

(Xtrain)†ξtrain
∥∥− 1

)
− 1
)

≥
(

1

2

(√
µ2σ

8
√
L
− 1

)
− 1

)
≥
√
µ2σ

32
√
L
,

where the second inequality uses
∥∥ProjP1

ξtrain
∥∥ ≥ √µ2dσ

8 and the last inequality assumes σ ≥ 48
√
L√

µ2
.

Case 2: If ηλn−µ2n+1 > 2−µ3/(2L), we have ηλµ2n ≥ 2 +µ3/(2L) since λµ2n− λn−µ2n+1 ≥ µ3 and η ≥ 1/L.

Let σS2

min(Bt,η) be the smallest singular value of Bt,η within S2 subspace. We have

σS2

min(Bt,η) ≥
((

1 +
µ3

2L

)t
− 1

)
≥ 1

2
,

where the last inequality assumes t ≥ 4L/µ3. Then, similar as in Case 1, we can also prove ‖wt,η − w∗‖ ≥
√
µ2σ

32
√
L
.

Therefore, we have

‖Bt,ηwtrain − w∗‖2Htrain
= ‖Bt,ηwtrain − w∗train‖

2
Htrain
≥ 1

L
‖Bt,ηwtrain − w∗train‖

2 ≥ µ2σ
2

1024L2
,

for all η ∈ [1/L, 3L]. We denote C1 := µ1/2 and C2 = µ2

1024L2 . �
Before we present the proof of Lemma 24, we still need a technical lemma that shows the noise in Svalid concentrates

at its mean. The proof of Lemma 27 is deferred into Section B.3.4.

Lemma 27. Suppose σ is constant. For any 1 > ε > 0, with probability at least 1 − O(t/ε) exp(−Ω(ε2d)),
λn(Hvalid) ≥ 1/L and

‖wt,η − wvalid‖2Hvalid
≥ ‖wt,η − w∗‖2Hvalid

+ (1− ε)σ2,

for all η ∈ [1/L, 3L].
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Combing the above lemmas, we give the proof of Lemma 24.
Proof of Lemma 24. According to Lemma 27, we know given 1 > ε > 0, with probability at least
1 − O(t/ε) exp(−Ω(ε2d)), λn(Hvalid) ≥ 1/L and ‖wt,η − wvalid‖2Hvalid

≥ ‖wt,η − w∗‖2Hvalid
+ (1 − ε)σ2 for all η ∈

[1/L, 3L]. Call this event E1. Suppose Pr[E1] ≥ 1− δ/2, where δ will be specifies later. For each training set S(k)
train, we

also define E(k)
1 . By concentration, we know with probability at least 1−exp(−Ω(δ2m)), 1/m

∑m
k=1 1

{
E(k)

1

}
≥ 1−δ.

According to Lemma 26, we know there exist constants C1, C2 such that with probability at least C1,

‖Bt,ηwtrain − w∗‖2Htrain
≥ C2σ

2 for all η ∈ [1/L, 3L]. Call this event E2. For each training set S(k)
train, we also define

E(k)
2 . By concentration, we know with probability at least 1− exp(−Ω(m)), 1/m

∑m
k=1 1

{
E(k)

2

}
≥ C1/2.

For any step size η ∈ [1/L, 3L], we can lower bound F̂TbV (η) as follows,

F̂TbV (η) =
1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
valid

∥∥∥2

H
(k)
valid

≥ 1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
valid

∥∥∥2

H
(k)
valid

1

{
E(k)

1

}
≥ 1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1

}
+

1

2
(1− ε)(1− δ)σ2

≥ 1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1 ∩ E(k)
2

}
+

1

2
(1− ε)(1− δ)σ2.

As long as δ ≤ C1/4, we know 1
m

∑m
k=1 1

{
E(k)

1 ∩ E(k)
2

}
≥ C1/4. Let Ē3(η) be the event that w(k)

t,η gets truncated
with step size η. We have

1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1 ∩ E(k)
2

}
=

1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1 ∩ E(k)
2 ∩ E(k)

3

}
+

1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1 ∩ E(k)
2 ∩ Ē(k)

3

}
.

If 1
m

∑m
k=1 1

{
E(k)

1 ∩ E(k)
2 ∩ Ē(k)

3

}
≥ C1/8, we have

1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1 ∩ E(k)
2

}
≥ 1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1 ∩ E(k)
2 ∩ Ē(k)

3

}
≥C1

8
× 9σ2

2
=

9C1σ
2

16
.

Here, we lower bound
∥∥∥w(k)

t,η − w∗k
∥∥∥2

Hvalid

by 9σ2 when the sequence gets truncated.

If 1
m

∑m
k=1 1

{
E(k)

1 ∩ E(k)
2 ∩ Ē(k)

3

}
< C1/8, we know 1

m

∑m
k=1 1

{
E(k)

1 ∩ E(k)
2 ∩ E(k)

3

}
≥ C1/8. Then, we have

1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1 ∩ E(k)
2

}
≥ 1

m

m∑
k=1

1

2

∥∥∥B(k)
t,η wtrain − w∗k

∥∥∥2

Hvalid

1

{
E(k)

1 ∩ E(k)
2 ∩ E(k)

3

}
≥C1

8
× C2σ

2

2
=
C1C2σ

2

16
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Letting C3 = min( 9C1

16 ,
C1C2

16 ), we then have

F̂TbV (η) ≥ C3σ
2 +

1

2
(1− ε)(1− δ)σ2 ≥ C3σ

2

2
+

1

2
σ2,

where the last inequality chooses δ = ε = C3/2. In order for Pr[E1] ≥ 1− δ/2, we only need d ≥ c4 log(t) for some
constant c4. Replacing C3/2 by C4 finishes the proof. �

B.3.4 Proofs of Technical Lemmas

Proof of Lemma 18. We first show that for a fixed η ∈ [0, 1/L], the crossing term
∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain

〉∣∣
is small with high probability. We can write down the crossing term as follows:〈

Bt,ηw
∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
=
〈
[(Xtrain)†]>Bt,η(Bt,ηw

∗
train − w∗), ξtrain

〉
.

Noticing that ξtrain is independent with [(Xtrain)†]>Bt,η(Bt,ηw
∗
train − w∗), we will use Hoeffding’s inequality to bound∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain

〉∣∣. According to Lemma 7, we know with probability at least 1 − exp(−Ω(d)),√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] with L = 100. Since η ≤ 1/L, we know

‖Bt,η‖ = ‖I − (I − ηHtrain)t‖ ≤ 1. Therefore, we have

∥∥[(Xtrain)†]>Bt,η(Bt,ηw
∗
train − w∗)

∥∥ ≤ 2
√
L√
d
,

for any η ∈ [0, 1/L]. Then, for any ε > 0, by Hoeffding’s inequality, with probability at least 1− exp(−Ω(ε2d)),∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain
〉∣∣ ≤ ε.

Next, we construct an ε-net on η and show the crossing term is small for all η ∈ [0, 1/L]. Let

g(η) :=
〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
.

We compute the derivative of g(η) as follows:

g′(η) =
〈
tHtrain(I − ηHtrain)t−1w∗train, Bt,η(Xtrain)†ξtrain

〉
+
〈
Bt,ηw

∗
train − w∗, tHtrain(I − ηHtrain)t−1(Xtrain)†ξtrain

〉
By Lemma 49, we know with probability at least 1− exp(−Ω(d)), ‖ξtrain‖ ≤

√
dσ. Therefore,

|g′(η)| ≤ L1.5t
(

1− η

L

)t−1

σ + 2L1.5t
(

1− η

L

)t−1

σ = 3L1.5t
(

1− η

L

)t−1

σ.

We can control |g′(η)| in different regimes:

• For η ∈ [0, L
t−1 ], we have |g′(η)| ≤ 3L1.5tσ.

• Given any 1 ≤ i ≤ log t− 1, for any η ∈ ( iL
t−1 ,

(i+1)L
t−1 ], we have |g′(η)| ≤ 3L1.5tσ

ei .

• For any η ∈ (L log t
t−1 , 1/L], we have |g′(η)| ≤ 3L1.5σ.

Fix any ε > 0, we know there exists an ε-net Nε with size

|Nε| =
1

ε

(
L

t− 1

log t−1∑
i=0

3L1.5tσ

ei
+

(
1

L
− L log t

t− 1

)
3L1.5σ

)

≤1

ε

(
3eL2.5tσ

t− 1
+ 3
√
Lσ

)
= O(

1

ε
)

39



such that for any η ∈ [0, 1/L], there exists η′ ∈ Nε with |g(η) − g(η′)| ≤ ε. Note that L = 100 and σ is a constant.
Taking a union bound over Nε and all the other bad events, we have with probability at least 1 − exp(−Ω(d)) −
O(1/ε) exp(−Ω(ε2d)), for all η ∈ [0, 1/L],∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain

〉∣∣ ≤ ε+ ε = 2ε.

As long as 1 > ε > 0, this happens with probability at least 1−O(1/ε) exp(−Ω(ε2d)). Replacing ε by ε′/2 finishes
the proof. �

Proof of Lemma 19. According to Lemma 7, we know with probability at least 1−exp(−Ω(d)), 1/L ≤ λi(Htrain) ≤ L
for all i ∈ [n] with L = 100. We can lower bound 〈Bt,ηw∗train, w

∗〉 as follows,

〈Bt,ηw∗train, w
∗〉 =

〈(
I − (I − ηHtrain)t

)
w∗train, w

∗
train

〉
≥λmin

(
I − (I − ηHtrain)t

)
‖w∗train‖

2

≥
(

1− exp

(
−ηt
L

))
‖w∗train‖

2
.

By Johnson-Lindenstrauss lemma (Lemma 53), we know with probability at least 1− 2 exp(−cε2d/4),

‖w∗train‖ ≥
1

2
(1− ε) ‖w∗‖ =

1

2
(1− ε).

Then, we know with probability at least 1− 2 exp(−cε2d/4)− exp(−Ω(d)),

〈Bt,ηw∗train, w
∗〉 ≥

(
1− exp

(
−ηt
L

))
‖w∗train‖

2

≥
(

1− exp

(
−ηt
L

))
1

4
(1− ε)2

≥1− 2ε

4

(
1− exp

(
−ηt
L

))
Since ex ≤ 1− x+ x2/2 for any x ≤ 0, we know exp(−ηt/L) ≤ 1− ηt/L+ η2t2/(2L2). For any η ≤ L/t, we have
exp(−ηt/L) ≤ 1− ηt/(2L). Then with probability at least 1− 2 exp(−cε2d/4)− exp(−Ω(d)),

〈Bt,ηw∗train, w
∗〉 ≥1− 2ε

4

ηt

2L

≥ ηt

16L
,

where the second inequality holds by choosing ε = 1/4. �

Proof of Lemma 20. Recall that

F̂TbV (η) :=
1

m

m∑
k=1

∆TbV (η, Pk)

For each individual loss function ∆TbV (η, Pk), we have

∆TbV (η, Pk) =
1

2

∥∥∥w(k)
t,η − w∗ − (X

(k)
valid)†ξ

(k)
valid

∥∥∥2

H
(k)
valid

=
1

2

∥∥∥w(k)
t,η − w∗

∥∥∥2

H
(k)
valid

+
1

2n

∥∥∥ξ(k)
valid

∥∥∥2

+

〈
w

(k)
t,η − w∗,

1

n
(X

(k)
valid)>ξ

(k)
valid

〉
≤25Lσ2

2

∥∥∥H(k)
valid

∥∥∥+
1

2n

∥∥∥ξ(k)
valid

∥∥∥2

+ 5
√
Lσ

(
1√
n

∥∥∥X(k)
valid

∥∥∥)( 1√
n

∥∥∥ξ(k)
valid

∥∥∥)
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We can write
∥∥∥H(k)

valid

∥∥∥ as σ2
max( 1√

n
X

(k)
valid).According to Lemma 51, we know σmax(X

(k)
valid)−Eσmax(X

(k)
valid) isO(1)-

subgaussian, which implies that σmax( 1√
n
X

(k)
valid)−Eσmax( 1√

n
X

(k)
valid) isO(1/

√
d)-subgaussian. Since Eσmax( 1√

n
X

(k)
valid)

is a constant, we know σmax( 1√
n
X

(k)
valid) is O(1)-subgaussian and σ2

max( 1√
n
X

(k)
valid) is O(1)-subexponential. Similarly,

we know both 1
2n

∥∥∥ξ(k)
valid

∥∥∥2

and
(

1√
n

∥∥∥X(k)
valid

∥∥∥)( 1√
n

∥∥∥ξ(k)
valid

∥∥∥) are O(1)-subexponential. This further implies that

∆TbV (η, Pk) is O(1)-subexponential. Therefore, F̂TbV is the average of m i.i.d. O(1)-subexponential random vari-
ables. By standard concentration inequality, we know for any 1 > ε > 0, with probability at least 1− exp(−Ω(ε2m)),∣∣∣F̂TbV (η)− FTbV (η)

∣∣∣ ≤ ε.
�

Proof of Lemma 21. Recall that

FTbV (η) =E
1

2
‖wt,η − w∗‖2 + σ2/2.

We only need to construct an ε-net for E 1
2 ‖wt,η − w

∗‖2. Let E be the event that
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and

1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and ‖ξtrain‖ ≤
√
dσ. We have

E
1

2
‖wt,η − w∗‖2 = E

[
1

2
‖wt,η − w∗‖2 |E

]
Pr[E ] + E

[
1

2
‖wt,η − w∗‖2 |Ē

]
Pr[Ē ]

We first construct an ε-net for E
[

1
2 ‖wt,η − w

∗‖2 |E
]

Pr[E ]. Let Q(η) := 1
2 ‖wt,η − w

∗‖2 . Fix a training set Strain

under which event E holds. We show that Q(η) has desirable lipschitz property.
The derivative of Q(η) can be computed as follows,

Q′(η) =
〈
tHtrain(I − ηHtrain)t−1wtrain, wt,η − w∗

〉
.

Conditioning on E , we have
|Q′(η)| = O(1)t(1− η

L
)t−1.

Therefore, we have ∣∣∣∣ ∂∂ηE
[

1

2
‖wt,η − w∗‖2 |E

]
Pr[E ]

∣∣∣∣ = O(1)t(1− η

L
)t−1.

Similar as in Lemma 18, for any ε > 0,we know there exists an ε-netNε with sizeO(1/ε) such that for any η ∈ [0, 1/L],∣∣∣∣E [1

2
‖wt,η − w∗‖2 |E

]
Pr[E ]− E

[
1

2
‖wt,η′ − w∗‖2 |E

]
Pr[E ]

∣∣∣∣ ≤ ε
for η′ ∈ arg minη∈Nε |η − η′|.

Suppose the probability of Ē is δ. We have

E
[

1

2
‖wt,η − w∗‖2 |Ē

]
Pr[Ē ] ≤ 25Lσ2

2
δ ≤ ε,

where the last inequality assumes δ ≤ 2ε
25Lσ2 . According to Lemma 7 and Lemma 49, we know δ := Pr[Ē ] ≤

exp(−Ω(d)). Therefore, given any ε > 0, there exists constant c4 such that δ ≤ 2ε
25Lσ2 as long as d ≥ c4 log(1/ε).

Overall, for any ε > 0, as long as d = Ω(log(1/ε)), there exists Nε with size O(1/ε) such that for any η ∈ [0, 1/L],
|FTbV (η)− FTbV (η′)| ≤ 3ε for η′ ∈ arg minη∈Nε |η − η′|. Changing ε to ε′/3 finishes the proof. �
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Proof of Lemma 22. For each k ∈ [m], let Ek be the event that
√
d/
√
L ≤ σi(X

(k)
train) ≤

√
Ld for any i ∈ [n] and∥∥∥ξ(k)

train

∥∥∥ ≤ √dσ. Then, we can write the empirical meta objective as follows,

F̂TbV (η) :=
1

m

m∑
k=1

∆TbT (η, Pk)1Ek +
1

m

m∑
k=1

∆TbT (η, Pk)1Ēk .

Similar as Lemma 21, we will show that the first term has desirable Lipschitz property and the second term is small.
Now, let’s focus on the first term 1

m

∑m
k=1 ∆TbT (η, Pk)1Ek . Recall that

∆TbT (η, Pk) =
1

2

∥∥∥w(k)
t,η − w

(k)
valid

∥∥∥2

H
(k)
valid

=
1

2

∥∥∥B(k)
t,η w

(k)
train − w

∗ − (X
(k)
valid)†ξ

(k)
valid

∥∥∥2

H
(k)
valid

.

Computing the derivative of ∆TbT (η, Pk) in terms of η, we have

∂

∂η
∆TbT (η, Pk) =

〈
tH

(k)
train(I − ηH(k)

train)t−1w
(k)
train, H

(k)
valid

(
w

(k)
t,η − w∗ − (X

(k)
valid)†ξ

(k)
valid

)〉
Conditioning on Ek, we can bound the derivative,∣∣∣∣ ∂∂η∆TbT (η, Pk)

∣∣∣∣ = O(1)t
(

1− η

L

)t−1
(∥∥∥H(k)

valid

∥∥∥+

(
1√
d

∥∥∥X(k)
valid

∥∥∥)( 1√
d

∥∥∥ξ(k)
valid

∥∥∥)) .
Therefore, we have∣∣∣∣∣ 1

m

m∑
k=1

∂

∂η
∆TbT (η, Pk)1Ek

∣∣∣∣∣ = O(1)t
(

1− η

L

)t−1 1

m

m∑
k=1

(∥∥∥H(k)
valid

∥∥∥+

(
1√
d

∥∥∥X(k)
valid

∥∥∥)( 1√
d

∥∥∥ξ(k)
valid

∥∥∥)) .
Similar as in Lemma 20, we know both

∥∥∥H(k)
valid

∥∥∥ and
(

1√
d

∥∥∥X(k)
valid

∥∥∥)( 1√
d

∥∥∥ξ(k)
valid

∥∥∥) areO(1)-subexponential. Therefore,

we know with probability at least 1 − exp(−Ω(m)), 1
m

∑m
k=1

(∥∥∥H(k)
valid

∥∥∥+
(

1√
d

∥∥∥X(k)
valid

∥∥∥)( 1√
d

∥∥∥ξ(k)
valid

∥∥∥)) = O(1).

This further shows that with probability at least 1− exp(−Ω(m)),∣∣∣∣∣ 1

m

m∑
k=1

∂

∂η
∆TbT (η, Pk)1Ek

∣∣∣∣∣ = O(1)t
(

1− η

L

)t−1

.

Similar as in Lemma 18, we can show that for any ε > 0, there exists an ε-net with sizeO(1/ε) for 1
m

∑m
k=1 ∆TbT (η, Pk)1Ek .

Next, we show that the second term 1
m

∑m
k=1 ∆TbT (η, Pk)1Ēk is small with high probability. According to the

proof in Lemma 20, we know

∆TbT (η, Pk) = O(1)

(∥∥∥H(k)
valid

∥∥∥+
1

d

∥∥∥ξ(k)
valid

∥∥∥2

+

(
1√
d

∥∥∥X(k)
valid

∥∥∥)( 1√
d

∥∥∥ξ(k)
valid

∥∥∥))
Therefore, there exists constant C such that

1

m

m∑
k=1

∆TbT (η, Pk)1Ēk ≤ C
1

m

m∑
k=1

(∥∥∥H(k)
valid

∥∥∥+
1

d

∥∥∥ξ(k)
valid

∥∥∥2

+

(
1√
d

∥∥∥X(k)
valid

∥∥∥)( 1√
d

∥∥∥ξ(k)
valid

∥∥∥))1Ēk .
It’s not hard to verify that

(∥∥∥H(k)
valid

∥∥∥+ 1
d

∥∥∥ξ(k)
valid

∥∥∥2

+
(

1√
d

∥∥∥X(k)
valid

∥∥∥)( 1√
d

∥∥∥ξ(k)
valid

∥∥∥))1Ēk is O(1)-subexponential. Sup-

pose the expectation of
(∥∥∥H(k)

valid

∥∥∥+ 1
d

∥∥∥ξ(k)
valid

∥∥∥2

+
(

1√
d

∥∥∥X(k)
valid

∥∥∥)( 1√
d

∥∥∥ξ(k)
valid

∥∥∥)) is µ, which is a constant. Suppose
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the probability of Ēk be δ. We know the expectation of
(∥∥∥H(k)

valid

∥∥∥+ 1
d

∥∥∥ξ(k)
valid

∥∥∥2

+
(

1√
d

∥∥∥X(k)
valid

∥∥∥)( 1√
d

∥∥∥ξ(k)
valid

∥∥∥))1Ēk
is µδ due to independence. By standard concentration inequality, for any 1 > ε > 0, with probability at least
1− exp(−Ω(ε2m)),

C
1

m

m∑
k=1

(∥∥∥H(k)
valid

∥∥∥+
1

d

∥∥∥ξ(k)
valid

∥∥∥2

+

(
1√
d

∥∥∥X(k)
valid

∥∥∥)( 1√
d

∥∥∥ξ(k)
valid

∥∥∥))1Ēk ≤ Cµδ + Cε ≤ (C + 1)ε,

where the second inequality assumes δ ≤ ε/(Cµ). By Lemma 7 and Lemma 49, we know δ ≤ exp(−Ω(d)). Therefore,
as long as d ≥ c4 log(1/ε) for some constant c4, we have δ ≤ ε/(Cµ).

Overall, we know that as long as d ≥ c4 log(1/ε), with probability at least 1 − exp(−Ω(ε2m)), there exists N ′ε
with |N ′ε| = O(1/ε) such that for any η ∈ [0, 1/L],

|F̂TbV (η)− F̂TbV (η′)| ≤ (2C + 3)ε,

for η′ ∈ arg minη∈Nε |η − η′|. Changing ε to ε′/(2C + 3) finishes the proof. �

Proof of Lemma 23. Let E1 be the event that
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n]

and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. Let E2 be the event that

√
d/
√
L ≤ σi(Xvalid) ≤

√
Ld and 1/L ≤ λi(Hvalid) ≤ L for

all i ∈ [n] and
√
dσ/4 ≤ ‖ξvalid‖ ≤

√
dσ. According to Lemma 7 and Lemma 49, we know both E1 and E2 hold with

probability at least 1 − exp(−Ω(d)). Assuming d ≥ c4 for certain constant c4, we know Pr[E1 ∩ E2] ≥ 2/3. Also
define E(k)

1 and E(k)
2 on each training set S(k)

train. By concentration, we know with probability at least 1− exp(−Ω(m)),

1

m

m∑
k=1

1

{
E(k)

1 ∩ E(k)
2

}
≥ 1

2
.

It’s easy to verify that conditioning on E1, the GD sequence always exceeds the norm threshold and gets truncated
for η ≥ 3L as long as t is larger than certain constant. We can lower bound F̂TbV for any η ≥ 3L as follows,

F̂TbV (η) =
1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
valid

∥∥∥2

H
(k)
valid

≥ 1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
valid

∥∥∥2

H
(k)
valid

1 {E1 ∩ E2} ≥ 2σ2 1

2
= σ2,

where the last inequality lower bounds
∥∥∥w(k)

t,η − w
(k)
valid

∥∥∥2

H
(k)
valid

by 2σ2 when w(k)
t,η gets truncated. �

Proof of Lemma 25. We first show that with constant probability in Xtrain, the variance of the eigenvalues of Htrain is
lower bounded by a constant. Let λ̄ be 1/n

∑n
i=1 λi. Specifically, we show 1/n

∑n
i=1 λ

2
i − λ̄2 is lower bounded by a

constant.
Let’s first compute the variance of the eigenvalues in expectation. Let the i-th row of Xtrain be x>i . We have,

E
[
λ̄2
]

=
1

n2
E

[(
tr
(

1

n
X>trainXtrain

))2
]

=
1

n4
E

( n∑
i=1

‖xi‖2
)2


=
1

n4

n∑
i=1

E ‖xi‖4 +
1

n4

∑
1≤i 6=j≤n

E ‖xi‖2 ‖xj‖2

=
1

n4

(
nd(d+ 2) + n(n− 1)d2

)
=
d2

n2
+

2d

n3
.
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Similarly, we compute E
[
1/n

∑n
i=1 λ

2
i

]
as follows,

E

[
1

n

n∑
i=1

λ2
i

]
=

1

n3
E
[
tr
(
X>trainXtrainX

>
trainXtrain

)]
=

1

n3

n∑
i=1

E ‖xi‖4 +
1

n3

∑
1≤i 6=j≤n

E 〈xi, xj〉2

=
1

n3
(nd(d+ 2) + n(n− 1)d) =

d2

n2
+
d

n
+

d

n2

Therefore, we have

E

[
1

n

n∑
i=1

λ2
i − λ̄2

]
=
d

n
+

d

n2
− 2d

n3
≥ d

n
≥ 4

3
,

where the first inequality assumes n ≥ 2 and the last inequality uses n ≤ 3d
4 . Since n ≥ 1

4d, we know n ≥ 2 as long as
d ≥ 8.

Let E be the event that
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for i ∈ [n] with L = 100.

According to Lemma 7, we know E happens with probability at least 1 − exp(−Ω(d)). Let 1 {E} be the indicator
function for event E . Next we show that E[1/n

∑n
i=1(λi − λ̄)2

1 {E}] is also lower bounded.
It’s clear that E

[
λ̄2
1 {E}

]
is upper bounded by E

[
λ̄2
]
. In order to lower bound E

[
1
n

∑n
i=1 λ

2
i1 {E}

]
, we first

show that E
[

1
n

∑n
i=1 λ

2
i1
{
Ē
}]

is small. We can decompose E
[

1
n

∑n
i=1 λ

2
i1
{
Ē
}]

into two parts,

E

[
1

n

n∑
i=1

λ2
i1
{
Ē
}]

=E

[
1

n

n∑
i=1

λ2
i1
{
Ē and λ1 ≤ L

}]
+ E

[
1

n

n∑
i=1

λ2
i1 {λ1 > L}

]
.

The first term can be bounded by L2 Pr[Ē ]. Since Pr[Ē ] ≤ exp(−Ω(d)), we know the first term is at most 1/6 as long as
d is larger than certain constant. The second term can be bounded by E

[
λ2

11 {λ1 > L}
]
. According to Lemma 52, we

know Pr[λ1 ≥ L+ t] ≤ exp(−Ω(dt)). Then, it’s not hard to verify that E
[
λ2

11 {λ1 > L}
]

= O(1/d) that is bounded
by 1/6 as long as d is larger than certain constant. Overall, we know E

[
1
n

∑n
i=1 λ

2
i1 {E}

]
≥ E

[
1
n

∑n
i=1 λ

2
i

]
− 1/3.

Combing with the upper bounds on E
[
λ̄2
1 {E}

]
, we have E

[
1
n

∑n
i=1(λi − λ̄)2

1 {E}
]
≥ 1.

Since conditioning on E , λi is bounded by L for all i ∈ [n]. In order to make E
[

1
n

∑n
i=1(λi − λ̄)2

1 {E}
]

lower bounded by one, there must exist positive constants µ1, µ2 such that with probability at least µ1, E holds and
1
n

∑n
i=1(λi − λ̄)2 ≥ µ2.

Since 1
n

∑n
i=1(λi − λ̄)2 ≥ µ2 and λi ≤ L for all i ∈ [n], we know there exists a subset of eigenvalues S ⊂ {λi}n1

with size µ3n such that |λi − λ̄| ≥ µ4 for all λi ∈ S, where µ3, µ4 are both positive constants.
If at least half of eigenvalues in S are larger than λ̄, we know at least µ3µ4n

2L number of eigenvalues are smaller than
λ̄. Otherwise, the expectation of the eigenvalues will be larger than λ̄, which contradicts the definition of λ̄. Similarly,
if at least half of eigenvalues in S are smaller than λ̄, we know at least µ3µ4n

2L number of eigenvalues are larger than λ̄.
Denote µ5 := µ3µ4

2L . We know λµ5n − λn−µ5n+1 ≥ µ4. �

Proof of Lemma 27. Let E1 be the event that
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n]

and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. Let E3 be the event that

√
d/
√
L ≤ σi(Xvalid) ≤

√
Ld and 1/L ≤ λi(Hvalid) ≤ L for

all i ∈ [n] and
√
dσ/4 ≤ ‖ξvalid‖ ≤

√
dσ. According to Lemma 7 and Lemma 49, we know both E1 and E3 hold with

probability at least 1− exp(−Ω(d)). In this proof, we assume both properties hold and take a union bound at the end.
We can lower bound ‖wt,η − wvalid‖2Hvalid

as follows,

‖wt,η − wvalid‖2Hvalid
=
∥∥wt,η − w∗ − (Xvalid)†ξvalid

∥∥2

Hvalid

≥‖wt,η − w∗‖2Hvalid
+

1

n
‖ξvalid‖2 − 2

∣∣〈wt,η − w∗, Hvalid(Xvalid)†ξvalid
〉∣∣ .

For the second term, by Lemma 49, we know for any 1 > ε > 0, with probability at least 1− exp(−Ω(ε2d)),

1

n
‖ξvalid‖2 ≥ (1− ε)σ2.
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We can write down the third term as
〈
[(Xvalid)†]>Hvalid(wt,η − w∗), ξvalid

〉
. Suppose σ is a constant, we know∥∥[(Xvalid)†]>Hvalid(wt,η − w∗)

∥∥ = O(1/
√
d). Therefore, for a fixed η ∈ [1/L, 3L], we have with probability at least

1− exp(−Ω(ε2d)), ∣∣〈wt,η − w∗, Hvalid(Xvalid)†ξvalid
〉∣∣ ≤ ε.

To prove this crossing term is small for all η ∈ [1/L, 3L], we need to construct an ε-net for the crossing term. Similar
as in Lemma 13, we can show there exists an ε-net for the crossing term with size O(t/ε). Taking a union bound over
this ε-net, we are able to show with probability at least 1−O(t/ε) exp(−Ω(ε2d)),∣∣〈wt,η − w∗, Hvalid(Xvalid)†ξvalid

〉∣∣ ≤ ε,
for all η ∈ [1/L, 3L].

Overall, we have with probability at least 1−O(t/ε) exp(−Ω(ε2d)),

‖wt,η − wvalid‖2Hvalid
≥‖wt,η − w∗‖2Hvalid

+
1

n
‖ξvalid‖2 − 2

∣∣〈wt,η − w∗, Hvalid(Xvalid)†ξvalid
〉∣∣

≥‖wt,η − w∗‖2Hvalid
+ (1− ε)σ2 − 2ε ≥ (1− 3ε)σ2,

for all η ∈ [1/L, 3L], where the last inequality uses σ ≥ 1. The proof finishes as we change 3ε to ε′. �

C Proofs of train-by-train with large number of samples (GD)
In this section, we give the proof of Theorem 6. We show when the size of each training set n and the the number of
training tasks m are large enough, train-by-train also performs well. Recall Theorem 6 as follows.

Theorem 6. Let F̂TbT (n)(η) be as defined in Equation (3). Assume noise level is a constant c1. Given any 1 > ε > 0,

assume training set size n ≥ cd
ε2 log(nmεd ), unroll length t ≥ c2 log( nεd ), number of training tasks m ≥ c3n

2

ε4d2 log( tnmεd )
and dimension d ≥ c4 for certain constants c, c2, c3, c4. With probability at least 0.99 in the sampling of training tasks,
we have

E
∥∥wt,η∗train

− w∗
∥∥2 ≤ (1 + ε)

dσ2

n
,

for all η∗train ∈ arg minη≥0 F̂TbT (n)(η), where the expectation is taken over new tasks.

In the proof, we use the same notations defined in Section B. On each training task P , in Lemma 28 we show the
meta-loss can be decomposed into two terms:

∆TbT (η, P ) =
1

2
‖wt,η − wtrain‖2Htrain

+
1

2n

∥∥(In − ProjXtrain
)ξtrain

∥∥2
,

where wtrain = w∗ + (Xtrain)†ξtrain. Recall that Xtrain is a n × d matrix with its i-th row as x>i . The pseudo-inverse
(Xtrain)† has dimension d × n satisfying X†trainXtrain = Id. Here, ProjXtrain

∈ Rn×n is a projection matrix onto the
column span of Xtrain.

In Lemma 28, we show with a constant step size, the first term in ∆TbT (η, P ) is exponentially small. The second
term is basically the projection of the noise on the orthogonal subspace of the data span. We show this term concentrates
well on its mean. This lemma servers as step 1 in Section B.1. The proof of Lemma 28 is deferred into Section C.1.

Lemma 28. Assume n ≥ 40d.Given any 1 > ε > 0, with probability at least 1−m exp(−Ω(n))−exp(−Ω(ε4md/n)),

F̂TbT (2/3) ≤ 20(1− 1

3
)2tσ2 +

n− d
2n

σ2 +
ε2dσ2

20n
.

In the next lemma, we show the empirical meta objective is large when η exceeds certain threshold. We define this
threshold η̂ such that for any step size larger than η̂ the GD sequence has reasonable probability being truncated. In the
proof, we rely on the truncated sequences to argue the meta-objective must be high. The precise definition of η̂ is in
Definition 2. This lemma serves as step 2 in Section B.1. We leave the proof of Lemma 29 into Section C.2.
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Lemma 29. Let η̂ be as defined in Definition 2 with 1 > ε > 0. Assume n ≥ cd, t ≥ c2, d ≥ c4 for some constants
c, c2, c4. With probability at least 1− exp(−Ω(ε4md2/n2)),

F̂TbT (η) ≥ ε2dσ2

8n
+
n− d

2n
σ2 − ε2dσ2

20n
,

for all η > η̂.

By Lemma 28 and Lemma 29, we know when t is reasonably large, F̂TbT (η) is larger than F̂TbT (2/3) for all step
sizes η > η̂. This means the optimal step size η̂ must lie in [0, η̂]. In Lemma 30, we show a generalization result for
η ∈ [0, η̂]. This serves as step 3 in Section B.1. We prove this lemma in Section C.3.

Lemma 30. Let η̂ be as defined in Definition 2 with 1 > ε > 0. Suppose σ is a constant. Assume n ≥ c log( nεd )d, t ≥
c2, d ≥ c4 for some constants c, c2, c4.With probability at least 1−m exp(−Ω(n))−O( tnε2d+m) exp(−Ω(mε4d2/n2)),

|FTbT (η)− F̂TbT (η)| ≤ 17ε2dσ2

n
,

for all η ∈ [0, η̂],

Combining Lemma 28, Lemma 29 and Lemma 30, we present the proof of Theorem 6 as follows.
Proof of Theorem 6. According to Lemma 28, assuming n ≥ 40d, given any 1/2 > ε > 0, with probability at least
1−m exp(−Ω(n))− exp(−Ω(ε4md/n)), F̂TbT (2/3) ≤ 20(1− 1

3 )2tσ2 + n−d
2n σ

2 + ε2dσ2

20n . As long as t ≥ c2 log( nεd )
for certain constant c2, we have

F̂TbT (2/3) ≤ n− d
2n

σ2 +
7ε2dσ2

100n
.

Let η̂ be as defined in Definition 2 with the same ε. According to Lemma 29, as long as n ≥ cd, t ≥ c2, d ≥ c4
with probability at least 1− exp(−Ω(ε4md2/n2)),

F̂TbT (η) ≥ ε2dσ2

8n
+
n− d

2n
σ2 − ε2dσ2

20n
=
n− d

2n
σ2 +

7.5ε2dσ2

100n

for all η > η̂. We have F̂TbT (η) > F̂TbT (2/3) for all η ≥ η̂. This implies that η∗train is within [0, η̂] and F̂TbT (η∗train) ≤
F̂TbT (2/3) ≤ n−d

2n σ
2 + 7ε2dσ2

100n .
By Lemma 30, assuming σ is a constant and assuming n ≥ c log( nεd )d for some constant c, we have with probability

at least 1−m exp(−Ω(n))−O( tnε2d +m) exp(−Ω(mε4d2/n2)),

|FTbT (η)− F̂TbT (η)| ≤ 17ε2dσ2

n
,

for all η ∈ [0, η̂]. This then implies

FTbT (η∗train) ≤ F̂TbT (η∗train) +
17ε2dσ2

n
≤ n− d

2n
σ2 +

24ε2dσ2

n
.

By the analysis in Lemma 28, we have

FTbT (η∗train) =E
1

2

∥∥wt,η∗train
− wtrain

∥∥2

Htrain
+ E

1

2n

∥∥(In − ProjXtrain
)ξtrain

∥∥2

=E
1

2

∥∥wt,η∗train
− wtrain

∥∥2

Htrain
+
n− d

2n
σ2.

Therefore, we know E 1
2

∥∥wt,η∗train
− wtrain

∥∥2

Htrain
≤ 24ε2dσ2

n . Next, we show this implies E
∥∥wt,η∗train

− w∗
∥∥2

is small.
Let E be the event that 1 − ε ≤ λi(Htrain) ≤ 1 + ε for all i ∈ [d]. According to Lemma 31, we know Pr[E ] ≥

1− exp(−Ω(ε2n)) as long as n ≥ 10d/ε2. Then, we can decompose E
∥∥wt,η∗train

− w∗
∥∥2

as follows,

E
∥∥wt,η∗train

− w∗
∥∥2

= E
∥∥wt,η∗train

− w∗
∥∥2
1 {E}+ E

∥∥wt,η∗train
− w∗

∥∥2
1
{
Ē
}
.
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Let’s first show the second term is small. Due to the truncation in our algorithm, we know
∥∥wt,η∗train

− w∗
∥∥2 ≤ 412σ2,

which then implies E
∥∥wt,η∗train

− w∗
∥∥2
1
{
Ē
}
≤ 412σ2 exp(−Ω(ε2n)). As long as n ≥ c

ε2 log( nεd ) for some constant c,

we have E
∥∥wt,η∗train

− w∗
∥∥2
1
{
Ē
}
≤ εdσ2

n .
We can upper bound the first term by Young’s inequality,

E
∥∥wt,η∗train

− w∗
∥∥2
1 {E} ≤ (1 +

1

ε
)E
∥∥wt,η∗train

− wtrain
∥∥2
1 {E}+ (1 + ε)E ‖wtrain − w∗‖2 1 {E} .

Conditioning on E , we have
∥∥wt,η∗train

− wtrain
∥∥2

Htrain
≥ (1− ε)

∥∥wt,η∗train
− wtrain

∥∥2
which implies

∥∥wt,η∗train
− wtrain

∥∥2 ≤
(1+2ε)

∥∥wt,η∗train
− wtrain

∥∥2

Htrain
as long as ε ≤ 1/2. Similarly, we also have ‖wtrain − w∗‖2 ≤ (1+2ε) ‖wtrain − w∗‖2Htrain

.

Then, we have

E
∥∥wt,η∗train

− w∗
∥∥2
1 {E}

≤(1 +
1

ε
)(1 + 2ε)E

∥∥wt,η∗train
− wtrain

∥∥2

Htrain
1 {E}+ (1 + ε)(1 + 2ε)E ‖wtrain − w∗‖2Htrain

1 {E}

≤(5 +
1

ε
)E
∥∥wt,η∗train

− wtrain
∥∥2

Htrain
+ (1 + 5ε)E ‖wtrain − w∗‖2Htrain

≤(5 +
1

ε
)
48ε2dσ2

n
+ (1 + 5ε)

dσ2

n
≤ (1 + 293ε)

dσ2

n
.

Overall, we have E
∥∥wt,η∗train

− w∗
∥∥2 ≤ (1 + 293ε)dσ

2

n + εdσ2

n = (1 + 294ε)dσ
2

n . Combining all the conditions,
we know this holds with probability at least 0.99 as long as σ is a constant c1, n ≥ cd

ε2 log(nmεd ), t ≥ c2 log( nεd ),m ≥
c3n

2

ε4d2 log( tnmεd ), d ≥ c4 for some constants c, c2, c3, c4. We finish the proof by choosing ε = ε′/294. �

C.1 Upper bounding F̂TbT (2/3)
In this section, we show there exists a step size that achieves small empirical meta objective. On each training task P ,
we show the meta-loss can be decomposed into two terms:

∆TbT (η, P ) =
1

2n

n∑
i=1

(
〈wt,η − wtrain, xi〉 −

(
ξi − x>i X

†
trainξtrain

))2

=
1

2
‖wt,η − wtrain‖2Htrain

+
1

2n

∥∥(In − ProjXtrain
)ξtrain

∥∥2
,

where wtrain = w∗ + (Xtrain)†ξtrain. In Lemma 28, we show with a constant step size, the first term is exponentially
small and the second term concentrates on its mean.

Lemma 28. Assume n ≥ 40d.Given any 1 > ε > 0, with probability at least 1−m exp(−Ω(n))−exp(−Ω(ε4md/n)),

F̂TbT (2/3) ≤ 20(1− 1

3
)2tσ2 +

n− d
2n

σ2 +
ε2dσ2

20n
.

Before we go to the proof of Lemma 28, let’s first show the covariance matrix Htrain is very close to identity when
n is much larger than d. The proof follows from the concentration of singular values of random Gaussian matrix
(Lemma 52). We leave the proof into Section C.4.

Lemma 31. Given 1 > ε > 0, assume n ≥ 10d/ε2. With probability at least 1− exp(−Ω(ε2n)),

(1− ε)
√
n ≤ σi(Xtrain) ≤ (1 + ε)

√
n and 1− ε ≤ λi(Htrain) ≤ 1 + ε,

for all i ∈ [d].
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Now, we are ready to present the proof of Lemma 28.
Proof of Lemma 28. Let’s first look at one training set Strain, in which yi = 〈w∗, xi〉+ ξi for each sample. Recall the
meta-loss as

∆TbT (η, P ) =
1

2n

n∑
i=1

(〈wt,η, xi〉 − 〈w∗, xi〉 − ξi)2
.

Recall that Xtrain is an n × d matrix with its i-th row as x>i . With probability 1, we know Xtrain is full column rank.
Denote the pseudo-inverse of Xtrain as X†train ∈ Rd×n that satisfies X†trainXtrain = Id and XtrainX

†
train = ProjXtrain

, where
ProjXtrain

∈ Rn×n is a projection matrix onto the column span of Xtrain.

Let wtrain be w∗ +X†trainξtrain, where ξtrain is an n-dimensional vector with its i-th entry as ξi. We have,

∆TbT (η, P )

=
1

2n

n∑
i=1

(
〈wt,η − wtrain, xi〉 −

(
ξi − x>i X

†
trainξtrain

))2

=
1

2
‖wt,η − wtrain‖2Htrain

+
1

2n

∥∥(In − ProjXtrain
)ξtrain

∥∥2 − 1

n

n∑
i=1

〈
wt,η − wtrain, xiξi − xix>i X

†
trainξtrain

〉
.

We first show the crossing term is actually zero. We have,

1

n

n∑
i=1

〈
wt,η − wtrain, xiξi − xix>i X

†
trainξtrain

〉
=

1

n

〈
wt,η − wtrain,

n∑
i=1

xiξi −
n∑
i=1

xix
>
i X
†
trainξtrain

〉

=
1

n

〈
wt,η − wtrain, X

>
trainξtrain −X>trainXtrainX

†
trainξtrain

〉
=

1

n

〈
wt,η − wtrain, X

>
trainξtrain −X>trainξtrain

〉
= 0,

where the second last equality holds because XtrainX
†
train = ProjXtrain

.

We can define w(k)
train as w∗k + (X

(k)
train)†ξ

(k)
train for every training set S(k)

train. Then, we have

F̂TbT (η) =
1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

H
(k)
train

+
1

m

m∑
k=1

1

2n

∥∥∥(In − Proj
X

(k)
train

)ξ
(k)
train

∥∥∥2

We first prove that the second term concentrates on its mean. We can concatenate m noise vectors ξ(k)
train into a single

noise vector ξ̄train with dimension nm. We can also construct a data matrix X̄train ∈ Rnm×dm that consists of X(k)
train as

diagonal blocks. Then the second term can be written as

1

2

∥∥∥∥ 1√
nm

(Inm − ProjX̄train
)ξ̄train

∥∥∥∥2

.

According to Lemma 49, with probability at least 1− exp(−Ω(ε4md2/n)),(
1− ε2d

n

)
σ ≤ 1√

nm

∥∥ξ̄train
∥∥ ≤ (1 +

ε2d

n

)
σ.

By Johnson-Lindenstrauss Lemma (Lemma 53), we know with probability at least 1− exp(−Ω(ε4md)),

1√
nm

∥∥ProjX̄train
ξ̄train

∥∥ ≥ (1− ε2)

√
md√
mn

1√
nm

∥∥ξ̄train
∥∥ ≥ (1− ε2)

√
d

n
(1− ε2d

n
)σ.
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Therefore, we have
∥∥∥ 1√

nm
ξ̄train

∥∥∥2

≤ (1 + 3ε2d
n )σ2 and

∥∥∥ 1√
nm

ProjX̄train
ξ̄train

∥∥∥2

≥ (1− 2ε2) dnσ
2. Overall, we know with

probability at least 1− exp(−Ω(ε4md/n)),

1

2

∥∥∥∥ 1√
nm

(Inm − ProjX̄train
)ξ̄train

∥∥∥∥2

≤ n− d
2n

σ2 +
5ε2dσ2

2n
.

Now, we show the first term in meta objective is small when we choose a right step size. According to Lemma 31,
we know as long as n ≥ 40d, with probability at least 1 − exp(−Ω(n)),

√
n/2 ≤ σi(X

(k)
train) ≤ 3

√
n/2 and 1/2 ≤

λi(H
(k)
train) ≤ 3/2, for all i ∈ [d].According to Lemma 49, we know with probability at least 1−exp(−Ω(n)),

∥∥∥ξ(k)
train

∥∥∥ ≤
2
√
nσ. Taking a union bound on m tasks, we know all these events hold with probability at least 1−m exp(−Ω(n)).

For each k ∈ [m], we have
∥∥∥w(k)

train

∥∥∥ ≤ 1 + 2√
n

2
√
nσ ≤ 5σ. It’s easy to verify that for any step size at most 2/3, the

GD sequence will not be truncated since we choose the threshold norm as 40σ. Then, for any step size η ≤ 2/3, we
have

1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

H
(k)
train

=
1

m

m∑
k=1

1

2

∥∥∥(I − ηH(k)
train)tw

(k)
train

∥∥∥2

H
(k)
train

≤3

4
(1− η

2
)2t25σ2 ≤ 20(1− 1

3
)2tσ2,

where the last inequality chooses η as 2/3.
Overall, we know with probability at least 1−m exp(−Ω(n))− exp(−Ω(ε4md/n)),

F̂TbT (2/3) ≤ 20(1− 1

3
)2tσ2 +

n− d
2n

σ2 +
5ε2dσ2

2n
.

We finish the proof by changing 5ε2

2 by (ε′)2/20. �

C.2 Lower bounding F̂TbT for η ∈ (η̂,∞)

In this section, we show the empirical meta objective is large when the step size exceeds certain threshold. Recall
Lemma 29 as follows.

Lemma 29. Let η̂ be as defined in Definition 2 with 1 > ε > 0. Assume n ≥ cd, t ≥ c2, d ≥ c4 for some constants
c, c2, c4. With probability at least 1− exp(−Ω(ε4md2/n2)),

F̂TbT (η) ≥ ε2dσ2

8n
+
n− d

2n
σ2 − ε2dσ2

20n
,

for all η > η̂.

Roughly speaking, we define η̂ such that for any step size larger than η̂ the GD sequence has a reasonable probability
being truncated. The definition is very similar as η̃ in Definition 1.

Definition 2. Given a training task P, let E1 be the event that
√
n/2 ≤ σi(Xtrain) ≤ 3

√
n/2 and 1/2 ≤ λi(Htrain) ≤

3/2 for all i ∈ [d] and
√
nσ/2 ≤ ‖ξtrain‖ ≤ 2

√
nσ. Let Ē2(η) be the event that the GD sequence is truncated with step

size η. Given 1 > ε > 0, define η̂ as follows,

η̂ = inf

{
η ≥ 0

∣∣∣∣E1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
≥ ε2dσ2

n

}
.

Similar as in Lemma 9, we show 1
{
E1 ∩ Ē2(η′)

}
≥ 1

{
E1 ∩ Ē2(η)

}
for any η′ ≥ η. This means conditioning on

E1, if a GD sequence gets truncated with step size η, it has to be truncated with any step size η′ ≥ η. The proof is
deferred into Section C.4.
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Lemma 32. Fixing a training set Strain, let E1 and Ē2(η) be as defined in Definition 2. We have

1
{
E1 ∩ Ē2(η′)

}
≥ 1

{
E1 ∩ Ē2(η)

}
,

for any η′ ≥ η.

Next, we show η̂ does exist and is a constant. Similar as in Lemma 10, we show that the GD sequence almost never
diverges when η is small and diverges with high probability when η is large. The proof is left in Section C.4.

Lemma 33. Let η̂ be as defined in Definition 2. Suppose σ is a constant. Assume n ≥ cd, t ≥ c2, d ≥ c4 for some
constants c, c2, c4. We have

4

3
< η̃ < 6.

Next, we show the empirical loss is large for any η larger than η̃. The proof is very similar as the proof of Lemma 2.
Proof of Lemma 29. By Lemma 33, we know η̂ is a constant as long as n ≥ cd, t ≥ c2, d ≥ c4 for some
constants c, c2, c4. Let E1 and Ē2(η) be as defined in Definition 2. For the simplicity of the proof, we assume
E 1

2 ‖wt,η̂ − wtrain‖2Htrain
1
{
E1 ∩ Ē2(η̂)

}
≥ ε2dσ2

n . The other case can be resolved using same techniques in Lemma 2

Conditioning on E1, we know 1
2 ‖wt,η̂ − wtrain‖2Htrain

≤ 3
4452σ2. Therefore, we know Pr[E1 ∩ Ē2(η̂)] ≥ 4ε2d

3×452n .

For each task k, define E(k)
1 and Ē(k)

2 (η) as the corresponding events on training set S(k)
train. By Hoeffding’s inequality,

we know with probability at least 1− exp(−Ω(ε4md2/n2)),

1

m

m∑
k=1

1

{
E(k)

1 ∩ Ē(k)
2 (η̂)

}
≥ ε2d

452n
.

By Lemma 32, we know 1

{
E(k)

1 ∩ Ē(k)
2 (η)

}
≥ 1

{
E(k)

1 ∩ Ē(k)
2 (η̂)

}
for any η ≥ η̂.

Recall that

F̂TbT (η) =
1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

H
(k)
train

+
1

m

m∑
k=1

1

2n

∥∥∥(In − Proj
X

(k)
train

)ξ
(k)
train

∥∥∥2

.

We can lower bound the first term for any η > η̂ as follows,

F̂TbT (η) =
1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

H
(k)
train

≥ 1

m

m∑
k=1

1

2

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

H
(k)
train

1

{
E(k)

1 ∩ Ē(k)
2 (η)

}
≥352σ2

4

1

m

m∑
k=1

1

{
E(k)

1 ∩ Ē(k)
2 (η)

}
≥352σ2

4

1

m

m∑
k=1

1

{
E(k)

1 ∩ Ē(k)
2 (η̂)

}
≥ ε2dσ2

8n
,

where the second inequality lower bounds the loss for one task by 352σ2 when the sequence gets truncated.
For the second term, according to the analysis in Lemma 28, with probability at least 1− exp(−Ω(ε4md/n)),

1

m

m∑
k=1

1

2n

∥∥∥(In − Proj
X

(k)
train

)ξ
(k)
train

∥∥∥2

≥ n− d
2n

σ2 − ε2dσ2

20n
.

Overall, with probability at least 1− exp(−Ω(ε4md2/n2)),

F̂TbT (η) ≥ ε2dσ2

8n
+
n− d

2n
σ2 − ε2dσ2

20n
,

for all η > η̂. �
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C.3 Generalization for η ∈ [0, η̂]

Combing Lemma 28 and Lemma 29, it’s not hard to see that the optimal step size η∗train lies in [0, η̂]. In this section, we
show a generalization result for step sizes in [0, η̂]. The proof of Lemma 30 is given at the end of this section.

Lemma 30. Let η̂ be as defined in Definition 2 with 1 > ε > 0. Suppose σ is a constant. Assume n ≥ c log( nεd )d, t ≥
c2, d ≥ c4 for some constants c, c2, c4.With probability at least 1−m exp(−Ω(n))−O( tnε2d+m) exp(−Ω(mε4d2/n2)),

|FTbT (η)− F̂TbT (η)| ≤ 17ε2dσ2

n
,

for all η ∈ [0, η̂],

In Lemma 34, we show F̂TbT concentrates on FTbT at any fixed step size. The proof is almost the same as
Lemma 11. We omit its proof.

Lemma 34. Suppose σ is a constant. For any fixed η and any 1 > ε > 0, with probability at least 1− exp(−Ω(ε2m)),∣∣∣F̂TbT (η)− FTbT (η)
∣∣∣ ≤ ε.

Next, we construct an ε-net for FTbT in [0, η̂]. The proof is very similar as in Lemma 12. We defer its proof into
Section C.4.

Lemma 35. Let η̂ be as defined in Definition 2 with 1 > ε > 0. Assume the conditions in Lemma 33 hold. Assume
n ≥ c log( nεd )d for some constant c. There exists an 8ε2dσ2

n -net N ⊂ [0, η̂] for FTbT with |N | = O( tnε2d ). That means,
for any η ∈ [0, η̂],

|FTbT (η)− FTbT (η′)| ≤ 8ε2dσ2

n
,

for η′ = arg minη′′∈N,η′′≤η(η − η′′).

We also construct an ε-net for the empirical meta objective. The proof is very similar as in Lemma 13. We leave its
proof into Section C.4.

Lemma 36. Let η̂ be as defined in Definition 2 with 1 > ε > 0. Assume the conditions in Lemma 33 hold. Assume
n ≥ 40d. With probability at least 1 −m exp(−Ω(n)), there exists an ε2dσ2

n -net N ′ ⊂ [0, η̂] for F̂TbT with |N ′| =
O( tnε2d +m). That means, for any η ∈ [0, η̂],

|F̂TbT (η)− F̂TbT (η′)| ≤ ε2dσ2

n
,

for η′ = arg minη′′∈N ′,η′′≤η(η − η′′).

Combing the above three lemmas, we give the proof of Lemma 30.
Proof of Lemma 30. We assume σ as a constant in this proof. By Lemma 34, we know with probability at least
1 − exp(−Ω(mε4d2/n2)),

∣∣∣F̂TbT (η)− FTbT (η)
∣∣∣ ≤ ε2dσ2

n for any fixed η. By Lemma 35, we know as long as

n ≥ c log( nεd )d for some constant c, there exists an 8ε2dσ2

n -net N for FTbT with size O( tnε2d ). By Lemma 36, we know
with probability at least 1−m exp(−Ω(n)), there exists an ε2dσ2

n -net N ′ for F̂TbT with size O( tnε2d +m). It’s not hard
to verify that N ∪N ′ is still an 8ε2dσ2

n -net for F̂TbV and FTbV . That means, for any η ∈ [0, η̂], we have

|FTbT (η)− FTbT (η′)|, |F̂TbT (η)− F̂TbT (η′)| ≤ 8ε2dσ2

n
,

for η′ = arg minη′′∈N∪N ′,η′′≤η(η − η′′).
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Taking a union bound over N ∪N ′, we have with probability at least 1−O( tnε2d +m) exp(−Ω(mε4d2/n2)),∣∣∣F̂TbT (η)− FTbT (η)
∣∣∣ ≤ ε2dσ2

n

for all η ∈ N ∪N ′.
Overall, we know with probability at least 1−m exp(−Ω(n))−O( tnε2d+m) exp(−Ω(mε4d2/n2)), for all η ∈ [0, η̂],

|FTbT (η)− F̂TbT (η)|
≤|FTbT (η)− FTbT (η′)|+ |F̂TbT (η)− F̂TbT (η′)|+ |F̂TbT (η′)− FTbT (η′)|

≤17ε2dσ2

n
,

where η′ = arg minη′′∈N∪N ′,η′′≤η(η − η′′). �

C.4 Proofs of Technical Lemmas

Proof of Lemma 31. According to Lemma 52, we know with probability at least 1− 2 exp(−t2/2),

√
n−
√
d− t ≤ σi(Xtrain) ≤

√
n+
√
d+ t

for all i ∈ [d]. Since d ≤ ε2n
10 , we have

√
n− ε

√
n√

10
− t ≤ σi(Xtrain) ≤

√
n+ ε

√
n√

10
+ t. Choosing t = ( 1

3 −
1√
10

)ε
√
n,

we have with probability at least 1− exp(−Ω(ε2n)),

(1− ε

3
)
√
n ≤ σi(Xtrain) ≤ (1 +

ε

3
)
√
n.

Since λi(Htrain) = 1/nσ2
i (Xtrain), we have 1− ε ≤ λi(Htrain) ≤ 1 + ε. �

Proof of Lemma 32. The proof is almost the same as in Lemma 9. We omit the details here. Basically, in Lemma 9,
the only property we rely on is that the norm threshold is larger than 2 ‖wtrain‖ conditioning on E1. Conditioning on E1,
we know ‖wtrain‖ ≤ 5σ. Recall that the norm threshold is still set as 40σ. So this property is preserved and the previous
proof works. �

Proof of Lemma 33. The proof is very similar as in Lemma 10. Conditioning on E1, we know ‖Htrain‖ ≤ 3/2 and
‖wtrain‖ ≤ 5σ. So the GD sequence never exceeds the norm threshold 40σ for any η ≤ 4/3. That means,

E
1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
= 0

for all η ≤ 4/3.
To lower bound the loss for large step size, we need to first lower bound ‖wtrain‖ . Recall that wtrain = w∗ +

(Xtrain)†ξtrain. Conditioning on E1, we know ‖ξtrain‖ ≤ 2
√
nσ and σd(Xtrain) ≥

√
n/2, which implies

∥∥(Xtrain)†
∥∥ ≤

2/
√
n. By Johnson-Lindenstrauss Lemma (Lemma 53), we have

∥∥ProjXtrain
ξtrain

∥∥ ≤ 3
2

√
d/n ‖ξtrain‖ with probability at

least 1− exp(−Ω(d)). Call this event E3. Conditioning on E1 ∩ E3, we have

∥∥(Xtrain)†ξtrain
∥∥ ≤ 2

√
nσ

2√
n

3

2

√
d

n
≤ 6

√
d

n
σ,

which is smaller than 1/2 as long as n ≥ 122dσ2.Note that we assume σ is a constant. This then implies ‖wtrain‖ ≥ 1/2.
Let {w′τ,η} be the GD sequence without truncation. For any step size η ∈ [6,∞], conditioning on E1 ∩ E3, we have

∥∥w′t,η∥∥ ≥ ((6× 1

2
− 1)t − 1

)
‖wtrain‖ ≥

(
2t − 1

) 1

2
≥ 40σ,
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where the last inequality holds as long as t ≥ c2 for some constant c2. Therefore, we know when η ∈ [6,∞),
1
{
E1 ∩ Ē2(η)

}
= 1 {E1 ∩ E3}. Assuming n ≥ 40d, we know E1 holds with probability at least 1 − exp(−Ω(n)).

Then, we have for any η ≥ 6,

E
1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η)

}
≥1

4
(40σ − 5σ)

2
Pr[E1 ∩ E3] ≥ ε2dσ2

n
,

where the last inequality assumes n ≥ c, d ≥ c4 for some constant c, c4.
Overall, we know E 1

2 ‖wt,η − wtrain‖2Htrain
1
{
E1 ∩ Ē2(η)

}
equals zero for all η ∈ [0, 4/3] and is at least ε

2dσ2

n for
all η ∈ [6,∞). By definition, we know η̂ ∈ (4/3, 6). �

Proof of Lemma 35. By Lemma 33, we know η̂ is a constant. The proof is very similar as in Lemma 12. Let E1 and
Ē2(η) be as defined in Definition 2. For the simplicity of the proof, we assume E 1

2 ‖wt,η̂ − wtrain‖2Htrain
1
{
E1 ∩ Ē2(η̂)

}
≤

ε2dσ2

n . The other case can be resolved using techniques in the proof of Lemma 12.
Recall the population meta objective

FTbT (η) = E
1

2
‖wt,η − wtrain‖2Htrain

+
n− d

2n
σ2.

Therefore, we only need to construct an ε-net for the first term.
We can divide E 1

2 ‖wt,η − wtrain‖2Htrain
as follows,

E
1

2
‖wt,η − wtrain‖2Htrain

=E
1

2
‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̂)}+ E
1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η̂)

}
+ E

1

2
‖wt,η − wtrain‖2Htrain

1
{
Ē1
}
.

We will construct an ε-net for the first term and show the other two terms are small. Let’s first consider the third term.
Assuming n ≥ 40d, we know Pr[E1] ≤ exp(−Ω(n)). Since 1

2 ‖wt,η − wtrain‖2Htrain
is O(1)-subexponential, by Cauchy-

Schwarz inequality, we have E 1
2 ‖wt,η − wtrain‖2Htrain

1
{
Ē1
}

= O(1) exp(−Ω(n)). Choosing n ≥ c log(n/(εd)) for

some constant c, we know 1
2 ‖wt,η̂ − wtrain‖2Htrain

1
{
Ē1
}
≤ ε2dσ2

n .

Then we upper bound the second term. Since E 1
2 ‖wt,η̂ − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η̂)

}
≤ ε2dσ2

n and
1
2 ‖wt,η̂ − wtrain‖2Htrain

≥ 352σ2

4 when wt,η̂ diverges, we know Pr[E1 ∩ Ē2(η̂)] ≤ 4ε2d
352n . Then, we can upper bound the

second term as follows,

E
1

2
‖wt,η − wtrain‖2Htrain

1
{
E1 ∩ Ē2(η̂)

}
≤ 3× 452σ2

4

4ε2d

352n
≤ 6ε2dσ2

n

Next, similar as in Lemma 12, we can show the first term 1
2 ‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̂)} is O(t)-lipschitz.

Therefore, there exists an ε2dσ2

n -net N for E 1
2 ‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̂)} with size O( tnε2d ). That means, for
any η ∈ [0, η̂],∣∣∣∣E1

2
‖wt,η − wtrain‖2Htrain

1 {E1 ∩ E2(η̂)} − E
1

2
‖wt,η′ − wtrain‖2Htrain

1 {E1 ∩ E2(η̂)}
∣∣∣∣ ≤ ε2dσ2

n

for η′ = arg minη′′∈N,η′′≤η(η − η′′).
Combing with the upper bounds on the second term and the third term, we have for any η ∈ [0, η̂],

|FTbT (η)− FTbT (η′)| ≤ 8ε2dσ2

n

for η′ = arg minη′′∈N,η′′≤η(η − η′′). �
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Proof of Lemma 36. By Lemma 33, we know η̂ is a constant. For each k ∈ [m], let E1,k be the event that
√
n/2 ≤ σi(X

(k)
train) ≤ 3

√
n/2 and 1/2 ≤ λi(H

(k)
train) ≤ 3/2 for all i ∈ [d] and

√
nσ/2 ≤

∥∥∥ξ(k)
train

∥∥∥ ≤ 2
√
nσ. Assuming

n ≥ 40d, by Lemma 31, we know with probability at least 1−m exp(−Ω(n)), E1,k’s hold for all k ∈ [m].

Then, similar as in Lemma 13, there exists an ε2dσ2

n -net N ′ with |N ′| = O( ntε2d +m) for F̂TbT . That means, for
any η ∈ [0, η̂], ∣∣∣F̂TbT (η)− F̂TbT (η′)

∣∣∣ ≤ ε2dσ2

n

for η′ = arg minη′′∈N ′,η′′≤η(η − η′′). �

D Proofs of train-by-train v.s. train-by-validation (SGD)
Previously, we have shown that train-by-validation generalizes better than train-by-train when the tasks are trained by
GD and when the number of samples is small. In this section, we show a similar phenomenon also appears in the SGD
setting.

In the train-by-train setting, each task P contains a training set Strain = {(xi, yi)}ni=1. The inner objective is defined
as f̂(w) = 1

2n

∑
(x,y)∈Strain

(〈w, x〉 − y)
2
. Let {wτ,η} be the SGD sequence running on f̂(w) from initialization 0 (with-

out truncation). That means,wτ,η = wτ−1,η−η∇̂f̂(wτ−1,η),where ∇̂f̂(wτ−1,η) =
(〈
wτ−1,η, xi(τ−1)

〉
− yi(τ−1)

)
xi(τ−1).

Here index i(τ − 1) is independently and uniformly sampled from [n]. We denote the SGD noise as nτ−1,η :=

∇̂f̂(wτ−1,η)−∇f̂(wτ−1,η). The meta-loss on task P is defined as follows,

∆TbT (n)(η, P ) = ESGDf̂(wt,η) = ESGD
1

2n

∑
(x,y)∈Strain

(〈wt,η, x〉 − y)
2
,

where the expectation is taken over the SGD noise. Note wt,η depends on the SGD noise along the trajectory. Then, the
empirical meta objective F̂TbT (n)(η) is the average of the meta-loss across m different specific tasks

F̂TbT (n)(η) =
1

m

m∑
k=1

∆TbT (n)(η, Pk). (6)

In order to control the SGD noise in expectation, we restrict the feasible set of step sizes into O(1/d). We show
within this range, the optimal step size under F̂TbT (n) is Ω(1/d) and the learned weight is far from ground truth w∗ on
new tasks. We prove Theorem 9 in Section D.1.

Theorem 9. Let the meta objective F̂TbT (n) be as defined in Equation 6 with n ∈ [d/4, 3d/4]. Suppose σ is a constant.
Assume unroll length t ≥ c2d and dimension d ≥ c4 log(m) for certain constants c2, c4. Then, with probability at least
0.99 in the sampling of training tasks P1, · · · , Pm and test task P ,

η∗train = Ω(1/d) and ESGD
∥∥wt,η∗train

− w∗
∥∥2

= Ω(σ2),

for all η∗train ∈ arg min0≤η≤ 1
2L3d

F̂TbT (n)(η), where L = 100 and wt,η∗train
is trained by running SGD on test task P.

In the train-by-validation setting, each task P contains a training set Strain with n1 samples and a validation set
with n2 samples. The inner objective is defined as f̂(w) = 1

2n1

∑
(x,y)∈Strain

(〈w, x〉 − y)
2
. Let {wτ,η} be the SGD

sequence running on f̂(w) from initialization 0 (with the same truncation defined in Section 4). For each task P , the
meta-loss ∆TbV (n1,n2)(η, P ) is defined as

∆TbV (n1,n2)(η, P ) = ESGD
1

2n2

∑
(x,y)∈Svalid

(〈wt,η, x〉 − y)
2
.
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The empirical meta objective F̂TbV (n1,n2)(η) is the average of the meta-loss across m different tasks P1, P2, ..., Pm,

F̂TbV (n1,n2)(η) =
1

m

m∑
k=1

∆TbV (n1,n2)(η, Pk). (7)

In order to bound the SGD noise with high probability, we restrict the feasible set of the step sizes into O( 1
d2 log2 d

).

Within this range, we prove the optimal step size under F̂TbV (n1,n2) is Θ(1/t) and the learned weight is better than
initialization 0 by a constant on new tasks. Theorem 10 is proved in Section D.2.

Theorem 10. Let the meta objective F̂TbV (n1,n2) be as defined in Equation 7 with n1, n2 ∈ [d/4, 3d/4]. Assume noise
level σ is a large constant c1. Assume unroll length t ≥ c2d2 log2(d), number of training tasks m ≥ c3 and dimension
d ≥ c4 for certain constants c2, c3, c4. There exists constant c5 such that with probability at least 0.99 in the sampling
of training tasks, we have

η∗valid = Θ(1/t) and E
∥∥wt,η∗valid

− w∗
∥∥2

= ‖w∗‖2 − Ω(1)

for all η∗valid ∈ arg min0≤η≤ 1
c5d

2 log2(d)
F̂TbV (n1,n2)(η), where the expectation is taken over the new tasks and SGD

noise.

Notations: In the following proofs, we use the same set of notations defined in Appendix B. We use EP∼T to denote
the expectation over the sampling of tasks and use ESGD to denote the expectation over the SGD noise. We use E to
denote EP∼T ESGD. Same as in Appendix B, we use letter L to denote constant 100, which upper bounds ‖Htrain‖ with
high probability.

D.1 Train-by-train (SGD)
Recall Theorem 9 as follows.

Theorem 9. Let the meta objective F̂TbT (n) be as defined in Equation 6 with n ∈ [d/4, 3d/4]. Suppose σ is a constant.
Assume unroll length t ≥ c2d and dimension d ≥ c4 log(m) for certain constants c2, c4. Then, with probability at least
0.99 in the sampling of training tasks P1, · · · , Pm and test task P ,

η∗train = Ω(1/d) and ESGD
∥∥wt,η∗train

− w∗
∥∥2

= Ω(σ2),

for all η∗train ∈ arg min0≤η≤ 1
2L3d

F̂TbT (n)(η), where L = 100 and wt,η∗train
is trained by running SGD on test task P.

In order to prove Theorem 9, we first show that η∗train is Ω(1/d) in Lemma 37. The proof is similar as in the GD
setting. As long as η = O(1/d), the SGD noise is dominated by the full gradient. Then, we can show that ∆TbT (η, P )
is roughly (1−Θ(1)η)t, which implies that η∗train = Ω(1/d). We leave the proof of Lemma 37 into Section D.1.1.

Lemma 37. Assume t ≥ c2d with certain constant c2. With probability at least 1−m exp(−Ω(d)) in the sampling of
m training tasks,

η∗train ≥
1

6L5d
,

for all η∗train ∈ arg min0≤η≤ 1
2L3d

F̂TbT (η).

Let P = (D(w∗), Strain, `) be an independently sampled test task with |Strain| = n ∈ [d/4, 3d/4]. For any
step size η ∈ [ 1

6L5d ,
1

2L3d ], let wt,η be the weight obtained by running SGD on f̂(w) for t steps. Next, we show
ESGD ‖wt,η − w∗‖2 = Ω(σ2) with high probability in the sampling of P.
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Lemma 38. Suppose σ is a constant. Assume unroll length t ≥ c2d for some constant c2. With probability at least
1− exp(−Ω(d)) in the sampling of test task P ,

ESGD ‖wt,η − w∗‖2 ≥
σ2

128L
,

for all η ∈ [ 1
6L5d ,

1
2L3d ], where wt,η is obtained by running SGD on task P for t iterations.

With Lemma Lemma 37 and Lemma 38, the proof of Theorem 9 is straightforward.
Proof of Theorem 9. Combing Lemma 37 and Lemma 38, we know as long as σ is a constant, t ≥ c2d, d ≥
c4 log(m), with probability at least 0.99, η∗train = Ω(1/d) and ESGD

∥∥wt,η∗train
− w∗

∥∥2
= Ω(σ2), for all η∗train ∈

arg min0≤η≤ 1
2L3d

F̂TbT (η). �

D.1.1 Detailed Proofs

Proof of Lemma 37. The proof is very similar to the proof of Lemma 1 except that we need to bound the SGD noise
term. For each k ∈ [m], let Ek be the event that

√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n]

and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. According to Lemma 7 and Lemma 49, we know for each k ∈ [m], Ek happens with

probability at least 1− exp(−Ω(d)). Taking a union bound over all k ∈ [m], we know ∩k∈[m]Ek holds with probability
at least 1−m exp(−Ω(d)). From now on, we assume ∩k∈[m]Ek holds.

For each k ∈ [m], we have

∆TbT (η, Pk) :=
1

2
ESGD

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

H
(k)
train

.

Since 1/L ≤ λi(H(k)
train) ≤ L and (w

(k)
t,η − w

(k)
train) is in the span of H(k)

train, we have

1

2L
ESGD

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

≤ ∆TbT (η, Pk) ≤ L

2
ESGD

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

.

Recall the updates of stochastic gradient descent,

w
(k)
t,η − w

(k)
train = (I − ηH(k)

train)(w
(k)
t−1,η − w

(k)
train)− ηn(k)

t−1,η.

Therefore,

ESGD

[∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

|w(k)
t−1,η

]
=
∥∥∥(I − ηH(k)

train)(w
(k)
t−1,η − w

(k)
train)

∥∥∥2

+ η2ESGD

[∥∥∥n(k)
t−1,η

∥∥∥2

|w(k)
t−1,η

]
.

We know for any η ≤ 1/L,

(1− 2ηL)
∥∥∥w(k)

t−1,η − w
(k)
train

∥∥∥2

≤
∥∥∥(I − ηH(k)

train)(w
(k)
t−1,η − w

(k)
train)

∥∥∥2

≤ (1− η

L
)
∥∥∥w(k)

t−1,η − w
(k)
train

∥∥∥2

.

The noise can be bounded as follows,

η2ESGD

[∥∥∥n(k)
t−1,η

∥∥∥2

|w(k)
t−1,η

]
=η2ESGD

[∥∥∥xi(t−1)x
>
i(t−1)(w

(k)
t−1,η − w

(k)
train)−H(k)

train(w
(k)
t−1,η − w

(k)
train)

∥∥∥2

|w(k)
t−1,η

]
≤η2ESGD

[∥∥∥xi(t−1)x
>
i(t−1)(w

(k)
t−1,η − w

(k)
train)

∥∥∥2

|w(k)
t−1,η

]
≤η2 max

i(t−1)

∥∥xi(t−1)

∥∥2
∥∥∥w(k)

t−1,η − w
(k)
train

∥∥∥2

H
(k)
train

.
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Since ‖Xtrain‖ ≤
√
L
√
d, we immediately know maxi(t−1)

∥∥xi(t−1)

∥∥ ≤ √L√d. Therefore, we can bound the noise as
follows,

η2ESGD

[∥∥∥n(k)
t−1,η

∥∥∥2

|w(k)
t−1,η

]
≤η2 max

i(t−1)

∥∥xi(t−1)

∥∥2
∥∥∥w(k)

t−1,η − w
(k)
train

∥∥∥2

H
(k)
train

≤L2η2d
∥∥∥w(k)

t−1,η − w
(k)
train

∥∥∥2

.

As long as η ≤ 1
2L3d , we have

(1− ηL)
∥∥∥w(k)

t−1,η − w
(k)
train

∥∥∥2

≤ ESGD

[∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

|w(k)
t−1,η

]
≤ (1− η

2L
)
∥∥∥w(k)

t−1,η − w
(k)
train

∥∥∥2

.

This further implies

(1− ηL)t ‖wtrain‖2 ≤ ESGD

∥∥∥w(k)
t,η − w

(k)
train

∥∥∥2

≤ (1− η

2L
)t ‖wtrain‖2 .

Let η2 := 1
2L3d , we have

∆TbT (η, Pk) ≤ L

2
(1− 1

4L4d
)t ‖wtrain‖2

Let η1 := 1
6L5d , for all η ∈ [0, η1] we have

∆TbT (η, Pk) ≥ 1

2L
(1− 1

6L4d
)t ‖wtrain‖2 .

As long as t ≥ c2d for certain constant c2, we know

1

2L
(1− 1

6L4d
)t ‖wtrain‖2 >

L

2
(1− 1

4L4d
)t ‖wtrain‖2 .

As this holds for all k ∈ [m] and F̂TbT = 1/m
∑m
i=1 ∆TbT (η, Pk), we know the optimal step size η∗train is within

[ 1
6L5d ,

1
2L3d ]. �

We rely the following technical lemma to prove Lemma 38.

Lemma 39. Suppose σ is a constant. Given any ε > 0, with probability at least 1−O(1/ε) exp(−Ω(ε2d)),∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain
〉∣∣ ≤ ε,

for all η ∈ [0, 1
2L3d ].

Proof of Lemma 39. By Lemma 7, with probability at least 1 − exp(−Ω(d)),
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld

and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n]. Therefore
∥∥[(Xtrain)†]>Bt,η(Bt,ηw

∗
train − w∗)

∥∥ ≤ 2
√
L/
√
d. Notice

that ξtrain is independent with [(Xtrain)†]>Bt,η(Bt,ηw
∗
train − w∗). By Hoeffding’s inequality, with probability at least

1− exp(−Ω(ε2d)), ∣∣〈[(Xtrain)†]>Bt,η(Bt,ηw
∗
train − w∗), ξtrain

〉∣∣ ≤ ε.
Next, we construct an ε-net for η and show the crossing term is small for all η ∈ [0, 1

2L3d ]. For simplicity, denote
g(η) :=

〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
. Taking the derivative of g(η), we have

g′(η) =t
〈
Htrain(I − ηHtrain)t−1w∗train, Bt,η(Xtrain)†ξtrain

〉
+ t
〈
Bt,ηw

∗
train − w∗, Htrain(I − ηHtrain)t−1(Xtrain)†ξtrain

〉
According to Lemma 49, we know with probability at least 1 − exp(−Ω(d)), ‖ξtrain‖ ≤

√
dσ. Therefore, the

derivative g′(η) can be bounded as follows,

|g′(η)| = O(1)t(1− η

L
)t−1
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Similar as in Lemma 18, there exists an ε-net Nε with size O(1/ε) such that for any η ∈ [0, 1
3L3d ], there exists η′ ∈

Nε with |g(η)−g(η′)| ≤ ε. Taking a union bound overNε, we have with probability at least 1−O(1/ε) exp(−Ω(ε2d)),
for every η ∈ Nε, ∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain

〉∣∣ ≤ ε.
which implies for every η ∈ [0, 1

3L3d ].∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain
〉∣∣ ≤ 2ε.

Changing ε to ε′/2 finishes the proof. �

Proof of Lemma 38. According to Lemma 7 and Lemma 49, we know with probability at least 1 − exp(−Ω(d)),√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and

√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ. We assume

these properties hold in the proof and take a union bound at the end.
Recall that ESGD ‖wt,η − w∗‖2 can be lower bounded as follows,

ESGD ‖wt,η − w∗‖2 =ESGD

∥∥∥∥∥Bt,η(w∗train + (Xtrain)†ξtrain)− η
t−1∑
τ=0

(I − ηHtrain)t−1−τnτ,η − w∗
∥∥∥∥∥

2

≥
∥∥Bt,η(w∗train + (Xtrain)†ξtrain)− w∗

∥∥2

≥
∥∥Bt,η(Xtrain)†ξtrain

∥∥2
+ 2

〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
For any η ∈ [ 1

6L5d ,
1

2L3d ], we can lower bound the first term as follows,

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 ≥

(
1− exp

(
−ηt
L

))2
σ2

16L

≥
(

1− exp

(
− t

6L6d

))2
σ2

16L

≥ σ2

64L
,

where the last inequality holds as long as t ≥ c2d for certain constant c2.
Choosing ε = σ2

256L in Lemma 39, we know with probability at least 1− exp(−Ω(d)),

∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain
〉∣∣ ≤ σ2

256L
,

for all η ∈ [0, 1
2L3d ].

Overall, we have ESGD ‖wt,η − w∗‖2 ≥ σ2

128L . Taking a union bound over all the bad events, we know this happens
with probability at least 1− exp(−Ω(d)). �

D.2 Train-by-validation (SGD)
Recall Theorem 10 as follows.

Theorem 10. Let the meta objective F̂TbV (n1,n2) be as defined in Equation 7 with n1, n2 ∈ [d/4, 3d/4]. Assume noise
level σ is a large constant c1. Assume unroll length t ≥ c2d2 log2(d), number of training tasks m ≥ c3 and dimension
d ≥ c4 for certain constants c2, c3, c4. There exists constant c5 such that with probability at least 0.99 in the sampling
of training tasks, we have

η∗valid = Θ(1/t) and E
∥∥wt,η∗valid

− w∗
∥∥2

= ‖w∗‖2 − Ω(1)

for all η∗valid ∈ arg min0≤η≤ 1
c5d

2 log2(d)
F̂TbV (n1,n2)(η), where the expectation is taken over the new tasks and SGD

noise.
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To prove Theorem 10, we first study the behavior of the population meta objective FTbV . That is,

FTbV (η) := EP∼T∆TbV (η, P ) =EP∼T ESGD
1

2

∥∥wt,η − w∗ − (Xvalid)†ξvalid
∥∥2

Hvalid

=EP∼T ESGD
1

2
‖wt,η − w∗‖2 +

σ2

2
.

We show that the optimal step size for the population meta objective FTbV is Θ(1/t) and EP∼T ESGD ‖wt,η − w∗‖2 =

‖w∗‖2 − Ω(1) under the optimal step size.

Lemma 40. Suppose σ is a large constant c1. Assume t ≥ c2d2 log2(d), d ≥ c4 for some constants c2, c4. There exist
η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 and constant c5 such that

FTbV (η2) ≤ 1

2
‖w∗‖2 − 9

10
C +

σ2

2

FTbV (η) ≥ 1

2
‖w∗‖2 − 6

10
C +

σ2

2
,∀η ∈ [0, η1] ∪ [η3,

1

c5d2 log2(d)
]

where C is a positive constant.

In order to relate the behavior of FTbV to F̂TbV , we show a generalization result from F̂TbV to FTbV for η ∈
[0, 1

c5d2 log2(d/ε)
].

Lemma 41. For any 1 > ε > 0, assume σ is a constant and d ≥ c4 log(1/ε) for some constant c4. There exists
constant c5 such that with probability at least 1−O(1/ε) exp(−Ω(ε2m)),

|F̂TbV (η)− FTbV (η)| ≤ ε,

for all η ∈ [0, 1
c5d2 log2(d/ε)

].

Combining Lemma 40 and Lemma 41, we give the proof of Theorem 10.
Proof of Theorem 10. The proof is almost the same as in the GD setting (Theorem 8). We omit the details here. �

D.2.1 Behavior of FTbV for η ∈ [0, 1
c5d2 log2 d

]

In this section, we give the proof of Lemma 40. Recall the lemma as follows,

Lemma 40. Suppose σ is a large constant c1. Assume t ≥ c2d2 log2(d), d ≥ c4 for some constants c2, c4. There exist
η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 and constant c5 such that

FTbV (η2) ≤ 1

2
‖w∗‖2 − 9

10
C +

σ2

2

FTbV (η) ≥ 1

2
‖w∗‖2 − 6

10
C +

σ2

2
,∀η ∈ [0, η1] ∪ [η3,

1

c5d2 log2(d)
]

where C is a positive constant.

Recall that FTbV (η) = EP∼T ESGD1/2 ‖wt,η − w∗‖2 + σ2/2. Denote Q(η) := ESGD1/2 ‖wt,η − w∗‖2. Recall
that we truncate the SGD sequence once the weight norm exceeds 4

√
Lσ. Due to the truncation, the expectation of

1/2 ‖wt,η − w∗‖2 over SGD noise is very tricky to analyze.
Instead, we define an auxiliary sequence {w′τ,η} that is obtained by running SGD on task P without truncation and

we first study Q′(η) := 1/2ESGD
∥∥w′t,η − w∗∥∥2

. In Lemma 42, we show that with high probability in the sampling of
task P , the minimizer of Q′(η) is Θ(1/t). The proof is very similar as the proof of Lemma 17 except that we need to
bound the SGD noise at step size η2. We defer the proof into Section D.2.3.
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Lemma 42. Given a task P , let {w′τ,η} be the weight obtained by running SGD on task P without truncation.
Choose σ as a large constant c1. Assume unroll length t ≥ c2d for some constant c2. With probability at least
1− exp(−Ω(d)) over the sampling of task P,

√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n]

and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ and there exists η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that

Q′(η2) := 1/2ESGD
∥∥w′t,η2 − w∗∥∥2 ≤ 1

2
‖w∗‖2 − C

Q′(η) := 1/2ESGD
∥∥w′t,η − w∗∥∥2 ≥ 1

2
‖w∗‖2 − C

2
,∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant.

To relate the behavior of Q′(η) defined on {w′τ,η} to the behavior of Q(η) defined on {wτ,η}. We show when the
step size is small enough, the SGD sequence gets truncated with very small probability so that sequence {wτ,η} almost
always coincides with sequence {w′τ,η}. The proof of Lemma 43 is deferred into Section D.2.3.

Lemma 43. Given a task P , assume
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and√

dσ/4 ≤ ‖ξtrain‖ ≤
√
dσ. Given any ε > 0, suppose η ≤ 1

c5d2 log2(d/ε)
for some constant c5, we have

|Q(η)−Q′(η)| ≤ ε.

Combining Lemma 42 and Lemma 43, we give the proof of lemma 40.

Proof of Lemma 40. Recall that we define Q(η) := 1/2ESGD ‖wt,η − w∗‖2 and Q′(η) = 1/2ESGD
∥∥w′t,η − w∗∥∥2

.
Here, {w′τ,η} is a SGD sequence running on task P without truncation.

According to Lemma 42, with probability at least 1 − exp(−Ω(d)) over the sampling of task P,
√
d/
√
L ≤

σi(Xtrain) ≤
√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and

√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ and there exists

η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that

Q′(η2) ≤ 1

2
‖w∗‖2 − C

Q′(η) ≥ 1

2
‖w∗‖2 − C

2
,∀η ∈ [0, η1] ∪ [η3, 1/L]

where C is a positive constant. Call this event E . Suppose the probability that E happens is 1 − δ. We can write
EP∼TQ(η) as follows,

EP∼TQ(η) = EP∼T [Q(η)|E ] Pr[E ] + EP∼T [Q(η)|Ē ] Pr[Ē ].

According to the algorithm, we know ‖wt,η‖ is always bounded by 4
√
Lσ. Therefore, Q(η) := 1/2 ‖wt,η − w∗‖2 ≤

13Lσ2. By Lemma 43, we know conditioning on E , |Q(η) − Q′(η)| ≤ ε for any η ≤ 1
c5d2 log2(d/ε)

. As long as

t ≥ c2d2 log2(d/ε) for certain constant c2, we know η3 ≤ 1
c5d2 log2(d/ε)

.

When η = η2, we have

EP∼TQ(η2) ≤ (Q′(η2) + ε) (1− δ) + 13Lσ2δ

≤
(

1

2
‖w∗‖2 − C + ε

)
(1− δ) + 13Lσ2δ

≤1

2
‖w∗‖2 − C + 13Lσ2δ + ε ≤ 1

2
‖w∗‖2 − 9C

10
,

where the last inequality assumes δ ≤ C
260Lσ2 and ε ≤ C

20 .
When η ∈ [0, η1] ∪ [η3,

1
c5d2 log2(d/ε)

], we have

EP∼TQ(η2) ≥ (Q′(η)− ε) (1− δ)− 13Lσ2δ

≥
(

1

2
‖w∗‖2 − C

2
− ε
)

(1− δ)− 13Lσ2δ

≥1

2
‖w∗‖2 − C

2
− δ

2
− 13Lσ2δ − ε ≥ 1

2
‖w∗‖2 − 6C

10
,
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where the last inequality holds as long as δ ≤ C
280Lσ2 and ε ≤ C

20 .
According to Lemma 42, we know δ ≤ exp(−Ω(d)). Therefore, the conditions for δ can be satisfied as long as d is

larger than certain constant. The condition on ε can be satisfied as long as η ≤ 1
c5d2 log2(d)

for some constant c5. �

D.2.2 Generalization for η ∈ [0, 1
c5d2 log2 d

]

In this section, we prove Lemma 41 by showing that F̂TbV (η) is point-wise close toFTbV (η) for all η ∈ [0, 1
c5d2 log2(d/ε)

].

Recall Lemma 41 as follows.

Lemma 41. For any 1 > ε > 0, assume σ is a constant and d ≥ c4 log(1/ε) for some constant c4. There exists
constant c5 such that with probability at least 1−O(1/ε) exp(−Ω(ε2m)),

|F̂TbV (η)− FTbV (η)| ≤ ε,

for all η ∈ [0, 1
c5d2 log2(d/ε)

].

In order to prove Lemma 41, we first show that for a fixed η with high probability F̂TbV (η) is close to FTbV (η).
Similar as in Lemma 20, we can still show that each ∆TbV (η, P ) is O(1)-subexponential. The proof is deferred into
Section D.2.3.

Lemma 44. Suppose σ is a constant. Given any 1 > ε > 0, for any fixed η with probability at least 1−exp(−Ω(ε2m)),∣∣∣F̂TbV (η)− FTbV (η)
∣∣∣ ≤ ε.

Next, we show that there exists an ε-net for FTbV with size O(1/ε). By ε-net, we mean there exists a finite set Nε
of step sizes such that |FTbV (η)− FTbV (η′)| ≤ ε for any η and η′ ∈ arg minη∈Nε |η − η′|. The proof is very similar
as in Lemma 21. We defer the proof of Lemma 45 into Section D.2.3.

Lemma 45. Suppose σ is a constant. For any 1 > ε > 0, assume d ≥ c4 log(1/ε) for some c4. There exists constant
c5 and an ε-net Nε ⊂ [0, 1

c5d2 log2(d/ε)
] for FTbV with |Nε| = O(1/ε). That means, for any η ∈ [0, 1

c5d2 log2(d/ε)
],

|FTbV (η)− FTbV (η′)| ≤ ε,

for η′ ∈ arg minη∈Nε |η − η′|.

Next, we show that with high probability, there also exists an ε-net for F̂TbV with size O(1/ε). The proof is very
similar as the proof of Lemma 22. We defer the proof into Section D.2.3.

Lemma 46. Suppose σ is a constant. For any 1 > ε > 0, assume d ≥ c4 log(1/ε) for some c4. With probability at
least 1− exp(−Ω(ε2m)), there exists constant c5 and an ε-net N ′ε ⊂ [0, 1

c5d2 log2(d/ε)
] for F̂TbV with |Nε| = O(1/ε).

That means, for any η ∈ [0, 1
c5d2 log2(d/ε)

],

|F̂TbV (η)− F̂TbV (η′)| ≤ ε,

for η′ ∈ arg minη∈Nε |η − η′|.

Combing Lemma 44, Lemma 45 and Lemma 46, now we give the proof of Lemma 41.
Proof of Lemma 41. The proof is almost the same as the proof of Lemma 15. We omit the details here. �
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D.2.3 Proofs of Technical Lemmas

In Lemma 47, we show when the step size is small, the expected SGD noise square is well bounded. The proof follows
from the analysis in Lemma 37.

Lemma 47. Let {w′τ,η} be an SGD sequence running on task P without truncation. Let n′τ,η be the SGD noise at w′τ,η .
Assume

√
d/
√
L ≤ σi(Xtrain) ≤

√
L
√
σ for all i ∈ [n] and ‖ξtrain‖ ≤

√
dσ. Suppose η ∈ [0, 1

2L3d ], we have

ESGD
∥∥n′τ,η∥∥2 ≤ 4L3σ2d

for all τ ≤ t.

Proof of Lemma 47. Similar as the analysis in Lemma 37, for η ≤ 1
2L3d , we have

ESGD

[∥∥n′τ,η∥∥2 |w′τ−1,η

]
≤ L2d

∥∥w′τ−1,η − wtrain
∥∥2
.

and
ESGD

∥∥w′τ−1,η − wtrain
∥∥2 ≤ (1− η

2L
)τ−1 ‖wtrain‖2 ≤

∥∥w∗train + (Xtrain)†ξtrain
∥∥2 ≤ 4Lσ2.

Therefore, we have
ESGD

∥∥n′τ,η∥∥2 ≤ L2dESGD
∥∥w′τ,η − wtrain

∥∥2 ≤ 4L3σ2d.

�

Proof of Lemma 42. We can expand Q′(η) as follows,

Q′(η) :=
1

2
ESGD

∥∥w′t,η − w∗∥∥2

=
1

2
ESGD

∥∥∥∥∥Bt,ηw∗train +Bt,η(Xtrain)†ξtrain − η
t−1∑
τ=0

(I − ηHtrain)t−1−τn′τ,η − w∗
∥∥∥∥∥

2

=
1

2
‖Bt,ηw∗train − w∗‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

+
η2

2
ESGD

∥∥∥∥∥
t−1∑
τ=0

(I − ηHtrain)t−1−τn′τ,η

∥∥∥∥∥
2

+
〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
Denote

G(η) :=
1

2
‖Bt,ηw∗train − w∗‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

+
η2

2
ESGD

∥∥∥∥∥
t−1∑
τ=0

(I − ηHtrain)t−1−τn′τ,η

∥∥∥∥∥
2

.

We first show that with probability at least 1− exp(−Ω(d)), there exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such
that G(η2) ≤ 1/2 ‖w∗‖2 − 5C/4 and G(η) ≥ 1/2 ‖w∗‖2 − C/4 for all η ∈ [0, η1] ∪ [η3, 1/L].

According to Lemma 7, we know with probability at least 1− exp(−Ω(d)),
√
d/
√
L ≤ σi(Xtrain) ≤

√
L
√
d and

1/L ≤ λi(Htrain) ≤ L for all i ∈ [n]. According to Lemma 49, we know with probability at least 1 − exp(−Ω(d)),√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ.

Upper bounding G(η2): We can expand G(η) as follows:

G(η) :=
1

2
‖Bt,ηw∗train − w∗‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

+
η2

2
ESGD

∥∥∥∥∥
t−1∑
τ=0

(I − ηHtrain)t−1−τn′τ,η

∥∥∥∥∥
2

=
1

2
‖w∗‖2 +

1

2
‖Bt,ηw∗train‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

+
η2

2
ESGD

∥∥∥∥∥
t−1∑
τ=0

(I − ηHtrain)t−1−τn′τ,η

∥∥∥∥∥
2

− 〈Bt,ηw∗train, w
∗〉 .
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Same as in Lemma 17, we know 1
2 ‖Bt,ηw

∗
train‖

2
+ 1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2 ≤ L3η2t2σ2. For the SGD noise, by

Lemma 47 we know ESGD
∥∥n′τ,η∥∥2 ≤ 4L3σ2d for all τ ≤ t as long as η ≤ 1

2L3d . Therefore,

η2

2
ESGD

∥∥∥∥∥
t−1∑
τ=0

(I − ηHtrain)t−1−τn′τ,η

∥∥∥∥∥
2

≤ η2

2

t−1∑
τ=0

ESGD
∥∥n′τ,η∥∥2 ≤ 2L3η2σ2dt ≤ 2L3η2σ2t2,

where the last inequality assumes t ≥ d. According to Lemma 19, for any fixed η ∈ [0, L/t], with probability at least
1− exp(−Ω(d)) over Xtrain,

〈Bt,ηw∗train, w
∗〉 ≥ ηt

16L
.

Therefore, for any step size η ≤ 1
2L3d ,

G(η) ≤ 1

2
‖w∗‖2 + 3L3η2σ2t2 − ηt

16L
≤ 1

2
‖w∗‖2 − ηt

32L
,

where the second inequality holds as long as η ≤ 1
96L4σ2t . Choosing η2 := 1

96L4σ2t that is smaller than 1
2L3d assuming

t ≥ d. Then, we have

G(η2) ≤ 1

2
‖w∗‖2 − 5C

4
,

where constant C = 1
3072L5σ2 .

Lower bounding G(η) for η ∈ [0, η1] : Now, we prove that there exists η1 = Θ(1/t) with η1 < η2 such that for any
η ∈ [0, η1], G(η) ≥ 1

2 ‖w
∗‖2 − C

4 . Recall that

G(η) =
1

2
‖w∗‖2 +

1

2
‖Bt,ηw∗train‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

+
η2

2
ESGD

∥∥∥∥∥
t−1∑
τ=0

(I − ηHtrain)t−1−τn′τ,η

∥∥∥∥∥
2

− 〈Bt,ηw∗train, w
∗〉 .

≥1

2
‖w∗‖2 − 〈Bt,ηw∗train, w

∗〉 .

Same as in Lemma 17, by choosing η1 = C
4Lt , we have for any η ∈ [0, η1],

G(η) ≥ 1

2
‖w∗‖2 − C

4
.

Lower bounding G(η) for η ∈ [η3, 1/L]: Now, we prove that there exists η3 = Θ(1/t) with η3 > η2 such that for
all η ∈ [η3, 1/L],

G(η) ≥ 1

2
‖w∗‖2 − C

4
.

Recall that

G(η) =
1

2
‖Bt,ηw∗train − w∗‖

2
+

1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2

+
η2

2
ESGD

∥∥∥∥∥
t−1∑
τ=0

(I − ηHtrain)t−1−τn′τ,η

∥∥∥∥∥
2

≥1

2

∥∥Bt,η(Xtrain)†ξtrain
∥∥2
.

Same as in Lemma 17, by choosing η3 = log(2)L/t, as long as σ ≥ 8
√
L, we have

G(η) ≥ 1

2
‖w∗‖2

63



for all η ∈ [η3, 1/L]. Note η3 ≤ 1/L as long as t ≥ log(2)L2.

Overall, we have shown that there exist η1, η2, η3 = Θ(1/t) with η1 < η2 < η3 such that G(η2) ≤ 1/2 ‖w∗‖2 −
5C/4 andG(η) ≥ 1/2 ‖w∗‖2−C/4 for all η ∈ [0, η1]∪[η3, 1/L]. Recall thatQ′(η) = G(η)+

〈
Bt,ηw

∗
train − w∗, Bt,η(Xtrain)†ξtrain

〉
.

Choosing ε = C/4 in Lemma 18, we know with probability at least 1−exp(−Ω(d)),
∣∣〈Bt,ηw∗train − w∗, Bt,η(Xtrain)†ξtrain

〉∣∣ ≤
C/4 for all η ∈ [0, 1/L]. Therefore, we know Q′(η2) ≤ 1/2 ‖w∗‖2 − C and Q′(η) ≥ 1/2 ‖w∗‖2 − C/2 for all
η ∈ [0, η1] ∪ [η3, 1/L]. �

In order to prove Lemma 43, we first construct a super-martingale to show that as long as task P is well behaved,
with high probability in SGD noise, the weight norm along the trajectory never exceeds 4

√
Lσ.

Lemma 48. Assume
√
d/
√
L ≤ σi(Xtrain) ≤

√
Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and

√
dσ/4 ≤ ‖ξtrain‖ ≤√

dσ. Given any 1 > δ > 0, suppose η ≤ 1
c5d2 log2(d/δ)

for some constant c5, with probability at least 1− δ in the SGD
noise, ∥∥w′τ,η∥∥ < 4

√
Lσ

for all τ ≤ t.

Proof of Lemma 48. According to the proofs of Lemma 47, as long as η ≤ 1
2L3d , we have

ESGD

[∥∥w′t,η − wtrain
∥∥2 |w′t−1,η

]
≤ (1− η

2L
)
∥∥w′t−1,η − wtrain

∥∥2
.

Since log is a concave function, by Jenson’s inequality, we know

ESGD

[
log
∥∥w′t,η − wtrain

∥∥2 |w′t−1,η

]
≤ logESGD

[∥∥w′t,η − wtrain
∥∥2 |w′t−1,η

]
≤ log

∥∥w′t−1,η − wtrain
∥∥2

+ log(1− η

2L
).

Defining Gt = log
∥∥w′t,η − wtrain

∥∥2− t log(1− η
2L ), we know Gt is a super-martingale. Next, we bound the martingale

differences.
We can bound |Gt − ESGD[Gt|w′t−1,η]| as follows,

|Gt − ESGD[Gt|w′t−1,η]| ≤ max
n′t−1,η,n

′′
t−1,η

log

(∥∥(I − ηHtrain)(w′t−1,η − wtrain)− ηn′t−1,η

∥∥2∥∥(I − ηHtrain)(w′t−1,η − wtrain)− ηn′′t−1,η

∥∥2

)

We can expand
∥∥(I − ηHtrain)(w′t−1,η − wtrain)− ηn′t−1,η

∥∥2
as follows,∥∥(I − ηHtrain)(w′t−1,η − wtrain)− ηn′t−1,η

∥∥2

=
∥∥(I − ηHtrain)(w′t−1,η − wtrain)

∥∥2 − 2η
〈
n′t−1,η, (I − ηHtrain)(w′t−1,η − wtrain)

〉
+ η2

∥∥n′t−1,η

∥∥2

We can bound the norm of the noise as follows,∥∥n′t−1,η

∥∥ =
∥∥∥xi(t−1)x

>
i(t−1)(w

′
t−1,η − wtrain)−Htrain(w′t−1,η − wtrain)

∥∥∥
≤
∥∥∥xi(t−1)x

>
i(t−1)(w

′
t−1,η − wtrain)

∥∥∥+
∥∥Htrain(w′t−1,η − wtrain)

∥∥
≤ (Ld+ L)

∥∥w′t−1,η − wtrain
∥∥ ≤ 2Ld

∥∥w′t−1,η − wtrain
∥∥ ,

where the second inequality uses
∥∥xi(t−1)

∥∥ ≤ √Ld. Therefore, we have∣∣2η 〈n′t−1,η, (I − ηHtrain)(w′t−1,η − wtrain)
〉∣∣ ≤ 4Lηd

∥∥w′t−1,η − wtrain
∥∥2
,

η2
∥∥n′t−1,η

∥∥2 ≤ 4L2η2d2
∥∥w′t−1,η − wtrain

∥∥2
.
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This further implies,

|Gt − ESGD[Gt|w′t−1,η]|

≤ log

(∥∥(I − ηHtrain)(w′t−1,η − wtrain)
∥∥2

+
(
4Lηd+ 4L2η2d2

) ∥∥w′t−1,η − wtrain
∥∥2∥∥(I − ηHtrain)(w′t−1,η − wtrain)

∥∥2 − 4Lηd
∥∥w′t−1,η − wtrain

∥∥2

)

≤ log

(
1 +

8Lηd+ 4L2η2d2

(1− 2Lη − 4Lηd)

)
≤ 16Lηd+ 8L2η2d2,

where the second inequality uses
∥∥(I − ηHtrain)(w′t−1,η − wtrain)

∥∥2 ≥ (1 − 2Lη)
∥∥w′t−1,η − wtrain

∥∥2
. The last in-

equality assumes η ≤ 1
12Ld and uses numerical inequality log(1 + x) ≤ x. Assuming η ≤ 1/(Ld), we further have

|Gt − ESGD[Gt|w′t−1,η]| ≤ L2ηd.
By Azuma’s inequality, we know with probability at least 1− δ/t,

Gt ≤ G0 + L2
√

2tηd log(t/δ).

Plugging in Gt = log
∥∥w′t,η − wtrain

∥∥2 − t log(1− η
2L ) and G0 = log ‖w0 − wtrain‖2 = log ‖wtrain‖2 , we have

log
∥∥w′t,η − wtrain

∥∥2 ≤ log ‖wtrain‖2 + t log(1− η

2L
) + L2

√
2tηd log(t/δ)

≤ log ‖wtrain‖2 −
η

2L
t+ L2

√
2tηd log(t/δ).

This implies, ∥∥w′t,η − wtrain
∥∥2 ≤‖wtrain‖2 exp

(
η

(
− 1

2L
t+ L2

√
2 log(t/δ)d

√
t

))
= ‖wtrain‖2 exp

(
O(d2 log2(d/δ))η

)
≤‖wtrain‖2 exp (2/3) ,

where the second inequality assumes η ≤ 1
c5d2log2(d/δ) for some constant c5. Furthermore, since ‖wtrain‖ ≤ (1 +

√
L)σ,

we have
∥∥w′t,η∥∥ ≤ (1 + e1/3) ‖wtrain‖ < 4

√
Lσ.

Overall, we know as long as η ≤ 1
c5d2log2(d/δ) , with probability at least 1 − δ/t,

∥∥w′t,η∥∥ ≤ 4
√
Lσ. Since this

analysis also applies to any τ ≤ t, we know for any τ, with probability at least 1− δ/t,
∥∥w′τ,η∥∥ < 4

√
Lσ. Taking a

union bound over τ ≤ t, we have with probability at least 1− δ,
∥∥w′τ,η∥∥ < 4

√
Lσ for all τ ≤ t. �

Proof of Lemma 43. Let E be the event that
∥∥w′τ,η∥∥ < 4

√
Lσ for all τ ≤ t. We first show that ESGD ‖wt,η − w∗‖2 is

close to ESGD
∥∥w′t,η − w∗∥∥2

1 {E}. It’s not hard to verify that

ESGD ‖wt,η − w∗‖2 = ESGD
∥∥w′t,η − w∗∥∥2

1 {E}+ ‖u− w∗‖2 Pr[Ē ],

where u is a fixed vector with norm 4
√
Lσ. By Lemma 48, we know Pr[Ē ] ≤ ε/(25Lσ2) as long as η ≤ 1

c5d2 log2(d/ε)

for some constant c5. Therefore, we have∣∣∣ESGD ‖wt,η − w∗‖2 − ESGD
∥∥w′t,η − w∗∥∥2

1 {E}
∣∣∣ ≤ ε.

Next, we show that ESGD
∥∥w′t,η − w∗∥∥2

1 {E} is close to ESGD
∥∥w′t,η − w∗∥∥2

. For any 1 ≤ τ ≤ t, let Eτ be the
event that

∥∥w′τ,η∥∥ ≥ 4
√
Lσ and

∥∥w′τ ′,η∥∥ < 4
√
Lσ for all τ ′ < τ. Basically Eτ means the weight norm exceeds the

threshold at step τ for the first time. It’s easy to see that ∪tτ=1Eτ = Ē . Therefore, we have

ESGD
∥∥w′t,η − w∗∥∥2

= ESGD
∥∥w′t,η − w∗∥∥2

1 {E}+

t∑
τ=1

ESGD
∥∥w′t,η − w∗∥∥2

1 {Eτ} .
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Conditioning on Eτ , we know
∥∥w′τ−1,η

∥∥ < 4
√
Lσ. Since we assume

√
d√
L
≤ σi(Xtrain) ≤

√
L
√
d for all i ∈ [n] and

ξtrain ≤
√
dσ, we know ‖wtrain‖ ≤ 2

√
Lσ. Therefore, we have

∥∥w′τ−1,η − wtrain
∥∥ ≤ 6

√
Lσ. Recall the SGD updates,

w′τ,η − wtrain = (I − ηHtrain)(w′τ−1,η − wtrain)− ηn′τ−1,η.

For the noise term, we have η
∥∥n′τ−1,η

∥∥ ≤ 2ηLd
∥∥w′τ−1,η − wtrain

∥∥ that is at most
∥∥w′τ−1,η − wtrain

∥∥ assuming
η ≤ 1

2Ld . Therefore, we have
∥∥w′τ,η − wtrain

∥∥ ≤ 2
∥∥w′τ−1,η − wtrain

∥∥ ≤ 12
√
Lσ. Note that event Eτ is independent

with the SGD noises after step τ . Therefore, according to the previous analysis, we know as long as η ≤ 1
2L3d ,

ESGD

[∥∥w′t,η − wtrain
∥∥2 |Eτ

]
≤
∥∥w′τ,η − wtrain

∥∥2 ≤ 2L2σ2.

Then, we can bound ESGD

[∥∥w′t,η − w∗∥∥2 |Eτ
]

as follows,

ESGD

[∥∥w′t,η − w∗∥∥2 |Eτ
]

=ESGD

[∥∥w′t,η − wtrain + wtrain − w∗
∥∥2 |Eτ

]
≤ESGD

[∥∥w′t,η − wtrain
∥∥2 |Eτ

]
+ 2ESGD

[∥∥w′t,η − wtrain
∥∥ |Eτ ] ‖wtrain − w∗‖+ ‖wtrain − w∗‖2

≤2L2σ2 + 2 · 2Lσ · 3
√
Lσ + 9Lσ2 ≤ 3L2σ2.

Therefore, we have

t∑
τ=1

ESGD
∥∥w′t,η − w∗∥∥2

1 {Eτ} =

t∑
τ=1

ESGD

[∥∥w′t,η − w∗∥∥2 |Eτ
]

Pr[Eτ ]

≤3L2σ2
t∑

τ=1

Pr[Eτ ] = 3L2σ2 Pr[Ē ] ≤ 3L2σ2ε.

This then implies that
∣∣∣ESGD

∥∥w′t,η − w∗∥∥2 − ESGD
∥∥w′t,η − w∗∥∥2

1 {E}
∣∣∣ ≤ 3L2σ2ε.

Finally, we have∣∣∣ESGD ‖wt,η − w∗‖2 − ESGD
∥∥w′t,η − w∗∥∥2

∣∣∣
≤
∣∣∣ESGD ‖wt,η − w∗‖2 − ESGD

∥∥w′t,η − w∗∥∥2
1 {E}

∣∣∣+
∣∣∣ESGD

∥∥w′t,η − w∗∥∥2 − ESGD
∥∥w′t,η − w∗∥∥2

1 {E}
∣∣∣

≤
(
3L2σ2 + 1

)
ε

as long as η ≤ 1
c5d2 log2(d/ε)

. Therefore, |Q(η)−Q′(η)| ≤
(
3L2σ2 + 1

)
ε/2. Choosing ε′ = 2ε

(3L2σ2+1) finishes the
proof. �

Proof of Lemma 44. Recall that

F̂TbV (η) :=
1

m

m∑
k=1

∆TbV (η, P ) =
1

m

m∑
k=1

ESGD
1

2

∥∥∥w(k)
t,η − w

(k)
valid

∥∥∥2

H
(k)
valid

.

Similar as in Lemma 15, we can show 1
2

∥∥∥w(k)
t,η − w

(k)
valid

∥∥∥2

H
(k)
valid

is O(1)-subexponential, which implies

ESGD
1
2

∥∥∥w(k)
t,η − w

(k)
valid

∥∥∥2

H
(k)
valid

isO(1)-subexponential. Therefore, F̂TbV (η) is the average ofm i.i.d. O(1)-subexponential

random variables. By standard concentration inequality, we know for any 1 > ε > 0, with probability at least
1− exp(−Ω(ε2m)), ∣∣∣F̂TbV (η)− FTbV (η)

∣∣∣ ≤ ε.
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Proof of Lemma 45. Recall that

FTbV (η) =EP∼T ESGD
1

2
‖wt,η − w∗‖2 + σ2/2

We only need to construct an ε-net for EP∼T ESGD
1
2 ‖wt,η − w

∗‖2. Let E be the event that
√
d/
√
L ≤ σi(Xtrain) ≤√

Ld and 1/L ≤ λi(Htrain) ≤ L for all i ∈ [n] and
√
dσ/4 ≤ ‖ξtrain‖ ≤

√
dσ We have

EP∼T ESGD
1

2
‖wt,η − w∗‖2

=EP∼T
[

1

2
ESGD ‖wt,η − w∗‖2 |E

]
Pr[E ] + EP∼T

[
1

2
ESGD ‖wt,η − w∗‖2 |Ē

]
Pr[Ē ]

According to Lemma 43, we know conditioning on E ,∣∣∣∣12ESGD ‖wt,η − w∗‖2 −
1

2
ESGD

∥∥w′t,η − w∗∥∥2
∣∣∣∣ ≤ ε,

as long as η ≤ 1
c5d2 log2(d/ε)

. Note {w′τ,η} is the SGD sequence without truncation.
For the second term, we have

EP∼T
[

1

2
ESGD ‖wt,η − w∗‖2 |Ē

]
Pr[Ē ] ≤ 13Lσ2 Pr[Ē ] ≤ ε,

where the last inequality assumes Pr[Ē ] ≤ ε
13Lσ2 . According to Lemma 7 and Lemma 49, we know Pr[Ē ] ≤

exp(−Ω(d)). Therefore, given any ε > 0, we have Pr[Ē ] ≤ ε
13Lσ2 as long as d ≥ c4 log(1/ε) for some constant c4.

Then, we only need to construct an ε-net for EP∼T
[

1
2ESGD

∥∥w′t,η − w∗∥∥2 |E
]

Pr[E ]. By the analysis in Lemma 37,
it’s not hard to prove ∣∣∣∣ ∂∂ηEP∼T

[
1

2
ESGD

∥∥w′t,η − w∗∥∥2 |E
]

Pr[E ]

∣∣∣∣ = O(1)t(1− η

2L
)t−1,

for all η ∈ [0, 1
c5d2 log2(d/ε)

]. Similar as in Lemma 18, for any ε > 0, we know there exists an ε-net Nε with size O(1/ε)

such that for any η ∈ [0, 1
c5d2 log2(d/ε)

],∣∣∣∣EP∼T [1

2
ESGD

∥∥w′t,η − w∗∥∥2 |E
]

Pr[E ]− EP∼T
[

1

2
ESGD

∥∥w′t,η′ − w∗∥∥2 |E
]

Pr[E ]

∣∣∣∣ ≤ ε
for η′ ∈ arg minη∈Nε |η − η′|.

Combing with the bounds on
∣∣∣ 12ESGD ‖wt,η − w∗‖2 1 {E} − 1

2ESGD
∥∥w′t,η − w∗∥∥2

1 {E}
∣∣∣ and

EP∼T
[

1
2ESGD ‖wt,η − w∗‖2 |Ē

]
Pr[Ē ], we have for any η ∈ [0, 1

c5d2 log2(d/ε)
],

FTbV (η)− FTbV (η′) ≤ 4ε

for η′ ∈ arg minη∈Nε |η − η′|. We finish the proof by replacing 4ε by ε′. �

Proof of Lemma 46. The proof is very similar as the proof of Lemma 22. The only difference is that we need to first
relate the SGD sequence with truncation to the SGD sequence without truncation and then bound the Lipschitzness on
the SGD sequence without truncation (as we did in Lemma 45). We omit the details here. �
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E Tools

E.1 Norm of random vectors
We use the following lemma to bound the noise in least squares model.

Lemma 49 (Theorem 3.1.1 in Vershynin (2018)). Let X = (X1, X2, · · · , Xn) ∈ Rn be a random vector with each
entry independently sampled from N (0, 1). Then

Pr[
∣∣‖x‖ − √n∣∣ ≥ t] ≤ 2 exp(−t2/C2),

where C is an absolute constant.

E.2 Singular values of Gaussian matrices
Given a random Gaussian matrix, in expectation its smallest and largest singular value can be bounded as follows.

Lemma 50 (Theorem 5.32 in Vershynin (2010)). Let A be an N × n matrix whose entries are independent standard
normal random variables. Then

√
N −

√
n ≤ Esmin(A) ≤ Esmax(A) ≤

√
N +

√
n

Lemma 51 shows a lipchitz function over i.i.d. Gaussian variables concentrate well on its mean. We use this lemma
to argue for any fixed step size, the empirical meta objective concentrates on the population meta objective.

Lemma 51 (Proposition 5.34 in Vershynin (2010)). Let f be a real valued Lipschitz function on Rn with Lipschitz
constant K. Let X be the standard normal random vector in Rn. Then for every t ≥ 0 one has

Pr[f(X)− Ef(X) ≥ t] ≤ exp(− t2

2K2
).

The following lemma shows a tall random Gaussian matrix is well-conditioned with high probability. The proof
follows from Lemma 50 and Lemma 51. We use Lemma 52 to show the covariance matrix is well conditioned in the
least squares model.

Lemma 52 (Corollary 5.35 in Vershynin (2010)). Let A be an N × n matrix whose entries are independent standard
normal random variables. Then for every t ≥ 0 with probability at least 1− 2 exp(−t2/2) one has

√
N −

√
n− t ≤ smin(A) ≤ smax(A) ≤

√
N +

√
n+ t

E.3 Johnson-Lindenstrauss lemma
We also use Johnson-Lindenstrauss Lemma in some of the lemmas. Johnson-Lindenstrauss Lemma tells us the
projection of a fixed vector on a random subspace concentrates well as long as the subspace is reasonably large.

Lemma 53 (Johnson & Lindenstrauss (1984)). Let P be a projection in Rd onto a random n-dimensional subspace
uniformly distributed in Gd,n. Let z ∈ Rd be a fixed point and ε > 0, then with probability at least 1− 2 exp(−cε2n),

(1− ε)
√
n

d
‖z‖ ≤ ‖Pz‖ ≤ (1 + ε)

√
n

d
‖z‖ .

F Experiment details
We describe the detailed settings of our experiments in Section F.1 and give more experimental results in Section F.2.
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F.1 Experiment settings
Optimizing step size for quadratic objective In this experiment, we meta-train a learning rate for gradient descent
on a fixed quadratic objective. Our goal is to show that the autograd module in popular deep learning softwares,
such as Tensorflow, can have numerical issues when using the log-transformed meta objective. Therefore, we first
implement the meta-training process with Tensorflow to see the results. We then re-implement the meta-training using
the hand-derived meta-gradient (see Eqn 5) to compare the result.

A general setting for both implementations is as follows. The inner problem is fixed as a 20-dimensional quadratic
objective as described in Section 3, and we use the log-transformed meta objective for training. The positive semi-
definite matrix H is generated by first sampling a 20× 20 matrix X with all entries drawn from the standard normal
distribution and then setting H = XTX . The initial point w0 is drawn from standard normal as well. Note that we
use the same quadratic problem (i.e., the same H and w0) throughout the meta-training. We do 1000 meta-training
iterations, and collect results for different settings of the initial learning rate η0 and the unroll length t.

We first implement the meta-training code with Tensorflow. Our code is adapted from Wichrowska et al. (2017) 6.
We use their global learning rate optimizer and specify the problem set to have only one quadratic objective instance. We
implemented the quadratic objective class ourselves (the ”MyQuadratic” class). We also turned off multiple advanced
features in the original code, such as attention and second derivatives, by assigning their flags as false. This ensures
that the experiments have exactly the same settings as we described. The meta-training learning rate is set to be 0.001,
which is of similar scale as our next experiment. We also try RMSProp as the meta optimizer, which alleviates some of
the numerical issues as it renormalizes the gradient, but our experiments show that even RMSProp is still much worse
than our implementation.

We then implement the meta-training by hand to show the accurate training results that avoid numerical issues.
Specifically, we compute the meta-gradient using Eq (5), where we also scaled the numerator and denominator as
described in Claim 5 to avoid numerical issues. We use the algorithm suggested in Theorem 4, except we choose the
meta-step size to be 1/(100

√
k) as the constants in Theorem 4 were not optimized.

Train-by-train vs. train-by-validation, synthetic data In this experiment, we find the optimal learning rate η∗ for
least-squares problems trained in train-by-train and train-by-validation settings and then see how the learning rate works
on new tasks.

Specifically, we generate 300 different 1000-dimensional least-squares tasks with noise as defined in Section 4
for inner-training and then use the meta-objectives defined in Eq (3) and (4) to find the optimal learning rate. The
inner-training number of steps t is set as 40. We try different sample sizes and different noise levels for comparison.
Subsequently, in order to test how the two η∗ (for train-by-train and train-by-validation respectively) work, we use them
on 10 test tasks (the same setting as the inner-training problem) and compute training and testing root mean squared
error (RMSE).

Note that since we only need the final optimal η∗ found under the two meta-objective settings (regardless of how we
find it), we do not need to actually do the meta-training. Instead, we do a grid search on the interval [10−6, 1], which is
divided log-linearly to 25 candidate points. For both the train-by-train and train-by-validation settings, we average the
meta-objectives over the 300 inner problems and see which η minimizes this averaged meta-objective. The results are
shown in Appendix F.2.

Train-by-train vs. train-by-validation, MLP optimizer on MNIST To observe the trade-off between train-by-train
and train-by-validation in a broader and more realistic case, we also do experiments to meta-train an MLP optimizer as
in Metz et al. (2019) to solve the MNIST classification problem. We use part of their code 7 to integrate with our code
in the first experiment, and we use exactly the same default setting as theirs, which is summarized below.

The MLP optimizer is a trainable optimizer that works on each parameter separately. When doing inner-training, for
each parameter, we first compute some statistics of that parameter (explained below), which are combined into a feature
vector, and then feed that feature vector to a Muti-Layer Perceptron (MLP) with ReLU activations, which outputs

6Their open source code is available at https://github.com/tensorflow/models/tree/master/research/learned_
optimizer

7Their code is available at https://github.com/google-research/google-research/tree/master/task_specific_
learned_opt
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Table 1: Whether the implementation converges for different t (fixed η0 = 0.1)
t 10 20 40 80

Ours X X X X
Tensorflow GD × × × ×

Tensorflow RMSProp X X × ×

two scalars, the update direction and magnitude. The update is computed as the direction times the exponential of the
magnitude. The feature vector is 31-dimensional, which includes gradient, parameter value, first-order moving averages
(5-dim), second-order moving averages (5-dim), normalized gradient (5-dim), reciprocal of square root second-order
moving averages (5-dim) and a step embedding (9-dim). All moving averages are computed using 5 different decay
rates (0.5, 0.9, 0.99, 0.999, 0.9999), and the step embedding is tanh distortion of the current number of steps divided by
9 different scales (3, 10, 30, 100, 300, 1000, 3000, 10000, 300000). After expanding the 31-dimensional feature vector
for each parameter, we also normalize the set of vectors dimension-wise across all the parameters to have mean 0 and
standard deviation 1 (except for the step embedding part). More details can be found in their original paper and original
implementation.

The inner-training problem is defined as using a two-layer fully connected network (i.e., another “MLP”) with ReLU
activations to solve the classic MNIST 10-class classification problem. We use a very small network for computational
efficiency, and the two layers have 100 and 20 neurons. We fix the cross-entropy loss as the inner-objective and use
mini-batches of 32 samples when inner-training.

When we meta-train the MLP optimizer, we use exactly the same process as fixed in experiments by Wichrowska
et al. (2017). We use 100 different inner problems by shuffling the 10 classes and also sampling a new subset of data if
we do not use the complete MNIST data set. We run each of the problems with three inner-training trajectories starting
with different initialization. Each inner-training trajectory is divided into a certain number of unrolled segments, where
we compute the meta-objective and update the meta-optimizer after each segment. The number of unrolled segments in
each trajectory is sampled from 10 + Exp(30), and the length of each segment is sampled from 50 + Exp(100), where
Exp(·) denotes the exponential distribution. Note that the meta-objective computed after each segment is defined as
the average of all the inner-objectives (evaluated on the train/validation set for train-by-train/train-by-val) within that
segment for a better convergence. We also do not need to log-transform the inner-objective this time because the cross
entropy loss has a log operator itself. The meta-training, i.e. training the parameters of the MLP in the MLP optimzier,
is completed using a classic RMSProp optimizer with meta learning rate 0.01.

For each settings of sample sizes and noise levels, we train two MLP optimizer: one for train-by-train, and one for
train-by-validation. When we test the learned MLP optimizer, we use similar settings as the inner-training problem, and
we run the trajectories longer for full convergence (4000 steps for small data sets; 40000 steps for the complete data
set). We run 5 independent tests and collect training accuracy and test accuracy for evaluation. The plots show the
mean of the 5 tests. We have also tuned a SGD optimizer (with the same mini-batch size) by doing a grid-search of the
learning rate as baseline.

F.2 Additional results
Optimizing step size for quadratic objective We try experiments for the same settings of the initial η0 and inner
training length t for all of three implementations (our hand-derived GD version, Tensorflow GD version and the
Tensorflow RMSProp version). We do 1000 meta-training steps for all the experiments.

For both Tensorflow versions, we always see infinite meta-objectives if η0 is large or t is large, whose meta-gradient
is usually treated as zero, so the training get stuck and never converge. Even for the case that both η0 and t is small, it
still has very large meta-objectives (the scale of a few hundreds), and that is why we also try RMSProp, which should
be more robust against the gradient scales. Our hand-derived version, however, does not have the numerical issues and
can always converge to the optimal η∗. The detailed convergence is summarized in Tab 1 and Tab 2. Note that the
optimal η∗ is usually around 0.03 under our settings.
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Table 2: Whether the implementation converges for different η0 (fixed t = 40)
η0 0.001 0.01 0.1 1

Ours X X X X
Tensorflow GD × × × ×

Tensorflow RMSProp X X × ×

Train-by-train vs. train-by-validation, MLP optimizer on MNIST We also do additional experiments on training
an MLP optimizer on the MNIST classification problem. We first try using all samples under the 20% noised setting.
The results are shown in Fig 6. The train-by-train setting can perform well if we have a large data set, but since there is
also noise in the data, the train-by-train model still overfits and is slightly worse than the train-by-validation model.
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Figure 6: Training and testing accuracy for different models (all samples, 20% noise)

We then try an intermediate sample size 12000. The results are shown in Fig 7 (no noise) and Fig 8 (20% noise).
We can see that as the theory predicts, as the amount of data increases (from 1000 samples to 12000 samples and then
to 60000 samples) the gap between train-by-train and train-by-validation decreases. Also, when we condition on the
same number of samples, having additional label noise always makes train-by-train model much worse compared to
train-by-validation.
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Figure 7: Training and testing accuracy for different models (12000 samples, no noise)
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Figure 8: Training and testing accuracy for different models (12000 samples, 20% noise)
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