In the appendix, we first give the missing proofs for the theorems in the main paper. Later in Appendix F we give
details for the experiments.

Notations: Besides the notations defined in Section 2, we define more notations that will be used in the proofs.

For a matrix X € R"*? with n < d, we denote its singular values as o1 (X) > --- > 0, (X).

For a positive semi-definite matrix A € R%?, we denote u " Au as ||u||, . For a matrix X € R¥*" let Projy €
R%*4 be the projection matrix onto the column span of X . That means, Proj = SS", where the columns of S form
an orthonormal basis for the column span of X.

For any event £, we use 1 {€} to denote its indicator function: 1 {£} equals 1 when & holds and equals 0 otherwise.
We use £ to denote the complementary event of £.

A Proofs for Section 3 — alleviating gradient explosion/vanishing problem
for quadratic objective

In this section, we prove the results in Section 3. Recall the meta learning problem as follows:
The inner task is a fixed quadratic problem, where the starting point is fixed at wg, and the loss function is
flw) = %wTH w for some fixed positive definite matrix H € R%*?. Suppose the eigenvalue decomposition of H

is Z?:l Aiu;u; . In this section, we assume L = \;(H) and o = \g(H) are the largest and smallest eigenvalues
of H with L > «. We assume the starting point wg has unit £5 norm. For each ¢ € [d], let ¢; be {(wp,u;) and let
Cmin = min(|e1], |eq|). We assume ¢pi, > 0 for simplicity, which is satisfied if wq is chosen randomly from the unit
sphere.

Let {w, ,} be the GD sequence running on f(w) starting from wy with step size 7. For the meta-objective, we
consider using the loss of the last point directly, or using the log of this value. In Section A.1, we first show that
although choosing F(n) = f(wy,y) does not have any bad local optimal solution, it has the gradient explosion/vanishing
problem (Theorem 3). Then, in Section A.2, we show choosing F'(n)) = 1 log f(wy,,) leads to polynomially bounded
meta-gradient and further show meta-gradient descent converges to the optimal step size (Theorem 4). Although
the meta-gradient is polynomially bounded, if we simply use back-propogation to compute the meta-gradient, the
intermediate results can still be exponentially large/small (Corollary 1). This is also proved in Section A.2.

A.1 Meta-gradient vanishing/explosion

In this section, we show although choosing F'(1)) = f (w,,) does not have any bad local optimal solution, it has the
meta-gradient explosion/vanishing problem. Recall Theorem 3 as follows.

Theorem 3. Let the meta-objective be F(n) = f(wy.,), we know EF(n) is a strictly convex function in ) with an unique
minimizer. However, for any step size 0 < n < 2/L,

|F/(77)‘ < tL? max(]1 — 7704|2t*1, 11— 7]L|2t71);
Sor any step sizen > 2/L, )
\E'(n)| > AL (nL — 1)2~! — L2t

Intuitively, if we write w ,, in the basis of the eigen-decomposition of H, then each coordinate evolve exponentially
in t. The gradient of the standard objective is therefore also exponential in ¢.

Proof of Theorem 3. According to the gradient descent iterations, we have
Wi,y = Wt—1,p — nvf(wt—l,n) = Wt—1,np — nHwt—l,'r] = (I - nH)wt—l,’r/ = (I - nH)tw(%

Therefore, F'(n) := f(w;.,) = 2wy (I — nH)* Hwy. Taking the derivative of (1),

1
2

d
/() = —tw] (I — nH)? " H2wo = —t 3 e2A2(1 — A%,

i
i=1
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where ¢; = (wo, u;) . Taking the second derivative of F'(n),

d
F"(n) =t(2t — Dwy (I —nH)*2H3wo = t(2t — 1) Zc?)\?(l — )22

i=1

Since L > «, we have F"'(1)) > 0 for any 7. That means £'(1) is a strictly convex function in 7 with a unique
minimizer.
For any fixed € (0,2/L) we know |1 —nA;| < 1 forall ¢ € [d]. We have

d
[F/n)] <630 a2 — a2
=1

d
<t ) clmax (A1 —n)\ [>T

1€[d]

<tL? max (|1 - nal* 1|1 — nL|2t—1) ,

where the last inequality uses Zle c? = 1. Note for € (0,2/L), it’s guaranteed that |1 — 1)\;| takes the maximum at
|1 —nalor|l—nL|.
For any fixed n € (2/L, 00), we know nL — 1 > 1. We have

F'(n)

= —t2L*(1 —nL)* !t —¢ Z EN(1—nh)H Tt —t Z EN2(1— )Pt
i#1:(1—nX;)<0 i#1:(1=nX;)>0

d
>t L2 (nL — 1% =ty fAF >t L (nL — 1)* 7 — L,
=1

d 21, O

where the last inequality uses > .., ¢

A.2 Alleviating meta-gradient vanishing/explosion

We prove when the the meta objective is chosen as % log f(wy ), the meta-gradient is polynomially bounded. Fur-
thermore, we show meta-gradient descent can converge to the optimal step size within polynomial iterations. Recall
Theorem 4 as follows.

Theorem 4. Let the meta-objective be F(n) = 11og f(wyy). We know F(n) has a unique minimizer n* and

F'(n)=0 <2L73> foralln > 0. Let {n;,} be the GD sequence running on F with meta step size px = 1/V'k.

Crin(L—a)
1 1 1

Cmin’ 77 @’ L—a

Suppose the starting step size ng < M. Given any 1/L > € > 0, there exists k' = Af—;poly(
forallk > K| |ny — n*| < e

) such that

When we take the log of the function value, the derivative of the function value with respect to 7 becomes much more
stable. We will first show some structural result on F(n) — it has a ungiue minimizer and the gradient is polynomially
bounded. Further the gradient is only close to O when the point 7 is close to the unique minimizer. Then using such
structural result we prove that meta-gradient descent converges.

Proof of Theorem 4. The proof consists of three claims. In the first claim, we show that F hasa unique minimizer and
the minus meta derivative always points to the minimizer. In the second claim, we show that F' has bounded derivative.
In the last claim, we show that for any 7 that is outside the e-neighborhood of n*, | E”(n)] is lower bounded. Finally, we
combine these three claims to finish the proof.

Claim 4. The meta objective F has only one stationary point that is also its unique minimizer 1*. For any n) € [0,7%),
F'(n) < 0and for any n € (n*,00), F'(n) > 0. Furthermore, we know n* € [1/L,1/q].
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We can compute the derivative of Fin n as follows,

P = —2wg (I —nH)*~1H?w, _ -2 El LN (1 — n)\i)zt_l. 5)
wg (I —nH)? Huwo S N1 — )2

It’s not hard to verify that the denominator >>%_, ¢2);(1—n);)2" is always positive. Denote the numerator —2 3% | ¢2)2
nAi)?* =t as g(n). Since ¢’(n) > 0 for any 7 € [0, 00), we know g(n) is strictly increasing in 7. Combing with the fact
that g(0) < 0 and g(co) > 0, we know there is a unique point (denoted as n*) where g(1*) = 0 and g(n) < 0 for all
n € [0,7*) and g(n) > 0 for all ) € (n*, o0). Since the denominator in F”(7) is always positive and the numerator
equals g(n), we know there is a un1que point * where F’( *) = 0and F’(n) < 0 forally € [0,1*) and F’(n) > 0
for all n € (n*, 00). It’s clear that n* is the minimizer of F.

Also, it’s not hard to verify that for any 1 € [0,1/L), F’(n) < 0 and for any 5 € (1/a, 00), E’(5) > 0. This
implies that n* € [1/L,1/a].

Claim 5. For any n € [0,00), we have

- 413
F’ < 5——77F—:
0 < ooy

min

= Dmax~

For any 7 € [0, QJ%L}, we have |1 — ;| < 1 — no for all i. Dividing the numerator and denominator in £” (1) by

(1 — na)?, we have

c)\2 —n\; _
\zmmx SN R VA I R 0) vt

1=1"1""1 =1 "

o+ ] N(k M)zt B Cda(l —na) cza(L —a) = a(L —a)’

|£/(n)| =2

where the second last inequality uses n < + =7

Similarly for any n € (m, 00), we have |1 — nA;| < nL — 1 for all 4. Dividing the numerator and denominator in

F'(n) by (nL — 1)%, we have

d AT 1-nAi\2t—1
F'(n) =2 izt =1 (GreT) < 222 1G] < 200+ L) Y0 N2 < 4L3
AL+ Yy AN(A2 T Ll —1) AL(L - ) GL(L - a)

where the last inequality uses > + —.
Overall, we know for any n > 0,

AL? 11 4L°
F < 5—i.
E )l < L—amax<cda c%L) ol —a)

Claim 6. Given M > 2/aand 1/L > € > 0, forany n € [0,1* — €] U [n* + €, M], we have

2 2.3 2 2L2 3 1 R
|F' (n)] 2min< eczoz , Aecl ) ) >2€cmmmln<a > := Dpin(M).

(NIL —1)2 L2
Ifn e [0,n* —eland n < +L,wehawe
fro) = o T G S ) - S N )
Zz 1 Cz)‘ (1 - n)‘i)Qt Ez 1 61/\ (1 - n)‘i)2t ,
where the second equality holds because % ¢2A2(1 — 7*A;)2~1 = 0. For the numerator, we have

d
ZC )\ 1 - 77)\ 2t 1 ZQ2>\12 o ?7*/\7:)21571 26[21012 ((1 o 770‘)%71 - (1 o 7]*04)27:71)

>cqa? (1—na)® ™' — (1 —na—ea)®1);
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for the denominator, we have

ZC)\ (1—nx)* < <202A> (1 —na)*

where the second inequality holds because |1 — ;| < 1 — na for all 4. Overall, we have when 7 € [0, n* — €] and
n< 22,

cAa? ((1 na)? =t — (1 — na — ea)%’l)

<l11>177704

2ecia 2ecia’

(xL, z/\)(l—na)_ L

where the last inequality holds because ( 1 —na) < 1and Zf 2\ < L.
Similarly, if n € [0,7* — €] and n > we have

/()] >2

EEys
AAL? (1 —nL)*~ ' — (1 —nL —eL)*1)
(S en) (1= gLy
AL? ((nL +el —1)%"1 — (nL — 1)2‘5*1)
(ZZ L3N ) (nL —1)%

S 2eciL? S 2ecia?L?
- 2 = (L—a)?’
(Zz 1 z)‘ ) (UL_ 1)

where the last inequality holds because n<n*—e<1l/aand Zf 2\ < L.
Ifnen*+e00)andn < +L, we have

[ (n)] 22

‘F’ n ‘ Cda 2(1=na+ea)? 1 — (1 —na)?1)
(El 1 G ) (1 —na)?t

>2€C§Of37
- L
Ifn € [n* 4 €,00) and > 27, we have
. 2L2 1—nlL 2t—1 1— L2t—1
‘F/(n)’2261 ((1 —=nL +ne) (1—nL)*1)

(Zz 1 z)\ ) (1 - TIL)2t
2eciL? 2eci L?

Z<Zl 161)‘)(771/—1)2 T (ML -1)%

where the last inequality uses the assumption that < M.

With the above three claims, we are ready to prove the optimization result. By Claim 4, we know F’(n) < 0 for any
n € [0,n*) and F’(n) > 0 for any n € (n*, oo) So the opposite gradient descent always points to the minimizer.

Since p = 1/\f when k& > ki = D;‘“" we know pp < 55—. By Claim 5, we know |ﬁ"(17)| < Dppax for

all n > 0, which implies | ,ukF "(n)| < eforall k > k;. That means, meta gradient descent will never overshoot the

minimizer by more than € when k£ > k;. In other words, after k£ meta iterations, once n enters the e-neighborhood of
n*, it will never leave this neighborhood.

17



We also know that at meta iteration ky, we have 7, < max(1/a + Dpax, M) := M. Here, 1/a + Doy comes
from the case that the eta starts from the left of ™ and overshoot to the right of n* by Dyax. Since n* € [1/L,1/a], we
have |1, — n*| < max(1/a,1/a 4 Dyax — 1/L, M —1/L) := R. By Claim 6, we know that | (1))| > Dyyin (M)
for any n € [0,7* — €] U [n* + €, M]. Choosing some k, satisfying Zk ko 1/VE > Di, we know for any
k> kz, Ine —n*| <e. Pluggmg in all the bounds for Dmm, Dy .x from Claim 6 and Claim 5 we know there exists
k1= &poly(—, L, &, ;25 ) k2 = 25 poly(cmm,L7 1 1) satisfying these conditions. O

Next, we show although the meta-gradient is polynomallly bounded, the intermediate results can still vanish or
explode if we use back-propogation to compute the meta-gradient.

Corollary 1. If we choose the meta-objective as F(n) = % log f(wy ), when computing the meta-gradient using
back-propagation, there are intermediate results that are exponentially large/small in number of inner-steps t.

Proof of Corollary 1. This is done by direct calculation. If we use back-propagation to compute the derivative

of 1 log(f(w¢y)), we need to first compute %’“’7)% log(f(w,y)) that equals . Same as the analysis in

1
tf(wt,,,)

Theorem 3, we can show W is exponentially large when 1 < 2/L and is exponentially small when > 2/L. O
t,m

B Proofs of train-by-train v.s. train-by-validation (GD)

In this section, we show when the number of samples is small and when the noise level is a large constant, train-by-train
overfits to the noise in training tasks while train-by-validation generalizes well. We separately prove the results
for train-by-train and train-by-validation in Theorem 7 and Theorem 8, respectively. Then, Theorem 5 is simply a
combination of Theorem 7 and Theorem 8.

Recall that in the train-by-train setting, each task P contains a training set Sy,i, with n samples. The inner
objective is defined as f(w) = = 2 () €S (W, T) — y)?. Let {w;,} be the GD sequence running on f(w)
from initialization 0 (with truncation). The meta-loss on task P is defined as the inner objective of the last point,
Aryrmy(n, P) = f(wy) = 5 2 () €S (Weipy T) — y)? . The empirical meta objective Frypn)(n) is the average
of the meta-loss across m different tasks. We show that under FTbT(n) (n), the optimal step size is a constant and the
learned weight is far from ground truth w* on new tasks. We prove Theorem 7 in Section B.2.

Theorem 7. Let the meta objective FTbT(n) (n) be as defined in Equation 3 with n € [d/4,3d/4]. Assume noise level
o is a large constant c¢y. Assume unroll length t > co, number of training tasks m > cglog(mt) and dimension
d > ¢y log(m) for certain constants cs, cs, c4. With probability at least 0.99 in the sampling of the training tasks, we
have

= Q(1)027

n;’uin = 6(1) and & Hwtm;uin —w”

foralln},., € argming,>g FTbT(n) (n), where the expectation is taken over new tasks.

In Theorem 7, 2(1) is an absolute constant independent with o. Intuitively, the reason that train-by-train performs
badly in this setting is because there is a way to set the step size to a constant such that gradient descent converges very
quickly to the empirical risk minimizer, therefore making the train-by-train objective very small. However, when the
noise is large and the number of samples is smaller than the dimension, the empirical risk minimizer (ERM) overfits to
the noise and is not the best solution.

In the train-by-validation setting, each task P contains a training set Sy, With n; samples and a validation set
with ny samples. The inner objective is defined as f(w) = i D () €S (W, T) — y)*. Let {w; ,} be the GD

sequence running on f (w) from initialization O (with truncation). For each task P, the meta-10ss Aryy (n, o) (71 P)
is defined as the loss of the last point w;, evaluated on the validation set Syuiq. That is, Agyy(n, no) (0, P) =
i 2 ()€ Suna (Wi, T) — y)* . The empirical meta objective FTW(nhnz) (n) is the average of the meta-loss across

m different tasks Py, Ps, ..., P,,,. We show that under FTW(M)M) (n), the optimal step size is ©(1/t) and the learned
weight is better than initialization 0 by a constant on new tasks. Theorem 8 is proved in Section B.3.
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Theorem 8. Let the meta objective F’Tbv(nhm) (n) be as defined in Equation 4 with nq1,n2 € [d/4,3d/4]. Assume
noise level o is a large constant c1. Assume unroll length t > co, number of training tasks m > c3 and dimension
d > ¢y log(t) for certain constants cs, c3, c4. With probability at least 0.99 in the sampling of training tasks, we have

Myatia = ©(1/t) and E ||wy = — w*H2 = [|w*|* = (1)

:a[id
forallm},., € argmin,>q FTW(nl,nZ) (n), where the expectation is taken over new tasks.

Intuitively, train-by-validation is optimizing the right objective. As long as the meta-training problem has good
generalization performance (that is, good performance on a few tasks implies good performance on the distribution of
tasks), then train-by-validation should be able to choose the optimal learning rate. The step size of ©(1/t) here serves
as regularization similar to early-stopping, which allows gradient descent algorithm to achieve better error on test data.

Notations We define more quantities that are useful in the analysis. In the train by train setting, given a task
Py, := (D(w}), S 0). The training set S contains n samples {z\*, ™17 with y*) = <w,’:, xl(-k)> +e®

train’? train )

Let X&Z)n be an n X d matrix with its i-th row as (xz(-k))—r. Let Ht(r];)n = %(Xl(rfi)n)TXL(rfi)n be the covariance matrix

of the inputs in Sl(k) Let ¢ ) be an n-dimensional column vector with its i-th entry equal to fi(k).

rain” train
(k) ) has pseudo-inverse (X))t

is full row rank. Therefore, X train)

train

Since n < d, with probability 1, we know X .
such that Xt(rl:il(Xt(rl;i)n)T = I,,. It’s not hard to verify that there exists wt(rlzi)n = Proj iy - wi + (Xt(r]:i)n)Tﬁt(rgi)n such that
ygk) = <wt(r];)n,x§k)> for every (xgk),ygk)) e stk

train*
of (X"))T. We also denote Proj

train

+ is the projection matrix onto the column span

)t). Let wfkn) be the

Here, Proj (x®

wain)

. k) \i k k
(x ()T W, as (wl(rai)n) . We use Bt(n) to denote (I — (I — nH[(rai)n

train

weight obtained by running GD on S (k)

\rain With step size 7 (with truncation).

. 2
With the above notations, it’s not hard to verify that for task Py, the inner objective f(w) = % Hw — w[(rl;)n .
Hlmin
2
P _ 1 (k)
The meta-loss on task Py is just Apypn) (0, Pr) = 5 me77 — Wt ‘H“‘f)
train

In the train-by-validation setting, each task P contains a training set S (k)

wrain With my samples and a validation set

S(fh)d with 1y samples. Similar as above, for the training set 5. k) xB) g®) ) pE 6,

Vi train’ we can define gtraim train? = train® ““train® ~—t,n wt,n ’
Sl (k) (k) (k) k) (k) . . . Lo
for the validation set .gvahd, we can define &, X iar Hyalla» Waia- With these notau;)ns, the inner objective is
; _ 1 (k) : _ 1 (k)
flw) =3 Hw = Waain| ) and the meta-10ss is Aqyy (n, 10) (1 Pr) = 5 ||We,n — Weylig 0

train

We also use these notations without index & to refer to the quantities defined on task P. In the proofs, we ignore the
subsripts on n,ni, Ny and 51mply write ATbT (77, Pk), ATbv(’I], Pk)7 FTbT7 FTbV; FTbTa Fryyv.

B.1 Overall Proof Strategy

In this section (and the next), we follow similar proof strategies that consists of three steps.

Step 1:  First, we show for both train-by-train and train-by-validation, there is a good step size that achieves small
empirical meta-objective (however the step sizes and the empirical meta-objective they achieve are different in the two
settings). This does not necessarily mean that the actual optimal step size is exactly the good step size that we propose,
but it gives an upperbound on the empirical meta-objective for the optimal step size.

Step 2:  Second, we define a threshold step size such that for any step size larger than it, the empirical meta-objective
must be higher than what was achieved at the good step size in Step 1. This immediately implies that the optimal step
size cannot exceed this threshold step size.
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Step 3: Third, we show the meta-learning problem has good generalization performance, that is, if a learning rate n
performs well on the training tasks, it must also perform well on the task distribution, and vice versa. Thanks to Step 1
and Step 2, we know the optimal step size cannot exceed certain threshold and then only need to prove generalization
result within this range. The generalization result is not surprising as we only have a single trainable parameter 7,
however we also emphasize that this is non-trivial as we will not restrict the step size 7 to be small enough that the
algorithms do not diverge. Instead we use a truncation to alleviate the diverging problem (this allows us to run the
algorithm on distribution of data whose largest possible learning rate is unknown).

Combing Step 1, 2, 3, we know the population meta-objective has to be small at the optimal step size. Finally, we
show that as long as the population meta-objective is small, the performance of the algorithms satisfy what we stated in
Theorem 5. The last step is easier for the train-by-validation setting, because its meta-objective is exactly the correct
measure that we are looking at; for the train-by-train setting we instead look at the property of empirical risk minimizer
(ERM), and show that anything close to the ERM is going to behave similarly.

B.2 Train-by-train (GD)
Recall Theorem 7 as follows.

Theorem 7. Let the meta objective FTbT(n) (n) be as defined in Equation 3 with n € [d/4, 3d/4]. Assume noise level
o is a large constant c¢1. Assume unroll length t > co, number of training tasks m > czlog(mt) and dimension
d > cqlog(m) for certain constants ca, cs, c4. With probability at least 0.99 in the sampling of the training tasks, we
have

Nrain = O(1) and E [|wy - w*H2 =Q(1)0?,

7771tain
forall m}, ., € argming,>g FTbT(n) (n), where the expectation is taken over new tasks.

According to the data distribution, we know X, is an n X d random matrix with each entry i.i.d. sampled from
standard Gaussian distribution. In the following lemma, we show that the covariance matrix Hyg, iS approximately

isotropic when d/4 < n < 3d/4. Specifically, we show % < 0i(Xain) < VLA and% < Ni(Hyain) < L for
all i € [n] with L = 100. We use letter L to denote the upper bound of || Hyin|| to emphasize that this bounds the
smoothness of the inner objective. Throughout this section, we use letter L to denote constant 100. The proof of

Lemma 7 follows from random matrix theory. We defer its proof into Section B.2.4.

Lemma 7. Let X € R"*4 be a random matrix with each entry i.i.d. sampled from standard Gaussian distribution. Let
H :=1/nX T X. Assume n = cd with ¢ € [%, 3]. Then, with probability at least 1 — exp(—$(d)), there exists constant
L = 100 such that

Vd

1

foralli € [n].

In this section, we always assume the size of each training set is within [d/4, 3d/4] so Lemma 7 holds. Since
|| Hisain || is upper bounded by L with high probability, we know the GD sequence converges to Wi, for n € [0,1/L].
In Lemma 1, we prove that the empirical meta objective Fryr monotonically decreases as 7 increases until 1/L. Also,
we show Fryr is exponentially small in ¢ at step size 1/L. This serves as step 1 in Section B.1. The proof is deferred
into Section B.2.1.

Lemma 1. With probability at least 1 — mexp(—Q(d)), Fryr(n) is monotonically decreasing in [0,1/L) and
FTbT(]-/L) S 2L202 (]. - %)t

When the step size is larger than 1/L, the GD sequence can diverge, which incurs a high loss in meta objective.
Later in Definition 1, we define a step size 7 such that the GD sequence gets truncated with descent probability for any
step size that is larger than 7). In Lemma 2, we show with high probability, the empirical meta objective is high for all
n > 7). This serves as step 2 in the proof strategy described in Section B.1. The proof is deferred into Section B.2.2.
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2

Lemma 2. With probability at least 1 — exp(—Q(m)), Fryr(n) > 1o Jor all m > 7).

By Lemma 1 and Lemma 2, we know the optimal step size must lie in [1/L, 7]. We can also show 1/L < 7 < 3L,
SO Npin 18 a constant. To relate the empirical loss at 7, to the population loss. We prove a generalization result for
step sizes within [1/L, 7]. The following lemma is a formal version of Lemma 3. This serves as step 3 in Section B.1.
The proof is deferred into Section B.2.3.

Lemma 8. Suppose o is a large constant c¢1. Assume t > co,d > c4 for certain constants cy, cq. With probability at
least 1 — mexp(—Q(d)) — O(t + m) exp(—Q(m)),

2
|Fror(n) — Fryr(n)] < 5

Q

forallm € [1/L,7),

Combining the above lemmas, we know the population meta objective Frryr is small at 7, , which means wy -

is close to the ERM solution. Since the ERM solution overfits to the noise in training tasks, we know ||wt7n;am — w* ||
has to be large. We present the proof of Theorem 7 as follows.
Proof of Theorem 7. We assume o is a large constant in this proof. According to Lemma 1, we know with probability
atleast 1 — m exp(—Q(d)), Fryr(n) is monotonically decreasing in [0,1/L] and Fryr(1/L) < 2L%0*(1 —1/L?)".
This implies that the optimal step size 75, > 1/L and Frryr(n},,) < 2L%0%(1 — 1/L?)*. By Lemma 2, we know
with probability at least 1 — exp(—Q(m)), Fryr(n) > % for all n > 7}, where 7] is defined in Definition 1. As long
as t > co for certain constant ¢z, we know 16’% > 2L%02(1 — 1/L?)*, which then implies that the optimal step size
N Lies in [1/L, 7). According to Lemma 10, we know 7 € (1/L, 3L). Therefore n;,;, is a constant.

According to Lemma 8, we know with probability at least 1 —m exp(—Q(d)) —O(t+m) exp(—Q(m)), | Fryr(n) —
Fryr(n)| < Z—i,, forall € [1/L,7]. As long as t is larger than some constant, we have Fryr (1, ) < %i Combing

. . . 2 .
with the generalization result, we have Fryr(n;,,) < 2% . Next, we show that under a small population loss,
2
E Hwtm&;m —w*||” has to be large.

Let & be the event that vd/VL < 0;(Xyain) < VLd and 1/L < A;(Hyain) < L for all i € [n] and Vdo /4 <
Hftrain“ < \/&g, We have

1
> 2 [wh, = W 1{E1}

2
E|we,ng,, = i,

1
Zf (E Hwt,n:ﬂi“ - w:;ain - (Xtrain)TftrainH 1 {51})2
1
o L 6 i) 161 — E o, — w1 660"

< 49” this then implies

. 2
Since E [[we.nz,, — winl[,,, < T

Hyai

[ 4c2 2
E H(Xtrain)TftrainH 1 {51} -E Hwtv’?ﬁa;“ - wt’;amH 1 {81} < L% = fa

Conditioning on &1, we can lower bound || (Xtrain)fftrain || by ﬁ. According to Lemma 7 and Lemma 49, we know

Pri&1] > 1 — exp(—Q(d)). As long as d is at least certain constant, we have Pr[£;] > 0.9. This then implies

E || (Xtrain) ' urain || L {E1} > 4(?\”5. Therefore, we have

N 9o 20 90 20 o
E ||wene,, — Wiain|| L {E1} = W/E I i I i

where the first equality uses L = 100. Then, we have

2

— Wil 161} > (B [we e, — win]| 1{EY)” >

B i, — [ > E > o

*
»Thrain
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where the first inequality holds because for any Siin, Wi, 1S the projection of w* on the subspace of Siy,in and Wi
is also in this subspace. Taking a union bound for all the bad events, we know this result holds with probability at least
0.99 as long as o is a large constant ¢; and ¢ > ¢o,m > c3log(mt) and d > ¢4 log(m) for certain constants ¢, ¢3, 4.

O

B.2.1 Behavior of Firyr for 7 € [0,1/L]

In this §ection, we prove the empirical meta objective FTbT is monotonically decreasing in [0, 1/L]. Furthermore, we
show Frrypr(1/L) is exponentially small in ¢.

Lemma 1. With probability at least 1 — mexp(—Q(d)), Fryr(n) is monotonically decreasing in [0,1/L] and
FTbT(]-/L) S 2L2(72 (1 - %)t

Proof of Lemma 1. For each k € [m], let &, be the event that v/d/v/L < 0i(Xiain) < VLdand 1/L < X\j(Hyain) < L
for all i € [n] and V/do /4 < ||wain|| < Vdo. Here, L is constant 100 from Lemma 7. According to Lemma 7 and
Lemma 49, we know for each k € [m], & happens with probability at least 1 — exp(—£2(d)). Taking a union bound
over all k € [m], we know Nje[,,,Ex holds with probability at least 1 — m exp(—£(d)). From now on, we assume
mke[m] Ek holds.

Let’s first consider each individual loss function Apyr (7, Py ). Let {w } be the GD sequence without truncation.
We have

~(k k ~(k k k k
w;% - wt(ral)n —’U},(,. )1 n o wt(rai)n Ht(ral)n( 7(- )1,7] - wt(rai)n)
k ~(k k k k
:(I - nHlE'al)n)( 5’ )1 n o wl(rai)n) = 7([ - nHtE"al)n) t(ral)n

< 2v/Lo for any 7. Therefore,

train

Forany n € [0,1/L], we have Hw(k)H < Hw(@

E) \x k k
= H (wt(rai)n) ( tram) t(ral)n wt(ﬂll) H

never exceeds the norm threshold and never gets truncated.
Noticing that Apyr(n, Pr) = (wik) wk) )TH(k) (w (k) _ ) ), we have

M Wirain train \Wt M train

k & A
Aur(n, Pr) = 5 (i) THEL (1 = nB )l

train train*

Taking the derivative of Apyr(n, Py) in 7, we have

0 L . .
—Aqpr(n, Pr) = —t(w ( )) (Ht(ral)n) (I_,UHL(W)H)% 1w( )

an tram train

is full rank in the row span of Xt(ral)n

) < Lforalli € [n] and H"

train

Conditioning on &, we know 1/L < A, (H(k)

train

> 0, which happens with

Therefore, we know ATbT(mPk) < Oforall p € [0,1/L). Here, we assume Hw

train
probability 1.

Overall, we know that conditioning on N¢[y,)Ex, every Aryr(n, Py) is strictly decreasing for 1 € [0,1/L]. Since
Frvr(n) == LS Awr(n, Py), we know Fryp(n) is strictly decreasing when ) € [0,1/L].

At step size n = 1/L, we have

) (k)

trdll’l

1
ATbT(nv Pk) :7( " )THt(r];)n(I - UH(k)

2 tram train
1 1 *) |2 1Y’
SiL (1 — IP) Hwtrain S 2L20'2 1-— ﬁ 5

2 .
by 4Lo? at the last step. Therefore, we have Frryr(1/L) < 2L%0%(1 — 25)°. O

(k)

where we upper bound mein
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B.2.2 Lower bounding F'ryp for 7 € (77, 00)

In this section, we prove that the empirical meta objective is lower bounded by Q(o?) with high probability for
n € (7, 00). Step size 7 is defined such that there is a descent probability of diverging for any step size larger than 7.
Then, we show the contribution from these truncated sequence will be enough to provide an Q(o2) lower bound for
FTZ,T. The proof of Lemma 2 is given at the end of this section.

Lemma 2. With probability at least 1 — exp(—§(m)), FTbT(n) > %for allm > 1.

We define 7 as the smallest step size such that the contribution from the truncated sequence in the population meta
objective exceeds certain threshold. The precise definition is as follows.

Definition 1. Given a training task P, let £, be the event that \/E/\/Z < 0i(Xtrain) < VLdand 1/L < Nj(Hppain) < L
foralli € [n] and \/do /4 < ||Epain|| < Vdo. Let E5(n) be the event that the GD sequence is truncated with step size
7. Define 1) as follows,

. 1 - o?
n= mf {T] 2 O‘EQ ||wtm - w’minHiI, . 1 {51 052(1])} 2 L6} .

In the next lemma, we prove that for any fixed training set, 1 {&; N &(n')} > 1{& N &(n)} forany o > 7.
This immediately implies that Pr[&; N €2(n)] and E3 [wy,, — wtrainH?{m 1{& N & (n)} is non-decreasing in 7.

Basically we need to show, conditioning on &7, if a GD sequence gets truncated at step size 7, it must be also
truncated for larger step sizes. Let {w’ﬂ,} be the GD sequence without truncation. We only need to show that for any 7,

if ||w”. || exceeds the norm threshold, ||w’, || must also exceed the norm threshold for any 7/ > 5. This is easy to
prove if 7 is odd because in this case ||w’77,,, || is always non-decreasing in 7). The case when 7 is even is trickier because
there indeed exists certain range of 7 such that Hw’T,’H is decreasing in 7. We manage to prove that this problematic

case cannot happen when Hw’m] || is at least 41/Lo. The full proof of Lemma 9 is deferred into Section B.2.4.

Lemma 9. Fixing a task P, let £, and E5(n) be as defined in Definition 1. We have
1 {51 ﬂgg(n')} 2 1 {51 052(77)} s

foranyn' >n.

In the next Lemma, we prove that 7] must lie within (1/L, 3L). We prove this by showing that the GD sequence
never gets truncated for n € [0,2/L] and almost always gets truncated for ) € [2.5L, 00). The proof is deferred into
Section B.2.4.

Lemma 10. Let 1) be as defined in Definition 1. Suppose o is a large constant cy. Assume t > co,d > c4 for some
constants cq, c4. We have
1/L < < 3L.

Now, we are ready to give the proof of Lemma 2.

Proof of Lemma 2. Let & and &»(7) be as defined in Definition 1. For the simplicity of the proof, we assume
EZ ||lwe,5 — wtrainH?H[mm 1{&n&®M)} > %2 We will discuss the proof for the other case at the end, which is very
similar. _

Conditioning on &;, we know 1 |lw; 7 — wtfainHiLm < 18L%¢2. Therefore, we know Pr[&; N & (7)] > 18%. For

each task Py, define El(k) and gék) (n) as the corresponding events on training set St(r;)n.
know with probability at least 1 — exp(—(m)),

S u{enem) > e

=1

By Hoeftding’s inequality, we
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By Lemma 9, we know 1 {El(k) N gz(k) (7))} >1 {g(k) N 5(k)( )} for any 7 > 7j. Then, we can lower bound Fiy
for any i > 7 as follows,

. 1 &1 (k) 2
FTbT E Z 5 Hw Wrtain

L~y o
k k
H® 2725 Hwt,n ~ Wirain 9

train — train

S 1 {0 e )

1{eM neP )}

>20°—
k=1
1 _
>20LZ {ePnePm} =2

m ~ 10L8’
h—1

3
Ms

2

where the second inequality lower bounds the loss for one task by 202 when the sequence gets truncated.
We have assumed IE% l|lwe 5 — wtrain”ilm 1 {51 Nn&E; (f))} > Z—Z in the proof. Now, we show the proof also works

when E3 [Jwy,; — wlrain||i1m 1{&n&®M)} < Z—z with slight changes. According to the definition and Lemma 9,
_ 2
we know E3 [lwy 5 — wtrainnzm 1{& N&n)} > % forall np > 7. At each training set Syain, we can define

1 {51 Nné&; (ﬁ’)} as lim,,_, 5+ 1 {51 N&n } We also have Pr[&; N & (7')] > 18Lg The remaining proof is the same
as before as we substitute 1 {51 N E (7)) } by 1 {51 N& (R )} O

B.2.3 Generalization for n € [1/L, 7]]

In this section, we show empirical meta objective Fryr is point-wise close to population meta objective Fpy7 for all
n € [1/L,7).

Lemma 8. Suppose o is a large constant c1. Assume t > co,d > c4 for certain constants ca, cq. With probability at
least 1 — mexp(—§(d)) — O(t + m) exp(—(m)),

[ V)

|Fryr(n) — Fryr(n)| <

29

forallm € [1/L,7],

In this section, we first show FT;,T concentrates on Fryp for any fixed n and then construct e-net for FTbT and
Fryr forn € [1/L, 7j]. We give the proof of Lemma 8 at the end.

We first show that for a fixed 77, Fryr(1) is close to Fryr(n) with high probability. We prove the meta-loss on each
task Ay (n, P) is O(1)-subexponential. Then we apply Bernstein’s inequality to get the result. The proof is deferred
into Section B.2.4. We will assume o is a large constant and ¢ > c2, d > ¢4 for some constants cs, ¢4 so that Lemma 10
holds and 7 is a constant.

Lemma 11. Suppose o is a constant. For any fixed n and any 1 > € > 0, with probability at least 1 — exp(—$(e*m)),

Fryr(n) — Fryr(n)| < e

Next, we construct an e-net for Frryr. By the definition of 77, we know for any 7 < 7, the contribution from truncated
sequences in Frppr (1) is small. We can show the contribution from the un-truncated sequences is O(¢)-lipschitz.

1102
L4

Lemma 12. Suppose o is a large constant c1. Assume t > co,d > c4 for some constant cs, c4. There exists an -net

N C [1/L,7) for Fryr with |N| = O(t). That means, for any n € [1/L, 1),

1102

|Frvr(n) — Fror(n')] < i

forn' = argmin,ren nr<n(n—n").
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Proof of Lemma 12. Let & and & (n) be as defined in Definition 1. For the simplicity of the proof, we assume
EZ |lwe,5 — wtrainHi{m 1{& N&(7)} < Z5. We will discuss the proof for the other case at the end, which is very
similar.

We can divide IE% llwe.n, — wtrﬂinHiLmv, as follows,

2
9 ||wt’n - wu—ainHH(rain

- 1 o
= e = sl TE Ex()} + B e = vl 1 {8 0 )}
+ ]E§ Hwt,n - wtrain”fq‘min 1 {gl} .

We will construct an e-net for the first term and show the other two terms are small. Let’s first consider the third term.
Since 3 ||wy,,; — wtrainH?{m is O(1)-subexponential and Pr[&;] < exp(—€(d)), we have E3 ||wy,, — wtrain”ilm 1{&}

O(1) exp(—€(d)). Choosing d to be at least certain constant, we know 3 |jw;,,, — wtram”ilmn ]l {&} <o?/L%

Then we upper bound the second term. Since E% llwe, 5 — wlﬂlin”?ﬂl‘m 1 {51 N 52 } <% and

% llwe, 5 — wmnH?{m > 202 when wy,; diverges, we know Pr[&; N &) < 2L6 Then, we can upper bound the
second term as follows,
1 2 =/~ 2 92 1 90'2
]Ei Hwtm — wtrainHHzrain ]]. {51 M 52(7])} S 18L 2L6 = F

Next, we show the first term £ [|wy,; — Weain |12 .. 1{€1 N &(n)} has desirable Lipschitz condition. According
to Lemma 9, we know 1 {&; N & ()} > 1{& N & (77 )} for any n < 7. Therefore, conditioning on & N &(7), we
know w; ,, never gets truncated for any 1 < 7. This means wy ,, = By yWyain With By, = (Ir—{- 77Htram> ). We can
compute the derivative of % lwe,n — Wirain ||§1,lmin as follows,

01
8 2 ||wt n wtrain”i[m <thra1n I 77Htra1n) wlram> Htram(wt n wtrain)> .
Since Hwt nH = H( (I nHtraln) )wtramH 4f0 and HwtramH 2f0 we have H(I 77Htram) wtram” <

6v/Lo. We can bound | (1 = nHiain)' ™ wlramH with ||(I — 7 Hain) "Wirain|] + || Wirain|| by bounding the expanding
directions using ||(1 — 17 Hrain ) “Wirain|| and bounding the shrinking directions using ||win|| - Therefore, we can bound
the derivative as follows,

’81

o5 ey - Weainl[7;, | <L x 8V Lo x 6LV Lo = 48L%0”t.

Suppose o is a constant, we know E3 ||wy,; — Wirain ||iI‘ 1{& N & (n)} is O(t)-lipschitz. Therefore, there exists an
%i-net N for EL |lwy,, — wtrainH?{m_“ 1{& N &y(n)} with size O(t). That means, for any n € [1/L, 7],

1 . 1 . o?
’EQ ey — weainll ., L {E1 N E2(7)} — ES lwey — Wi |y, T{EL N E()}] < Ti
for ' = argmin,ven v <n(n —n'"). Note we construct the e-net in a particular way such that n’ is chosen as the
largest step size in IV that is at most 7).

Combing with the upper bounds on the second term and the third term, we have for any n € [1/L, 7],

1102
L4

|Fryr(n) — Fror(n')] <

for ' = arg min,en pr<y(n —1n").
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In the above analysis, we have assumed E3 |Jw; ; — w[min”?{min 1{&n&@)} < %2 The proof can be easily
generalized to the other case. We can define 1 {&; N & (7))} as lim,,_,;- 1 {&1 N &2(n)} . Then the proof works as
long as we substitute 1 {&; N E(77) } by 1 {& N E>(77)} . We will also add 7 into the e-net. O

In order to prove Frryr is close to Frryr point-wise in [1/L, 77], we still need to construct an e-net for the empirical
meta objective Fryp.

Lemma 13. Suppose o is a large constant c,. Assume t > co,d > ¢4 for certain constants co, c4. With probability at
least 1 — mexp(—$2(d)), there exists an Z—Z-net N’ C [1/L, 7] for Eryr with |N| = O(t + m). That means, for any
n € [1/L,1],

0.2

|Pryr(n) — Fror(n')] < i

forn' = argmin, ey pr<n(n —n").

Proof of Lemma 13. For each k € [m)], let £, be the event that v/d/v/L < o; (Xt(r:fi)n) <+vLdand1/L < )\i(H(k) ) <

train
Lforalli € [n] and vdo /4 < Hft(r];)n H < v/do. According to Lemma 7 and Lemma 49, we know with probability at

least 1 — m exp(—$£2(d)), £1,5’s hold for all k£ € [m]. From now on, we assume all these events hold.
Recall that the empirical meta objective as follows,

. 1 &
Fryr(n) .= — > Aryr(n, Pr).
()= — k; (n, Px)

For any k € [m], let 7. . be the smallest step size such that wt“;) gets truncated. If 7. 5, > 1), by similar argument
as in Lemma 12, we know Arpyp(n, Py) is O(t)-Lipschitz in [1/L, 7] as long as o is a constant. If 5., < 7, by
Lemma 9 we know wt(kn) gets truncated for any 7 > 7. . This then implies that Apyp (), Py) is a constant function for
7 € [Ne.k, 7). We can also show that Apyr(n, Py) is O(t)-Lipschitz in [1/L, 1. ;). There might be a discontinuity in
function value at 7, so we need to add 7 ;, into the e-net.

Overall, we know there exists an %i-net N’ with |[N'| = O(t + m) for Frpyp. That means, for any n € [1/L, 7],

0.2

FTbT('U) - FTbT(n/) < Ti
for n’ = argmin,ens pr<y(n —1n"). O
Finally, we combine Lemma 11, Lemma 12 and Lemma 13 to prove that F'r,7 is point-wise close to Frryr for

n € [1/L, 7.
Proof of Lemma 8. We assume o as a constant in this proof. By Lemma 11, we know with probability at least

1 — exp(—Q(2m)), |Fryr(n) — Fror(n)| < e for any fixed . By Lemma 12, we know there exists an 12‘22 -net N
for Frryr with size O(t). By Lemma 13, we know with probability at least 1 — m exp(—£2(d)), there exists an Z—i-net
N’ for Erpyr with size O(t + m). According to the proofs of Lemma 12 and Lemma 13, it’s not hard to verify that

N U N’ is still an 152 -net for Fpyp and Fryp. That means, for any 1) € [1/L, 7j], we have

1102

\Pror(n) = Pror ()], | Fror(n) — Pror(n)] < i

for ' = arg min, e NuN' 1 <n(n —1").
Taking a union bound over N U N', we have with probability at least 1 — O(t + m) exp(—Q(m)),

0.2

Eryr(n) — Fryr(n)| < Ti

forally e NUN'.
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Overall, we know with probability at least 1 — m exp(—Q(d)) — O(t + m) exp(—§2(m)), foralln € [1/L, 7],

|Pror(n) — Fror(n)|
<|Pryr(n) = Pror ()| + [Fror(n) = Fror ()| + [Eror (') — Fror(n')|

2302 o2
S L4 S ﬁv
where 7' = arg min, e nun',<y(n — 1n”). We use the fact that L = 100 in the last inequality. O

B.2.4 Proofs of Technical Lemmas

Proof of Lemma 7. Recall that Xy, is an n x d matix with n = c¢d where ¢ € [1/4,3/4]. According to Lemma 52,
with probability at least 1 — 2 exp(—t2/2), we have

\/g*@*tgo—i(Xtrain) § \/&4» \/Qﬁ*t,

forall i € [n].

Since Hmm = l/nX[rathram, we know \; (Hygin) = 1/102(Xirain)- Since ¢ € [4, j] we have = (\f—l— Ved)? <
100 — ¢’ and (\f Ved)? > > o5 + ¢, for some constant ¢’. Therefore, we know with probablhty at least 1 —
exp(~Q(d)),” .

m < )\ (Htram) < 100

forall i € [n].
Similarly, since there exists constant ¢’ such that v/d + v/ed < (10 — ¢’)v/d and Vd — Ved > (1/10 + ¢")V/d,
we know with probability at least 1 — exp(—Q(d)),

1
TO\/g < Ui(Xtrain) < 10\/&7

for all ¢ € [n]. Choosing L = 100 finishes the proof. O

Proof of Lemma 9. We prove that for any training set Syin, 1 {€1 NE(')} > 1{E1NE(n)} for any o' > n.
This is trivially true if &£ is false on Sy, Therefore, we focus on the case when &£ holds for Si,i,. Suppose 7. is the
smallest step size such that the GD sequence gets truncated. Let {w'm]c} be the GD sequence without truncation. There

must exists 7 < ¢ such that ||w/. , || > 4v/Lo. We only need to prove that ||w’. , || > 4v/Lo for any n > n.. We prove

this by showing the derivative of ||w in 7 is non-negative assuming ||w’T " H2 > 4+/Lo.

ol

Recall the recursion of w’.  as wm] = Wyain — ({ — NHyrain) " Wirain. If 7 is an odd number, it’s clear that Hw

o rall

is non-negative at any 1 > 0. From now on, we assume 7 is an even number. Actually in this case, e er " || can be

. o . . 2

negative for some 7). However, we can prove the derivative must be non-negative assuming Hw’m’ ‘ >4/ Lo.
Suppose the eigenvalue decomposition of Hiy, is Z?zl Aiwgu; with A\p > -+ \,,. Denote ¢; as (Wiin, u;) - Let

A; be the smallest eigenvalue such that (1 — nA;) < —1. This implies A\; < 2/n for any ¢ > j + 1. We can write down

Hw as follows

all

't”ﬂw-

lw

(1—(1=nr))c? + Z (1= (1=nr)) e

1 1=j+1

rall
7

(1 - (1 - 77/\ ) ) C + H7~Utrain”2 .

'M“-

=1
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> 16Lo?, wehave Y27_, (1 — (1 — )t 2 >

Since &1 holds, we know ||wmm|| < 4Lo?. Combining with Hw
12Lo2. We can lower bound the derivative as follows,

rall

J n
a% wrnl? =D 261 —nA) (1= (L—nA)f) e+ Y 2t(1—nA)' ™! (1= (1= X)) ¢

i=1 i=j+1

j
EQtZ)\i(l —p\)"TH (1= =n)) —2t Z c?

i=1 i=j+1
J
>2t ) N1 —nA)"TH (1= (1 —n\)") ¢ — 2t x 8La? /.
i=1
Then, we only need to show that 25:1 Ai(1 =) (1 — (1 —n\)?) 2 is larger than 8Lo? /7). We have
J

S A=) (L= (L= A é

i=1

(1—nr) "

)\ T (=) (1-=@1Q=n\)")" ¢

A1)t 2 2
)\'M(l—(l—n/\i)) c;

M“' i M“‘

1

.
Il

(X — 1)t 1 2
Toh 1 Ty, 1 (LA

%K

~
Il
—

1-(1- n/\i)t)Q c? > 12Lo*/n > 8Lo? /.

s

Il

—
SEES

O
Proof of Lemma 10. Similar as the analysis in Lemma 1, conditioning on &, we know the GD sequence never exceeds
the norm threshold for any n € [0,2/L]. This then implies

1 _
E§ l[we,y — wtrain||?1rlmin 1 {51 N 52(77)} =0,
foralln € [0,2/L].
Let {w;. , } be the GD sequence without truncation. For any step size 1 € [2.5L, o], conditioning on &1, we have

Hwé,nH Z ((U/L - l)t - 1) HwtrainH Z (1~5t - 1) (ZL\/Z — 1) > 4\/>a'

where the last inequalitx holds as long as o > 5\FL, t > co for some constant ¢o. Therefore, we know when
n € [25L,00), 1{& N&(n)} = 1{& }. Then, we have for any n > 2.5L,

2
E% s — weanll, . 1{E N &)} >— 7 (1VLo - QWU) Prl&1] 2 20% Prfey] > 7
where the last inequality uses Pr[€;] > 1 — exp( —Q(d)) and assume d > ¢4 for some constant cy.

Overall, we know E2 [|w;,,, — wtrainHim 1{& N & (n)} equals zero for all 1) € [0,2/L] and is at least %23 for all
n € [2.5L, 00). By definition, we know 7} € (1/L,3L). O
Proof of Lemma 11. Recall that FT;,T(T]) = % ka:1 Aqyr(n, Py). We prove that each Apyr(n, Py) is O(1)-
subexponential. We can further write Ay (1, Px) as follows,

k * (k
Aryr (77’ Pk leg,n) - W — ( tra1)n)f§tram

R

train

1)

train

(k)

train

1 (k)

train

+ Hw(k) wy,

3 [t - 7
=3 NG

) (b

)
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as anax(ﬁXt(rgj). According to Lemma 51, we know O'max(X(k) ) — Eamax(X(k) )is O(1)-

train train
k

)n) is O(1/+/d)-subgaussian. Since Eamax(ﬁXt(rgq)

. (k)
We can write ’ H.

subgaussian, which implies that o, \%Xt(r]:&) —Eomax( ﬁX[(m

is a constant, we know amax(ﬁX[(rZ)n) is O(1)-subgaussian and Uﬁlax(ﬁX[(rii)n) is O(1)-subexponential. Similarly,
2
we know both 5 (|85 1™ and (ﬁ xtk) ) (ﬁ wa ) are O(1)-subexponential.

Suppose o is a constant, we know wt(}z) — wj || is upper bounded by a constant. Then, we know Apyp(n, Py)

is O(1)-subexponential. Therefore, F'ryr(n) is the average of m i.i.d. O(1)-subexponential random variables. By

standard concentration inequality, we know for any 1 > ¢ > 0, with probability at least 1 — exp(—£(e?m)),

Fryr(n) — FTbT(U)‘ <e

B.3 Train-by-validation (GD)

In this section, we show that the optimal step size under FTW is ©(1/t). Furthermore, we show under this optimal step
size, GD sequence makes constant progress towards the ground truth. Precisely, we prove the following theorem.

Theorem 8. Let the meta objective F’Tbv("hnz) (n) be as defined in Equation 4 with ny,ns € [d/4,3d/4]. Assume
noise level o is a large constant c1. Assume unroll length t > co, number of training tasks m > c3 and dimension
d > cqlog(t) for certain constants ca, c3, c4. With probability at least 0.99 in the sampling of training tasks, we have
2 2
Neatia = O(1/t) and E [Jwy e, — w*||” = [lw*]|” — Q(1)

valid
forall m},., € argmin,>q FTW(nl)nz) (n), where the expectation is taken over new tasks.

In this section, we still use L to denote constant 100. We start from analyzing the behavior of the population
meta-objective Frryy for step sizes within [0, 1/L]. We show the optimal step size within this range is ©(1/t) and GD
sequence moves towards w* under the optimal step size. The following lemma is a formal version of Lemma 4. This
serves as step 1 in Section B.1. We defer the proof of Lemma 14 into Section B.3.1.

Lemma 14. Suppose noise level o is a large enough constant c1. Assume unroll length t > co and dimension d > ¢y
Sfor some constants ca, cq. There exist 1, 12,13 = O(1/t) with 1 < 12 < ns such that

2

1 2 9 g
F < - 2c+Z
Tov (m2) < 9 [l 10C+ 2
1. ., 6 o?

Fryv(n) > 3 lw*]|* — EC + ?,Vﬁ €[0,m]Uns, 1/L]

where C'is a positive constant.

To relate the behavior of Fipy to the behavior of Firyy, we prove the following generalization result for step sizes
in [0, 1/L]. The following lemma is a formal version of Lemma 6. This serves as step 3 in Section B.1. The proof is
deferred into Section B.3.2.

Lemma 15. For any 1 > € > 0, assume d > cqlog(1/e) for some constant cy. With probability at least 1 —
O(1/€) exp(—Q(€*m)), R
\Erov(n) — Frov(n)| <,
forallm € 10,1/L].
In Lemma 16, we show the empirical meta objective Fryy is high for all step size larger than 1/L, which then

implies 7,4 € [0,1/L]. The following lemma is a formal version of Lemma 5. This serves as step 2 in Section B.1.
We prove this lemma in Section B.3.3.
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Lemma 16. Suppose o is a large constant. Assume t > co,d > c4log(t) for some constants ca, c4. With probability at
least 1 — exp(—Q(m)),

n /2 1 2

Fryy(n) >C'o” + 50' )
forallm > 1/L, where C' is a positive constant independent with o.

Combining Lemma 14, Lemma 15 and Lemma 16, we give the proof of Theorem 8.

Proof of Theorem 8. According to Lemma 14, we know as long as d and ¢ are larger than certain constants, there
exists 71, 2,3 = O(1/t) with 11 < 12 < 13 such that

1 * (12 9 2
< = _ =
Frov(n2) < 5 [w*l]" = 75C +0°/2
1, .o 6
FTbV(ﬁ) Z 5 ||’lU ||2 - EC + 02/27V77 S [07771] U [7737 1/L}7

for some positive constant C.
Choosing € = min(1,C/10) in Lemma 15, we know as long as d is larger than certain constant, with probability at
least 1 — exp(—Q(m)), K
|Frov (n) — Frev(n)| < C/10,

foralln € [0,1/L].

Therefore,
. 1 5 8 9
2 <) - = 2
Tov (12) < 5 [|w* | 1OC+U /
. 1, . 7
Fryv(n) > 3 Jw* | — T0C+ o®/2,vn € [0,m] U [ns,1/L].

By Lemma 16, we know as long as ¢t > ca,d > c4log(t) for some constants co, ¢4, with probability at least
1 — exp(—=Q(m)),

. 1
FTbV(n) 2 C/JQ —+ 50'2,

forallp > 1/L. Aslong as o > 1/v/C”, we have Fryy () > 1+ 1o forall n > 1/L. Combining with Erpy (n2) <
Llw*|? = 3C + 02/2, we know 1%, € [0,1/L]. Furthermore, since Fryy (1) > & [|w*||* — £C + 02/2,Vn €
[0,m] U [ns,1/L], we have n1 < njyq < 13-

Recall that 1,73 = ©(1/t), we know 7,y = ©(1/t). At the optimal step size, we have

* [ * - 1 * 7
Frov (Myaia) < Frov (meaa) + C/10 < Fryy (n2) + C/10 < 3 lw*]* ¢t o’/2.

*

? +62/2, we have

Since Fryy (nfyia) = E3 [Jwes,, — w
7
E ||wt’7]\fulid - UJ*HQ < H’LU*||2 o 50

Choosing m to be at least certain constant, this holds with probability at least 0.99. ]

B.3.1 Behavior of Fryy forn € [0,1/L]

In this section, we study the behavior of Frryy when i € [0, 1/L]. We prove the following Lemma.
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Lemma 14. Suppose noise level o is a large enough constant c1. Assume unroll length t > co and dimension d > c4
for some constants co, cy. There exist ny,m2,m3 = O(1/t) withny < ne < 13 such that

1 2 9 0’2
< 2wt = = i
Frev(n2) < 5 [w'l]” = 356+ 3
1., 6 o?

Fryy (1) > 5 [lw*[]* = 15C + 5. ¥n € [0,m] U [ns, 1/L]

where C'is a positive constant.

It’s not hard to verify that Fryy (n) = E1/2 ||we ,, — w* ||+ /2. For convenience, denote Q (1) := 1/2 lws,, — w* 2.
In order to prove Lemma 14, we only need to show that EQ(72) < 3 [w*||* — ZC and EQ(n) > 3 [w*||* — & for
alln € [0,m1] U [n3,1/L]. In Lemma 17, we first show that this happens with high probability over the sampling of
tasks.

Lemma 17. Suppose noise level o is a large enough constant c1. Assume unroll length t > cs for certain constant
¢o. Then, with probability at least 1 — exp(—$(d)) over the sampling of tasks, there exists 11, 12,13 = O(1/t) with
m < m2 < n3 such that

1 %112 1 %112
QUm) = 5 lwegy — | < L | — €
1 el L. C
Q) := 5 lwey —w (= 3 llw I” - 2V € [0,m]U[ns, 1/L]

where C'is a positive constant.

Since we are in the small step size regime, we know the GD sequence converges with high probability and will not
be truncated. For now, let’s assume wy ,, = By nWiyin + Bt’n(Xtmin)T&mm, where By, = I — (I — nHyain)". We have

1 N w112
Q(n) 25 HBt,nwtrain + Bt,n(Xtrain)Tftrain —w

1 . w2, L
:i HBtJ]wtrain —w || + 5 HBt,TI(Xtrain)Tgtrain

+ <Bt’77w:;ain - ’LU*, Bt,n(Xtrain)Tgtrain>
1 5 1 9 1

=5 1w + 5 1 Beywiainll” + 5 || Bt (Xisain) Eirain
+ <Bt7ﬁw;ain - U)*a Bt,n(Xtrain)Tgtrain> .

In Lemma 18, we show that with high probability the crossing term ( By ,wii, — w*, By (Xisain) ' &rain ) is negligi-
ble for all ) € [0, 1/L]. By Hoeffding’s inequality, we know the crossing term is small for any fixed 7. Constructing an
e-net for the crossing term in 7, we can take a union bound and show it’s small for all € [0, 1/L]. We defer the proof
of Lemma 18 to Section B.3.4.

I

2
|| - <Btvnw;aim w*>

Lemma 18. Assume o is a constant. For any 1 > € > 0, we know with probability at least 1 — O(1/¢) exp(—Q(e2d)),
|<Bt77lwt*min - ’LU*, Btm(Xfmi")Tf”’”i"M <
foralln € 0,1/L].

Denote
I~

1 * (12 1 * 2 1 * *
G(n) = 5 [|w*||” + 3 ||Btmwtmin|| + 5 HBt,n(Xtrain)Tglrain <Bt77lwr_rain>w )

Choosing € = C//4 in Lemma 18, we only need to show G(12) < ||w*||* — 5C/4 and G(n) > ||w*||* — C/4 for all
1 € [0,m] U [ns, 1/L].

We first show that there exists 7, = ©(1/¢) such that G(n2) < 3 [Jw* |> — 5C/4 for some constant C. It’s not hard
to show that % | B mwitnll® + z HBt,n<Xtrain)T£trainH2 = O(n*t?c’%). In Lemma 19, we show that the improvement
(Bt Wikins w*) = Q(nt) is linear in 7. Therefore there exists 72 = ©(1/t) such that G(n,) < 1 |w*||* — 5C /4 for
some constant C. We defer the proof of Lemma 19 to Section B.3.4.
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Lemma 19. For any fixed n € [0, L/t] with probability at least 1 — exp(—Q(d)),
* * ﬁt
<Bt»77wtmimw > 2 167[4

To lower bound G(n) for small 7, we notice
1 %112 * *
G(U) 2 5 ”w H - <Bt,7lwlrain’w > :

We can show that (B; ,wi,, w*) = O(nt). Therefore, there exists 71 = ©(1/t) such that (B; ,wi,,, w*) < C/4 for
all n € [0,m].
To lower bound G(n) for large 1, we lower bound G (7)) using the noise square term,
1 2
G("?) Z 5 ||Bt,n(Xtrain)T€trainH

We show that with high probability || Bty (Xain)&iain ||2 = Q(0?) for all ) € [log(2)L/t,1/L]. Therefore, as long as
o is larger than some constant, there exists n3 = ©(1/t) such that G(n) > % [|w* |* for all ) € [ns,1/L].
Combing Lemma 18 and Lemma 19, we give a complete proof for Lemma 17.

Proof of Lemma 17. Recall that

Q) =5 I Buatian — w1 + 3 | B (Kin) i
+ (B Wegin — 0", B y(Xirain) T Eirain )
=G(1) + (BtyWiin — w*, Bry(Xucain)  Eirain)
We first show that with probability at least 1 — exp(—$(d)), there exist 01,12, 73 = ©(1/t) with 1 < n2 < 13 such
that G(n2) < 1/2 |w*||* = 5C/4 and G(n) > 1/2 ||w*||> — C/4 forall n € [0,m] U [s, 1/L].

According to Lemma 7, we know with probability at least 1 — exp(—Q(d)), vVd/VL < 0i(Xiain) < VLd and
1/L < \i(Hyain) < Lforall ¢ € [n] with L = 100.

Upper bounding G(r2): We can expand G(n) as follows:

1 2 1 2
G(U) :25 ”Bt,nwttain - w*H + 5 ||Bt,n(Xtrain)T§train||
1 2 1 2 1 2
=2 10" + 5 1 Btaieiall* + 5 | Beon(Xacin) aninl|” = (Bytiins 0

Recall that By ;, = I — (I — Hyain)", for any vector w in the span of Hyin,
IBeywl = |[(T = (I = nHuain)") w|| < Lt [w]] .
According to Lemma 49, we know with probability at least 1 — exp(—Q(d)), ||&ain]| < V/do. Therefore, we have
1 N 1 2
5 ||Bt,77wtrain||2 + 5 HBt,n(XLrain)TftrainH < L2772t2/2 + L3772t20'2/2 < L3772t2027

where the second inequality uses o, L > 1. According to Lemma 19, for any fixed n € [0, L/t], with probability at least
1 — exp(—Q(d)), (Bt Wiy, w*) > 74 Therefore,

ot 1
16L — 2
Choosing 1y :=

1 w12 1 1 *(12
< —_ _— = — —_
Glne) < 5 'l = oappas = 5 1ol

m. Note C is a constant as o, L are constants.

& -

lw™l” = 357

1 *
Gn) < 5 Jw']? + LoPto?

where the second inequality holds as long as n < we have

1

32L%02¢t

5C
4

1
32L%02t"

where C =
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Lower bounding G(n) for n € [0,71] : Now, we prove that there exists 71 = ©(1/t) with 71 < 1 such that for any
ne0,m],Gn) > Lw*|* — . Recall that

1 * (12 1 * 2 1 2 * *
G(n) :i ||w ” + 5 HBtﬂlwtrainH + 5 ’|Bt7n(Xtrain)T€trainH - <Bt,77wtrain’w > .
1 * 12 * *
>§ ||w ” - <Btﬂ7wtrain’ w > :

*

Since [(By pwhin, w*)| < Lnt, we know for any n € [0, 7],

1 *
G(n) > 3 [|lw H2 — Lmt.

]

Choosing n1 = 173,

we have for any 7 € [0, 1],

Lower bounding G(n) for € [n3,1/L]: Now, we prove that there exists 3 = ©(1/t) with i3 > 72 such that for
all 1 € [ns,1/L],

1 s C
G(n) > = ||lw*||” — —.
) > 3 o~
Recall that
1 % w12 1 2 1 2
G(U) = 5 ||Bt,17wtrain —w H + 5 ||Bt,n(Xtrain)T€train|| > 5 HBt,n(Xtrain)TflrainH
According to Lemma 49, we know with probability at least 1 — exp(—(d)), % < ||€uain| - Therefore,
2 _ 202 _ o
||Bt,77(Xtrain)T§trainH > (1 —¢€ nt/L) ﬁ = ﬁ’

where the last inequality assumes 1 > log(2)L/t. As long as t > log(2)L?, we have log(2)L/t < 1/L. Choosing
n3 = log(2)L/t, we know for all n € [n3,1/L],

||2 o2

> > —.
G(n) > 2 61l

| | Btﬂl (Xtrain)Tgtrain

| =

Note that § |w*||* = 1/2. Therefore, as long as & > 8v/L, we have

G > +

2
[l

forall ) € [n3,1/L].
Overall, we have shown that there exist 11, 72,73 = O(1/t) with 1, < 15 < 73 such that G () < 1/2 |Jw*||* —
5C/4and G(n) > 1/2||w*||>*~C/4 forall n € [0,71]U[ns, 1/L]. Recall that Q(n) = G(0)+{( By Wikan — W*, Bey(Xigain)  Eirain) -
Choosing ¢ = C'/4 in Lemma 18, we know with probability at least 1 —exp(—£2(d)), |<Bt,nw;ain —w*, By p (Xtram)fftramﬂ <
C/4 for all n € [0,1/L]. Therefore, we know Q(n2) < 1/2|w*||> — C and Q(n) > 1/2|jw*|* — C/2 for all
n € [0,m]U[ns, 1/L]. 0
Next, we give the proof of Lemma 14.
Proof of Lemma 14. Recall that Frryy (1) = E1/2 [Jwy,, — w* ||2—|—%2. For convenience, denote Q (7)) := 1/2 |Jwy,, — w* [

In order to prove Lemma 14, we only need to show that EQ(12) < 3 [w*||* — ZC and EQ(n) > 3 |w*||* — & for
alln € [0,m] U [ns,1/L].
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According to Lemma 17, as long as o is a large enough constant ¢; and ¢ is at least certain constant cy, with
probability at least 1 — exp(—(d)) over the sampling of Syuin, there exists 11, 72,13 = O(1/t) with n; < 192 < 13
such that

* 1 *
Qn2) = 1/2wyp, — w*|* < 3 llw I*-c
i} 1, .. C
Q) = 1/2 |[wyy — w’||* > 3 llw I” - 5V € [0,m] U lns, 1/L]

where C is a positive constant. Call this event £. Suppose the probability that £ happens is 1 — . We can write EQ(n)
as follows,

EQ(n) = E[Q(n)|€] Pr(&] + E[Q(n)|€] Pr(£].

According to the algorithm, we know ||w; ,|| is always bounded by 4v/Lo. Therefore, Q(n) := 1/2 ||lw;,,, — w* I? <
13Lo%. When ) = 1y, we have

EQ(n2) < (; [|w*||* — C’) (1 —96)+13Lo%5

1 )
=3 Jw*||> — 5~ C+(C+13Lo%)5
<q I - 2.
2 10
where the last inequality assumes § < m.
When 1 € [0,71] U [n3,1/L], we have
1, . C
EQ(n2) > <2 l|w*||* — 2) (1—6)—13Lo%s
1 ) C
=3 Jw*||* — 5~ (=05 - 13Lo?%6
1 C
> Jw*||* — 5 — (1/2+13Lo%)5
1, .2 6C
>3 " = =,
2 10
where the last inequality holds as long as § < m.
According to Lemma 17, we know § < exp(—$2(d)). Therefore, the conditions for ¢ can be satisfied as long as d is
larger than certain constant. |

B.3.2 Generalization for ) € [0,1/L]
In this section, we show Fryy is point-wise close to Frrpy for all € [0,1/L]. Recall Lemma 15 as follows.

Lemma 15. For any 1 > ¢ > 0, assume d > cqlog(1/€) for some constant cy. With probability at least 1 —
O(1/€) exp(—e2m)), A
\Erov(n) — Frov(n)| <,
forallm € [0,1/L].
In order to prove Lemma 15, let’s first show that for a fixed 7 with high probability Fryy (1) is close to Fryy (7).
Similar as in Lemma 11, we show each Arpy (n, Pr.) is O(1)-subexponential. We defer its proof to Section B.3.4.

Lemma 20. Suppose o is a constant. For any fixed n € [0,1/L] and any 1 > € > 0, with probability at least
1 — exp(—Q(e?m)),

Fryv(n) — Fryv(n)] < e.
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Next, we show that there exists an e-net for Fryy with size O(1/€). By e-net, we mean there exists a finite set N, of
step size such that |Frryy () — Fryv ()| < eforany n € [0,1/L] and ' € arg min,en, [n — n’|. We defer the proof
of Lemma 21 to Section B.3.4.

Lemma 21. Suppose o is a constant. For any 1 > € > 0, assume d > c4log(1/€) for constant c4. There exists an
e-net N for Fryy with |[N.| = O(1/€). That means, for any n € [0,1/L],

|Frov(n) — Frov(n')] <e,

forn' € argmin,en, |n —1'|.

Next, we show that with high probability, there also exists an e-net for Fryy with size O(1/e).

Lemma 22. Suppose o is a constant. For any 1 > € > 0, assume d > ¢4 log(1/¢€) for constant c4. With probability at
least 1 — exp(—Q(e?m)), there exists an e-net N for Fryy with |N.| = O(1/¢€). That means, for any n € [0,1/L],

\Frpv () — Frov (n)| <,

forn' € argmin,en, [n — 7’|

Combing Lemma 20, Lemma 21 and Lemma 22, now we give the proof of Lemma 15.
Proof of Lemma 15. The proof is very similar as in Lemma 8. By Lemma 20, we know with probability at least
1 — exp(—=Q(e2m)), |Fryv(n) — Fryy(n)| < € for any fixed 7. By Lemma 21 and Lemma 22, we know as long

as d = Q(log(1/€)), with probability at least 1 — exp(—$2(e2m)), there exists e-net N, and N/ for Fpyy and Frryy
respectively. Here, both of N¢ and N/ have size O(1/¢). According to the proofs of Lemma 21 and Lemma 22, it’s not
hard to verify that N. U N/ is still an e-net for Frrpy and Frpy . That means, for any i € [0,1/L], we have

\Frov (n) — Frov ()], |Prov(n) — Frov ()| < e,

for ' € arg ming,en,un: |1 — 7|
Taking a union bound over N, U N/, we have with probability at least 1 — O(1/¢) exp(—Q(€m)),

Fryv(n) — Prov(n)| < e

forany n € N. U N_.
Overall, we know with probability at least 1 — O(1/¢) exp(—Q(e2>m)), for all n € [0,1/L],

|FProv(n) — Pryv(n)

|
<|Fryv (n) — Frov ()| + |Erov (n) — Frov ()| + |Erov (') — Frov ()|
<3e,

where ' € arg min,en,uny [7 — 1'|. Changing € to € /3 finishes the proof. O

B.3.3 Lower bounding Fyy for 1) € [1/L, 0)

In this section, we prove Fryy is large for any step size ) > 1/L. Therefore, the optimal step size 7, must be smaller
than Frryy .

Lemma 16. Suppose o is a large constant. Assume t > co,d > c4log(t) for some constants ca, c4. With probability at
least 1 — exp(—§2(m)),

. 1
Fryv(n) >C'o® + 502,
forallm > 1/L, where C' is a positive constant independent with o.
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When the step size is very large (larger than 3L), we know the GD sequence gets truncated with high probability,
which immediately implies the loss is high. The proof of Lemma 23 is deferred into Section B.3.4.

Lemma 23. Assume t > ca,d > c4 for some constants ca, cq. With probability at least 1 — exp(—§(m)),

Proy(n) > o2,
foralln € [3L, 00)
The case for step size within [1/L, 3L] requires more efforts. We give the proof of Lemma 24 in this section later.

Lemma 24. Suppose o is a large constant. Assume t > co,d > ¢4 1og(t) for some constants ca, c4. With probability at
least 1 — exp(—2(m)),

. 1
Fryy (n) >Cy0® + 502,

forallm € [1/L,3L], where Cy is a positive constant independent with o.

With the above two lemmas, Lemma 16 is just a combination of them.

Proof of Lemma 16. The result follows by taking a union bound and choosing C’ = min(Cy, 1/2). |

In the remaining of this section, we give the proof of Lemma 24. When the step size is between 1/L and 3L, if the
GD sequence has a reasonable probability of diverging, we can still show the loss is high similar as before. If not, we
need to show the GD sequence overfits the noise in the training set, which incurs a high loss.

Recall that the noise term is roughly 3 ||(/ — (1 — nHtmin)t)(lein)T&minHQ. When 7 € [1/L, 3L], the eigenvalues
of I — 1 Hgin In Sirain Subspace can be negative. If all the non-zero n eigenvalues of Hy.,;, have the same value, there
exists a step size such that the eigenvalues of I — 7 H i, in subspace Syain is —1. If ¢ is even, the eigenvalues of
I—(I- r]Htrain)t in Sy,in Subspace are zero, which means GD sequence does not catch any noise in Sy -

Notice that the above problematic case cannot happen when the eigenvalues of H,, are spread out. Basically,
when there are two different eigenvalues, there won’t exist any large 7 that can cancel both directions at the same time.
In Lemma 25, we show with constant probability, the eigenvalues of Hy.,;, are indeed spread out. The proof is deferred
into Section B.3.4.

Lemma 25. Let the top n eigenvalues of Hyin be A1 > -+ - > Ny, Assume dimension d > cq4 for certain constant cy.
There exist positive constants i, 11, i’ such that with probability at least .,

)\M’n - /\nf,u/nJrl Z //4//~

Next, we utilize this variance in eigenvalues to prove that the GD sequence has to learn a constant fraction of the
noise in training set.

Lemma 26. Suppose noise level o is a large enough constant c¢1. Assume unroll length t > co and dimension d > c4
for some constants ca, c4. Then, with probability at least C

2
||Bt,nwtrain - w* HH"“’.H 2 C20—23
forallm € [1/L,3L], where Cy, Cy are positive constants.

Proof of Lemma 26. Let £; be the event that v/d JVL < 0§(Xigain) < V/Ld and 1 JL < Ni(Hyain) < L forall i € [n]
and Vdo /4 < ||€ain|| < Vdo. Let &3 be the event that v/d/v/'L < 0;(Xyaia) < VLdand 1/L < A\;(Hyaiq) < L for
all i € [n] and Vido /4 < ||&varia]] < Vdo. According to Lemma 7 and Lemma 49, we know both &; and &3 hold with
probability at least 1 — exp(—(d)).

Let the top n eigenvalues of H,, be Ay > --- > \,,. According to Lemma 25, assuming d is larger than certain
constant, we know there exist positive constants fi1, fi2, 13 such that with probability at least i1, Ayon—An—pont+1 = 13-
Call this event &.
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Let S7 and S5 be the span of the bottom and top pon eigenvectors of Hy,, respectively. According to Lemma 49,

we know ||yain|| > [o with probablhty at least 1 — exp(—£2(d)). Let P; € R™*™ be a rank-pugn projection matrix
such that the column span of (X[ram) P, is S7. By Johnson-Lindenstrauss Lemma, we know with probability at least

1 — exp(—9(d)), Eirain|| > ‘/’TQ ||€irain| - Taking a union bound, with probability at least 1 — exp(—(d)),
||Pr0j P, ftrainH > “2 2. Similarly, we can define P, for the Sy subspace and show with probability at least 1 —

exp(—(d)), HPI’O] P, {}ram || > @. Call the intersection of both events as £, which happens with with probability
at least 1 — exp(—Q(d)).

Taking a union bound, we know & N & N E; N &, holds with probability at least 111 /2 as long as d is larger than
certain constant. Through the proof, we assume & N & N €3 N &4 holds.

Let’s first lower bound || By, Wirain — Wiy, || @s follows,

||Bt,nwtrain - w:'ain” = ||Btﬂ7 (w;ain + (Xtraiﬂ)Tftl"aiﬂ) - w::'ainH
2 (||Bt,n (w;:ajn + (Xtrain)Tgtrain) H - ]-)

Recall that we define S7 and S5 as the span of the bottom and top pon eigenvectors of Hy,y, respectively. We rely
on S; to lower bound ||w;,, — w*|| when 7 is small and rely on Sy when 7 is large.

Case1: Leto”
we have

By ) be the smallest singular value of B, within S; subspace. If n\,, 1,11 < 2 — ps/(2L),

1)' 3\t 1
o5 (By.,) > min 1—(1—L2> ,1—(1—i) > 2,

where the second inequality assumes ¢ > max(L?,2L/u3) log 2. Then, we have

min (

||wt,r] - w*” > ( min Bt,r] (HProjsl Xtram gtramH - 1) - 1)

(1)) =

where the second inequality uses HProj Py ftramH > 7V“§‘d‘7 and the last inequality assumes o > 4\8/‘%.

Case2: Ifnh,_p,nt1 > 2—p3/(2L), we have nA,,, > 2+ pus/(2L) since Ay — An—pont1 > pg andp > 1/L.
Let Umm(Btm) be the smallest singular value of B, ; within S, subspace. We have

mm(Bt n) = ((1 + 5%) - 1) %
2o

where the last inequality assumes ¢ > 4L/ 3. Then, similar as in Case 1, we can also prove ||w , — w*| > VT
Therefore, we have

2
Moo
||Bt,nwtrain - W*”Hu.ai“ = ||Bt,nwtrain - w;ain”Hlmin > i HBtmwtram wtram” = 10242’

forall € [1/L,3L]. We denote C := i1 /2 and C = 15577=- O
Before we present the proof of Lemma 24, we still need a technical lemma that shows the noise in Sy,q concentrates
at its mean. The proof of Lemma 27 is deferred into Section B.3.4.

Lemma 27. Suppose o is constant. For any 1 > € > 0, with probability at least 1 — O(t/¢) exp(—Q(e%d)),
)\n(Hvalid) > 1/L and

+ (1 —¢)o?

2 2
lwey — watially,,, = llwen —w”

Hyaiia

forallm € [1/L,3L).
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Combing the above lemmas, we give the proof of Lemma 24.

Proof of Lemma 24. According to Lemma 27, we know given 1 > ¢ > 0, with probability at least
2 .12
1 — O(t/e) exp(—Q(e?d)), A\ (Hyatia) > 1/L and [Jw ; — Wyaiid] 2wy w0y, (1 €)o? forall €

[1/L,3L]. Call this event £;. Suppose Pr[£;] > 1 — §/2, where ¢ will be specifies later. For each training set S

train’?

vali

also define ka). By concentration, we know with probability at least 1 —exp(—(6?m)), 1/m > " | 1 {El(k } > 1-0.
According to Lemma 26, we know there exist constants C1, Co such that with probability at least C1,

| Bt Wirain — w || Ho = Coo? for all € [1/L,3L)]. Call this event &. For each training set 5% we also define

tram ?

Ez(k). By concentration, we know with probability at least 1 — exp(—£(m)), 1/m> ;" | 1 { ék)} > C1/2.

For any step size ) € [1/L, 3L], we can lower bound Frpyy (1) as follows,

FTbV(n) :% é; (,kn) - w\(r:]:lzd H®
2035 ot - a1 {5)
2% é; wﬁ) — wj, ;ﬂud 1 {é'l(k)} + %(1 —e)(1 —6)o?
2% i% w® —wp 2 {5““) N 5““)} ;(1 —)(1 - 8)o

=
Il
—

[~

As long as 6 < C/4, we know
with step size 1. We have

el DA | {El(k) N Eék)} > (/4. Let £3(n) be the event that w( ) gets truncated

2

bl o)

(k) _ w
m Z 2 Hw Hoia

m Z 2
k=1

Hyyia

1{eM e ne®}

{9 Nl ne®).

Hyalia
If % Sy {g(k) N E(k) N Sé’“)} > (/8, we have

1 <1 (k)
m Z 9 Wi —
k=1

2
e ne) s 1 S g

Hyalia

1{e el g}

valid

>Cl 91796'102.

-8 2 16

*

2
Here, we lower bound Hwﬁ) —wj by 902 when the sequence gets truncated.
’ Hyalia

I | {ka) N Sg(k) N (‘:'?Ek)} < Cy/8, weknow L 37" 1 {El(k) N Ez(k) N Sék)} > (/8. Then, we have

2 & K 1 m 1 . )
Hyyiia 1 {51( : : 52( )} ZE /; 5 HBt(,n)wlI‘ain — W

>Cl 020'2 - 01020'2

-8 2 16

1

2
m 2 Hwt’”
=1

*

—wy,

1 (c/’(k) N 5(k) N g(k)
Hvalld { ! 2 3 }
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Letting C3 = min (252, €1C2

), we then have

16 0 16
. 1 Cso? 1
Prov(n) > C30® + 5(1 = (1 = 8)0” = =2~ + 2%,
where the last inequality chooses § = ¢ = C3/2. In order for Pr[€1] > 1 — §/2, we only need d > ¢4 log(t) for some
constant ¢4. Replacing C3/2 by C finishes the proof. |

B.3.4 Proofs of Technical Lemmas

Proof of Lemma 18. We first show that for a fixed ) € [0, 1/L], the crossing term |( By ,wity, — w*, Bty (Xiain) T Erain )|
is small with high probability. We can write down the crossing term as follows:

<Bt,nw;ain - w*7 Bt,n(Xtrain)Tgtrain> = <[(Xtrain)T]TBt,n(Bt,nwéam - w*), 5train> .

Noticing that &, is independent with [(Xtrain)T]TBtm (B, Wieyin — w*), we will use Hoeffding’s inequality to bound

train

|( Bt Wiigin — W, Be.y(Xusain) "&urain ) |- According to Lemma 7, we know with probability at least 1 — exp(—€(d)),
\/g/\@ < 0i(Xupain) < VLd and 1/L < \j(Hyain) < L for all i € [n] with L = 100. Since < 1/L, we know
| Be.yll = Il = (I — nHiain)*|| < 1. Therefore, we have

2vL
o) 17 BBt — )] < 275

for any n € [0,1/L]. Then, for any € > 0, by Hoeffding’s inequality, with probability at least 1 — exp(—§2(e2d)),
(Bt wisain — 0", Br.y(Xizain) Euain) | < e.
Next, we construct an e-net on 7 and show the crossing term is small for all € [0,1/L]. Let
9(n) = (Biywiin — w*, By (Xusain) " Eurain) -
We compute the derivative of g(7) as follows:
9'(77) = <tHLrain(I - nHtrain)t_lw;aim Bt,n(X‘Iain)TgLrain>
+ (B Wigin — W tHygain (I — N Hugain)' ™ (Xivain) T irain )

By Lemma 49, we know with probability at least 1 — exp(—Q(d)), ||&ain|| < V/do. Therefore,
t—1 t—1 t—1
/ < 715 ( _ﬁ) 1.5 ( _Q) _ o715 ( _ﬁ) .
lg'(n)] < L-°t(1 T o+ 2Lt (1 T oc=3L"t(1 T o

We can control |¢’(n)] in different regimes:

e Forn € [0, /2], we have |¢/(n)| < 3L'5to.

e Givenany 1 < i <logt— 1, forany n € (;%, (ij_lfL}, we have |¢'(n)] < %ﬁ

e Forany n € (4% 1/L], we have |¢'(n)| < 3L'%0.

Fix any € > 0, we know there exists an e-net N, with size

logt—1 1.5
1 L 3L *to 1 Llogt 15
Ne| =- . - — 3L
[N e(tl 2 g +(L tl) 7




such that for any n € [0,1/L], there exists ” € N, with |g(n) — g(n’)| < e. Note that L = 100 and o is a constant.
Taking a union bound over N, and all the other bad events, we have with probability at least 1 — exp(—Q(d)) —
O(1/€) exp(—Q(€2d)), forall n € [0,1/L],

’<Bt,nw:—ain - w*v Bt,n(Xtrain)Tgtrain>| <e+e=2e

Aslong as 1 > € > 0, this happens with probability at least 1 — O(1/¢) exp(—(e2d)). Replacing € by €’ /2 finishes
the proof. (]

Proof of Lemma 19. According to Lemma 7, we know with probability at least 1 —exp(—Q(d)), 1/L < A\;j(Hyain) < L
for all ¢ € [n] with L = 100. We can lower bound (B ,w;:;., w*) as follows,

train’

<Btﬂ7wttaim w*> = <(I - (I - nHtrain)t) w;aim wttain>
Z/\min (I - (I - nHtrain)t) ||wt>';ain||2

nt *
> (1= (-2)) il

By Johnson-Lindenstrauss lemma (Lemma 53), we know with probability at least 1 — 2 exp(—ce?d/4),

(- ' = 5(1—e).

w\r—*

Hw;ain” >

Then, we know with probability at least 1 — 2 exp(—ce2d/4) — exp(—Q(d)),

Since e® < 1 —z + 22 /2 for any z < 0, we know exp(—nt/L) <1 —nt/L+n?*t?/(2L?). For any n < L/t, we have
exp(—nt/L) <1 —nt/(2L). Then with probability at least 1 — 2 exp(—ce?d/4) — exp(—Q(d)),

N oo 1l—=2ent
<Bt777wtraimw > 2 4 ﬁ
77t
- 16L
where the second inequality holds by choosing € = 1/4. ]
Proof of Lemma 20. Recall that
Frov(n) : Z Aqpv (1, Pr)
mia
For each individual loss function Aryy (1, P;), we have
2
(k) _ (k) \t (k)
Arpy (777 Pk 2 ‘ W p (delld) gvalid H(lf;
2 1 . 1
(k) * (k) (k) * x (k) (k)
:5 ‘ Wy, N —w \(a);l?i + 5= m é'valid + <wt n —w, n( leld) gvalid>
25L0 *) *) ||? 1 (k) RO
HHvahd + % Euana|| +5VLo n HXvalid n Evatid
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(%X\th)d) According to Lemma 51, we know amax(X\th)d) —Eomax (X thd) is O(1)-

)— EUmax(\levahd)IS O(1/V/d)-subgaussian. SlnceEamax(va(fh)d)

) is O(1)-subgaussian and amax(fXéfh)d) is O(1)-subexponential. Similarly,

? and (7 (k) )(% )

valid valid
Arpy (0, Py) is O( )-subexponential. Therefore, Frrpy is the average of m i.i.d. O(1)-subexponential random vari-

ables. By standard concentration inequality, we know for any 1 > € > 0, with probability at least 1 — exp(—£2(e?m)),

2

aS O ax

We can write HH

valid

subgaussian, which implies that oy, ( \}X (k)

valid

k
is a constant, we know amdx( fXéalzd

D are O(1)-subexponential. This further implies that

we know both 3-

gvalld

(1) — Frv(n)| < .

Proof of Lemma 21. Recall that
1 *
Frov () =E5 ey —w I +0?/2.

We only need to construct an e-net for EL ||w; ,, — w* |>. Let € be the event that v'd/vL < 03(Xin) < v/Ld and
1/L < \j(Hyain) < Lfor all i € [n] and ||| < Vdo. We have

1 * 12 1 *(12
ES lwey —w|” =E | 5 [lwey — w7 [€) PrE] +E | 5 ||wtn—w I* €| Prl€]

We first construct an e-net for E [% [lwe,, — w* 112 |5] Pr[€]. Let Q(n) := & |lwy,, — w* ||* . Fix a training set Siqin

under which event £ holds. We show that ()(n) has desirable lipschitz property.
The derivative of Q(n) can be computed as follows,

Ql( ) <tHerm(I nHtrdm) wtrdm; Wy ,M w*> .

Conditioning on &£, we have

Therefore, we have

B |5 e — w1 €] el = Ot =

L

9
on

Similar as in Lemma 18, for any e > 0, we know there exists an e-net N, with size O(1/¢) such that forany n € [0,1/L],

1 1
’E [2 [we,y — w*|® 5} Pri€] - E {2 [we,y — w|® |5] Pr[c‘f]‘ <e

Suppose the probability of £ is 5. We have

1 - o _ 25Lo?
B |5 ey — w17 ] Prig] < 255 <
where the last inequality assumes § < 252L(72 According to Lemma 7 and Lemma 49, we know § := Pr[€] <

exp(—(d)). Therefore, given any € > 0, there exists constant ¢4 such that § < 52 as long as d > ¢4 log(1/e).
Overall, for any € > 0, as long as d = Q(log(1/¢)), there exists N, with size O(1/¢) such that for any n € [0,1/L],
|Frov(n) — Frev(n')| < 3eforn’ € arg min,en, |7 — 1/|. Changing € to €’ /3 finishes the proof. O
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Proof of Lemma 22. For each k € [m], let £ be the event that v/d/vL < ¢;(X, (k‘)) < Vv Ld for any i € [n] and

train
(k)

wain || < V/do. Then, we can write the empirical meta objective as follows,

Fryv(n) : ZATbT (n, Pr)le, + — ZATbT (n, Pr)1g, -
gyt gyt

Similar as Lemma 21, we will show that the first term has desirable Lipschitz property and the second term is small.
Now, let’s focus on the first term % S Arpr(n, Pr)1g, . Recall that

() (k)

Aqyr(n, Pr) = Hw — Wyalig ’ ()
H g
k), (k) (k) \t (k)
HBt n Wirain — (Xthd) gvdhd H*) :

valid

Computing the derivative of Aryr (7, Py) in terms of 7, we have

(wlh) —wr — (X E)Tei))
) (Galksid))
(Tl (G lesul))

) are O(1)-subexponential. Therefore,

) Galea])) =0

valid

0
%AT?JT(nv Pk) = <tHl(ral)n(I Ht(rlzfl)n) t(rl;)n’ H(k)

Conditioning on &, we can bound the derivative,

o (1-2) (|

0 k
‘ %ATbT(na P) g\salgd

1 k
+ <\/g HX\Sali)d

Therefore, we have

k
g\(/alzd

=

(- 1)7 2 (e

and (

L0
> a*ATbT n, Pi)le, | =
k=1

(k)
X valid

Similar as in Lemma 20, we know both H Vahd’ fmhd

k)
’+ (f HX\gahd

valid

we know with probability at least 1 — exp(—Q(m)), L 37", (H altd
This further shows that with probability at least 1 — exp(—Q(m)),

— o (1- %)H.

1 m 8
— > —Aqyr(n, Pi)lg,
m £ on

Similar as in Lemma 18, we can show that for any € > 0, there exists an e-net with size O(1/¢) for = 37" | Aqyr(n, Py)1le, .
Next, we show that the second term = >~ | Aqyr(n, Pi,)1g, is small with high probability. According to the
proof in Lemma 20, we know

(k) e® 1 (L|lxw L etk
Aqvr(n, Pr) = (HHvahd Eyarial| T+ (\/E HXvalid > <\/(§ & yalia
Therefore, there exists constant C' such that
oLy £® L 5 L jlet)
m Z Aror (n, Pe)lg, E Z (H valid ’ Evalia + (\/g HXvalid Nz &vatia Lg,.
) . k (k k . .
It’s not hard to verify that (HH‘fali)d + 3¢ Vahd ( HXvah)d ) (% 5‘(,&]2(1 >> 1g, is O(1)-subexponential. Sup-
pose the expectation of <HH\th)d é féfgd + (ﬁ HX‘Ef“)d ) (ﬁ f\(,flzd )) is 1, which is a constant. Suppose
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f(k)

valid

f(k)

valid

+

valid

_ 2
the probability of & be §. We know the expectation of (HH(k) + (ﬁ HX\Ef“)d ) (ﬁ )) g,

is ué due to independence. By standard concentration inequality, for any 1 > e > 0, with probability at least

1 — exp(—(e?m)),
1 - ) 2 (1 v 1
CE ; (HHvalid + (\/Cj HXvalid > (\/E

where the second inequality assumes § < ¢/(C'u). By Lemma 7 and Lemma 49, we know § < exp(—£(d)). Therefore,
as long as d > ¢4 log(1/e€) for some constant ¢4, we have § < ¢/(Cp).

Overall, we know that as long as d > c4log(1/e), with probability at least 1 — exp(—(e?m)), there exists N/
with | V| = O(1/e) such that for any n € [0,1/L],

Ll 2k)
+ 5[

valid

§(k)

valid

)) Ig, <Cud+Ce < (C+1)e,

|Pryv (n) — Pryv(n')] < (2C + 3)e,

for ' € argmin,en, | — 1’|. Changing € to €’ /(2C + 3) finishes the proof. O
Proof of Lemma 23. Let £; be the event that \/3/ VI < 0 (Xirain) < VLd and 1/L < \;(Hyain) < L for all i € [n]
and Vdo /4 < ||€ain|| < Vdo. Let & be the event that v/d/v/'L < 0;(Xyaia) < VLd and 1/L < \;(Hyaiq) < L for
all i € [n] and Vdo /4 < ||&vania]| < Vdo. According to Lemma 7 and Lemma 49, we know both £; and £, hold with
probability at least 1 — exp(—£2(d)). Assuming d > ¢4 for certain constant ¢4, we know Pr[&; N &] > 2/3. Also

define El(k) and Eék) on each training set St(r]:i)n.

LS g fe® el s L
m e nal} =

It’s easy to verify that conditioning on &7, the GD sequence always exceeds the norm threshold and gets truncated
for n > 3L as long as ¢ is larger than certain constant. We can lower bound F'rpy for any n > 3L as follows,

By concentration, we know with probability at least 1 — exp(—(m)),

& I m L w |
Tov (1) _Ekz—:1§ Wy — Wi 0

Lmlym o |
>— E B} Hwt,n ~ Wyatid || k)
mi valid

1
1{& N&L > 2025 =07,

2
where the last inequality lower bounds Hwt(kn) — wsgd (k)

t,m

by 202 when w, ./ gets truncated. O

(k)

valid
Proof of Lemma 25. We first show that with constant probability in X, the variance of the eigenvalues of H, is
lower bounded by a constant. Let A be 1/n S i Specifically, we show 1/n >0 | A? — A2 is lower bounded by a
constant.
Let’s first compute the variance of the eigenvalues in expectation. Let the -th row of X, be a:ZT . We have,

1 1 2 " ’
E[N] = ?E [(tr (nX;thrain>) ] :FE <Z |93¢||2>
=1

1 - 4 1 2 2
= Elal'+ = >0 Ellllz)
i=1 1<i#j<n

1 o d? 2d
:F(nd(d—l—?)—&-n(n—l)d ) =5+

43



Similarly, we compute E [1/n "7 | A?] as follows,

[ Z )‘2‘| = tI' (Xt—rl;thrdlﬂXlrdeUﬂiﬂ)]
1
:ﬁ Z]E )1 * + 3 Z E (z;,7;)°
i=1 1<i#j<n
1 2 d d
=— (nd(d +2) +n(n —1)d) = 2 +E+ﬁ

Therefore, we have

where the first inequality assumes n > 2 and the last inequality uses n < %d. Since n > id, we know n > 2 as long as
d>8.

Let € be the event that \/E/\/f < 0i(Xiain) < VLd and 1/L < Ni(Hyain) < L for i € [n] with L = 100.
According to Lemma 7, we know £ happens with probability at least 1 — exp(—£2(d)). Let 1 {£} be the indicator
function for event €. Next we show that E[1/n Y"1 (A; — A)?1 {£}] is also lower bounded.

It’s clear that E [A?1 {€}] is upper bounded by E [A?]. In order to lower bound E [ 37 A21 {£}], we first
show that E [% PP {5}] is small. We can decompose [E [% S AL {5}] into two parts,

I - 1O -
Eln;)\fl{g} =E anA?]l{g and \; < L}

i=1

The first term can be bounded by L2 Pr[£]. Since Pr[€] < exp(—(d)), we know the first term is at most 1/6 as long as
d is larger than certain constant. The second term can be bounded by E [)\%]l {A > L}] . According to Lemma 52, we
know Pr[A; > L +t] < exp(—€(dt)). Then, it’s not hard to verify that E [A31 {\; > L}| = O(1/d) that is bounded
by 1/6 as long as d is larger than certain constant. Overall, we know E [2 3" | A?1{€}] > E [2 3" | A?] —1/3.
Combing with the upper bounds on E [A?1 {€}], we have E [1 3" (X, — A)?1{€}] > 1.

Since conditioning on &, ); is bounded by L for all i € [n]. In order to make E [1 " (X, — X)?1{€}]
lower bounded by one, there must exist positive constants p1, 2 such that with probability at least 11, £ holds and
%Z? 1()‘ = A)? > puo.

Since = 3" (A = A)2 > pp and A; < L for all i € [n], we know there exists a subset of eigenvalues S C {\;}7
with size ugn such that |\; — A| > 4 for all \; € S, where j3, 114 are both positive constants.

If at least half of eigenvalues in S are larger than ), we know at least £ E2PAT number of eigenvalues are smaller than
\. Otherwise, the expectation of the eigenvalues will be larger than A\, which contradicts the definition of \. Similarly,
if at least half of eigenvalues in S are smaller than )\, we know at least E2EAT number of eigenvalues are larger than A.
Denote p15 := 5554, We know Ay — A psnt1 > - a

Proof of Lemma 27. Let &; be the event that v/d/V/L < 0§(Xiin) < VLd and 1/L < X\j(Hyain) < L for all i € [n]
and \/Eo/él < [&urain]| < Vdo. Let & be the event that ﬁ/\/f < 0 (Xvatia) < V/Ld and 1/L < \j(Hyaia) < L for
alli € [n] and Vdo /4 < ||€yiia]| < V/do. According to Lemma 7 and Lemma 49, we know both &; and &3 hold with
probability at least 1 — exp(—£2(d)). In this proof, we assume both properties hold and take a union bound at the end.

2
We can lower bound ||w;,,, — Wyaid|| 7 ., as follows,
vali

+E

1 n
— § M1{\ > L}
n

=1

2
||wt,7] - wVﬁ]id”?—Imud - Hwt,n —w* — (Xvalid)vaalid| Hoaia

1 *
+ i Hﬁvalid”2 -2 ‘<wt,n —w ,Hvalid(Xvalid)vaalid>’ .

2
=z Hwt’" o w*| Hyaia

For the second term, by Lemma 49, we know for any 1 > € > 0, with probability at least 1 — exp(—£(€3d)),

1 9 9
- vali 2 1-—
€™ = (1 = €)o
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We can write down the third term as ([(Xvaia)'] " Hyaia(we,; — w*), &vatia). Suppose o is a constant, we know

|| Xyalid) Tj'fvahd(u)t n—w* || =0(1/ \/&) Therefore, for a fixed € [1/L, 3L], we have with probability at least
1 — exp(—9(e3d)),
|(we,n — w*, Hyatia(Xvatia) " évatia) | < €.

To prove this crossing term is small for all ) € [1/L, 3L], we need to construct an e-net for the crossing term. Similar
as in Lemma 13, we can show there exists an e-net for the crossing term with size O(t/¢). Taking a union bound over
this e-net, we are able to show with probability at least 1 — O(t/¢) exp(—£2(e2d)),

| (Wi — w*, Hyatia(Xvaiia) &uatia )| < €,
foralln € [1/L,3L].
Overall, we have with probability at least 1 — O(t/¢) exp(—(€2d)),
]' *
n — ||€vanall® — 2 ‘<wt,n —w ,Hvalid(Xvalid)vaalid>|

+ (1 —€)o? —2e> (1 —3¢)0?

I

2
[we,n — Wvaiia Hog = [we,y —w

Hyaia

Z Hwtvn - w*”Hvalid

for all € [1/L, 3L], where the last inequality uses o > 1. The proof finishes as we change 3¢ to €'. |

C Proofs of train-by-train with large number of samples (GD)

In this section, we give the proof of Theorem 6. We show when the size of each training set n and the the number of
training tasks m are large enough, train-by-train also performs well. Recall Theorem 6 as follows.

Theorem 6. Let FTbT(n) (n) be as defined in Equation (3). Assume noise level is a constant c1. Given any 1 > € > 0,

assume training set size n > g—gl log(™3), unroll length t > c3log(Z;), number of training tasks m > ?ZZ log(*25

and dimension d > ¢y for certain constants c, co, c3, c4. With probability at least 0.99 in the sampling of training tasks,
we have

tnm )

d 2
B [, — o < (10,

forallm;, ., € arg min,>q FTbT(n) (n), where the expectation is taken over new tasks.

In the proof, we use the same notations defined in Section B. On each training task P, in Lemma 28 we show the
meta-loss can be decomposed into two terms:
1 2 1 . 2
Arpr(n, P) = 9 Hwt,n - wtrain”}rj[lmin + o H(In - Pro]Xmi")glrainH )
where Wiin = W* + (Xain) Eirain- Recall that Xy is a n x d matrix with its i-th row as x; . The pseudo-inverse
(Xtram) has dimension d x n satisfying Xtraleram = 14. Here, Proj Xoan € R™*" is a projection matrix onto the
column span of Xip.
In Lemma 28, we show with a constant step size, the first term in A7 (7, P) is exponentially small. The second
term is basically the projection of the noise on the orthogonal subspace of the data span. We show this term concentrates
well on its mean. This lemma servers as step 1 in Section B.1. The proof of Lemma 28 is deferred into Section C.1.

Lemma 28. Assumen > 40d. Given any 1 > € > 0, with probability at least 1 —m exp(—(n)) —exp(—Q(e*md/n)),

1

. —d 2do?
Pryr(2/3) < 20(1 - 5)0” + DGy 97

2n 20n

In the next lemma, we show the empirical meta objective is large when 7 exceeds certain threshold. We define this
threshold 7 such that for any step size larger than 7 the GD sequence has reasonable probability being truncated. In the
proof, we rely on the truncated sequences to argue the meta-objective must be high. The precise definition of 7 is in
Definition 2. This lemma serves as step 2 in Section B.1. We leave the proof of Lemma 29 into Section C.2.
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Lemma 29. Let 1) be as defined in Definition 2 with 1 > € > 0. Assume n > cd,t > ca,d > c4 for some constants
¢, ca, cq. With probability at least 1 — exp(—Q(e*md? /n?)),

e2do?> n—d , €*do?

8n om ¢ 20m

FTbT(U) >

foralln > 1.

By Lemma 28 and Lemma 29, we know when ¢ is reasonably large, FTbT(n) is larger than FTbT(Q /3) for all step
sizes 7 > 7. This means the optimal step size 7) must lie in [0, 7j]. In Lemma 30, we show a generalization result for
7 € [0,7]. This serves as step 3 in Section B.1. We prove this lemma in Section C.3.

Lemma 30. Let 1) be as defined in Definition 2 with 1 > € > 0. Suppose o is a constant. Assume n > clog(Zy)d,t >
ca,d > cy for some constants c, ca, c4. With probability at least 1—m exp(—Q(n)) —O( 54 +m) exp(—Q(me*d? /n? )),

X 17€2do?
| Fror(n) — Fror(n)] < —

foralln € [0,17),

Combining Lemma 28, Lemma 29 and Lemma 30, we present the proof of Theorem 6 as follows.
Proof of Theorem 6. According to Lemma 28, assuming n > 40d, given any 1/2 > € > 0, with probability at least
1 — mexp(—Q(n)) — exp(—Q(e*md/n)), Fryr(2/3) < 20(1 — 1)?'0? + =252 4 Ezg“ Aslongast > cylog(Z)
for certain constant co, we have

. n—d 7e2do?
Fror(2/3) < 2 .
ror(2/3) < =5 =0t s

Let 7 be as defined in Definition 2 with the same e. According to Lemma 29, as long asn > cd,t > c3,d > ¢4
with probability at least 1 — exp(—Q(e*md?/n?)),

Bron(n) > €*do? Lo d02 B 2do®  n— d02 7.5¢2do?
T = gy 2n 20m  2n 100n

for all > 7. We have FTbT(n) > FTbT(Q /3) for all n > 7). This implies that »;5,, is within [0, 7j] and Fryr (Mirain) <

FTbT(2/3) < n d o2+ 7503‘; .

By Lemma 30 assuming o is a constant and assuming n > clog(%;)d for some constant c, we have with probability
atleast 1 — mexp(—Q(n)) — O(H4 + m) exp(—Q(me*d?/n?)),

A 17¢2do?
|Fror(n) — Fryr(n)] < ———,

n

for all n € [0, 7j]. This then implies

. 17€2do?2 n—d 24e2do?
FTbT(ntram) < Fry (ntrdm) + n = 2n 02 * n .

By the analysis in Lemma 28, we have

1 : .
Fryr () =B [0, = winlly, + B 1 = Projx,, )|
n—d
:]E§ [z, — w‘“‘i“HHm 2n o

1 . 2 24€do? fed : «|[2:
Therefore, we know E me;am Wirain| 1. < 2587 Next, we show this implies E me;am is small.

Let & be the event that 1 — € < A\;(Hyain) < 1 + € for all ¢ € [d]. According to Lemma 31, we know Pr[&] >
1 — exp(—(e?n)) as long as n > 10d/e2. Then, we can decompose E Hwtm‘tm —w* H2 as follows,

E [lwr, = w*|* =B Jw

*
’nLram t’nlram ’nlram
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. Lo . 2
Let’s first show the second term is small. Due to the truncation in our algorithm, we know Hwt Mo — w* H < 41202,
. N 2 (&
which then implies E ||wy - —w*||” 1 {£} < 41207 exp(—Q(e?n)). As long as n > 5 log(Z) for some constant c,
2 _ 2
we have B . |1 (£} <
We can upper bound the first term by Young’s inequality,
E H’U)t *

Mogain

— wiain| | T{EY + (1 + ©)F [[wiain — w*||* 1 {E} .

MMitain

o 2
Conditioning on £, we have me;_ — w[rain| b= (
rain train

2 ..
(1+2¢) Hwtﬂhfm — wtminHHlrain as long as € < 1/2. Similarly, we also have || Wi, — w* ||2 < (142€) ||wirgin — w* ||§{"m .
Then, we have

2 L. 2
1—¢) Hwtm&in — wtrainH which implies Hwtw{;in — w[minH <

"€}
1 2 *
<(1+2)(1+20)E [we e, — Waain|yy  T{EY + (1 + €)1+ 26)E [[wirain — w 1%, 1{&}

EHw

UMain

1
S(B + E)E Hwtvn:am

1 48¢%do? do? do?
<G5+ ) 4 (1456 < (1+293e) —
€ n n n

2
- “’trainHHtmm + (1 +56)E [|wirain — w* ||§{tram

Overall, we have E Hwt nh, — W || (1 +293¢) - do” fdy‘f =1+ 2946)%. Combining all the conditions,
we know this holds with probability at least 0.99 as long as o is a constant ¢y, n > i—g log(“5),t > calog(y), m >

2122 lo g(mm) d > ¢4 for some constants ¢, cg, 3, ¢4. We finish the proof by choosing ¢ = ¢’ /294. O

C.1 Upper bounding F,(2/3)

In this section, we show there exists a step size that achieves small empirical meta objective. On each training task P,
we show the meta-loss can be decomposed into two terms:

1 « 2
ATI7T(777 P) :% Z <<wt717 — Wtrain, xi> - (fl - xz—'rxl];aingtrain))

=1

1

2
75 ||wt,n - wtrain”Hlmn

1 .
% || (In - PI.O]XM")ftrain||2 B

where Wy, = w* + (Xtrain)%train. In Lemma 28, we show with a constant step size, the first term is exponentially
small and the second term concentrates on its mean.

Lemma 28. Assume n > 40d. Given any 1 > ¢ > 0, with probability at least 1 —m exp(—(n)) —exp(—Q(e*md/n)),

ligs o n—d , e2do?
3t o o

Fryr(2/3) < 20(1

Before we go to the proof of Lemma 28, let’s first show the covariance matrix Hy.;, is very close to identity when
n is much larger than d. The proof follows from the concentration of singular values of random Gaussian matrix
(Lemma 52). We leave the proof into Section C.4.

Lemma 31. Given 1 > ¢ > 0, assume n > 10d/e?. With probability at least 1 — exp(—Q(e?n)),
(1 - 5)\/7; < Ui<Xtrain) < (1 + E)\/ﬁ and 1l —¢ < )\i(Htrain) < 1+ €,

Sforalli € [d].
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Now, we are ready to present the proof of Lemma 28.

Proof of Lemma 28. Let’s first look at one training set Siin, in which y; = (w*, x;) + ; for each sample. Recall the
meta-loss as

1 — .
Aryr(n, P) = =5 E (Wi, x3) — (W*, x5) — &)*
=1

Recall that X ., is an n X d matrix with its ¢-th row as ac . With probablhty 1, we know X[ram is full column rank.
Denote the pseudo-inverse of X, as X[raln € R¥*™ that satisfies Xtrathram = I4 and Xin X,

= Projy ., where
Projy . € R™ ™ is a projection matrix onto the column span of Xujn-

tram

Let Wi, be w* + Xlainftraina where ,in 1S an n-dimensional vector with its i-th entry as &;. We have,

Aqyr(n, P)
1 n )
:% (<wt,n - w[raim-’L‘i> - (51 — xiTX;aingtrain>)
i=1
L 1 2 1<
_5 HUJt,n - wtrain”?{min + % H(In - PrOijin)gtrainH - E Z <wt}77 — Whrain ngz — xix:Xiainftrain> .

i=1

We first show the crossing term is actually zero. We have,

n
1
E : Tyt _
E <wt,n — Wtrain, 'ngz — T;T; Xtrainftrain> -
i=1

n n
<wt,7] — Wtrain, E xlfl - E Iil’ n-amgtram>
i=1 i=1

T T T
<wt,n — Wtrain, Xtrainglrain - XtrainXtrainX[raingtrain>

3\*—‘3\*—‘ SR

T T
Wt,n — Wrrain, Xtrainftrain - Xtrainétrain =0,
M

where the second last equality holds because Xmng ain = P1Oj Xoan”

(k) (k) \
We can define w,,; as wi + (X oo )T §trdm for every training set St

F moq ( 11 Proi (k)
TbT E kz_: § Wirain H[ff,ﬁ m ; 27 — FI0) ‘(rf.”,ﬁ )gtrain

rain- Then, we have

2

. . k; . .
We first prove that the second term concentrates on its mean. We can concatenate m noise vectors ftram into a single

noise vector &,in With dimension nm. We can also construct a data matrix X € R™™*9™ that consists of Xt(r’:l)n
diagonal blocks. Then the second term can be written as

2

1 1 . =
5 H \/ﬁ (Lnm — PrOJan)ftrain

According to Lemma 49, with probability at least 1 — exp(—$(e*md?/n)),

(1-0) o < el < (1+5%)

By Johnson-Lindenstrauss Lemma (Lemma 53), we know with probability at least 1 — exp(—Q(e*md)),

vmd \/E d
\/7 HPI' _]lené.tramH = )\/7\/7 H&ram” = 1 — € ) (1 - 7) .
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2

_ 2
Therefore, we have H ﬁ&rain >(1- 262)%02. Overall, we know with

0 2 . —
< (14 254)0? and Hﬁpm]xmfrrain
probability at least 1 — exp(—Q(e*md/n)),
2 < n—d 2, 5e2do?
o .
- 2n 2n

1 1 . =
5 H \/ﬁ(lnm - Pro])?tram)ftrain

Now, we show the first term in meta objective is small when we choose a right step size. According to Lemma 31,
we know as long as n > 40d, with probability at least 1 — exp(—Q(n)), vn/2 < Ui(Xt(rlji)n) < 3yn/2and1/2 <
Y (Ht(rl;)n) < 3/2,forall i € [d]. According to Lemma 49, we know with probability at least 1 —exp(—(n)), t(r];)n
24/no. Taking a union bound on m tasks, we know all these events hold with probability at least 1 — m exp(—(n)).

For each k € [m], we have ‘ (k)

w, <1+ %2\/770 < 5o. It’s easy to verify that for any step size at most 2/3, the

GD sequence will not be truncated since we choose the threshold norm as 400. Then, for any step size np < 2/3, we
have

train

L1y w2 1=l k) e, () ||
E Z 5 Hwt,n — Wirain H[(,?) “m Z 5 H(I - nHtrain) Wirain H‘(m
k:1 rain kzl rain
3 M2t 2 Lio o
<—-(1—-=)""250" <20(1 — =
<31 Dyrasa? <0 - Lo

where the last inequality chooses 7 as 2/3.
Overall, we know with probability at least 1 — m exp(—Q(n)) — exp(—Q(e*md/n)),

. 1 n—d 5e2do?
Fryr(2/3) < 20(1 — =)? g2 2 )
TbT(/)_ ( 3) ot 2n ot 2n

We finish the proof by changing % by (¢')2/20. O

C.2 Lower bounding FEpyr for n € (7,00)

In this section, we show the empirical meta objective is large when the step size exceeds certain threshold. Recall
Lemma 29 as follows.

Lemma 29. Let 1) be as defined in Definition 2 with 1 > € > 0. Assume n > cd,t > ca,d > c4 for some constants
¢, ca, cq. With probability at least 1 — exp(—Q(e*md? /n?)),

e2do? n-—d 9 e2do?

)2 >
ror(n) 2 —g =+ 5 0t = e

foralln > 1.

Roughly speaking, we define 7 such that for any step size larger than 7) the GD sequence has a reasonable probability
being truncated. The definition is very similar as 7} in Definition 1.

Definition 2. Given a training task P, let & be the event that \/n/2 < 0;(Xain) < 3v/n/2 and 1/2 < Xi(Hiyain) <

3/2 foralli € [d] and \/no /2 < ||Epain|| < 2v/no. Let E2(n) be the event that the GD sequence is truncated with step
size n. Given 1 > € > 0, define 1) as follows,

. 1 _ e2do?
n= inf {77 2 O‘E2 ||wm, — w’minH?{mn 1 {51 n 52(7])} 2 n } .

Similar as in Lemma 9, we show 1 {&; N & (1)} > 1{& N & (n)} for any 5’ > n. This means conditioning on
&1, if a GD sequence gets truncated with step size 7, it has to be truncated with any step size n” > 7. The proof is
deferred into Section C.4.
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Lemma 32. Fixing a training set Sy, let £1 and gg(n) be as defined in Definition 2. We have
1 {51 N gg(’r)/)} >1 {51 N 52(7])} R

forany ' >n.

Next, we show 7) does exist and is a constant. Similar as in Lemma 10, we show that the GD sequence almost never
diverges when 7 is small and diverges with high probability when 7 is large. The proof is left in Section C.4.

Lemma 33. Let 7] be as defined in Definition 2. Suppose o is a constant. Assume n > cd,t > co,d > c4 for some
constants c, ca, c4. We have

4<~<6
3 SIS

Next, we show the empirical loss is large for any 7 larger than 7). The proof is very similar as the proof of Lemma 2.
Proof of Lemma 29. By Lem[na 33, we know 7} is a constant as long as n > cd,t > co,d > c4 for some
constants ¢, ca,c4. Let £ and E2(n) be as defined in Definition 2. For the simplicity of the proof, we assume
IE% l|lwe 5 — wtrain”ilm, 1 {51 Nné&; (77)} > #. The other case can be resolved using same techniques in Lemma 2

< 345202, Therefore, we know Pr[€; N &(7)] > %'

By Hoeffding’s inequality,

L 2
Conditioning on &;, we know % ||w;  — Wiain|| e

For each task %, define El(k) and 52(1@)( ) as the correspondmg events on training set Stmm
we know with probability at least 1 — exp(—Q(e*md?/n?)),

1 ¢ (k)  o(k) - €’d
m’;]l{gl né (”)}2 452

By Lemma 32, we know 1 {51(k) N gz(k)(n)} >1 {El(k) nE&P (ﬁ)} for any n > 7.

Recall that
. 1 -1 ®) 112 11 2
FTbT E z_: § H Wirain H[Sf.;? + E ; % H(In - Pro]X(k>)£tra1n .
We can lower bound the first term for any 7 > 1) as follows,
- L~ L0 0 Ll | (k) ~ 500)
FTbT E Z 5 H Wirain H[Sfu? Z% ; 5 wt,n ~ Wain H[Efm) 1 {51 N 52 (77)}
3520'2 ]. e (k) *(k)
> aZn{el nE&S (n)}
k=1
3520'2 1 - (k) (k) €2d02
> ~31 {5 nEM (5 } > €497
=4 m ; 1 2 (¢ > 3n

where the second inequality lower bounds the loss for one task by 35202 when the sequence gets truncated.
For the second term, according to the analysis in Lemma 28, with probability at least 1 — exp(—$(e*md/n)),

2 _n—d , €do?
> 0" — .
- 2n 20n

- Z H (I, — Pr0JX<k>)§tmm

Overall, with probability at least 1 — exp(—Q(e*md?/n?)),

e2do? n-—d 9 e2do?
Jr

)2 >
ror(n) 2 —go om T 20m

for all n > 7. (]
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C.3 Generalization for 7 € [0, 7]]

Combing Lemma 28 and Lemma 29, it’s not hard to see that the optimal step size 7;:,;, lies in [0, 7]. In this section, we
show a generalization result for step sizes in [0, 7j]. The proof of Lemma 30 is given at the end of this section.

Lemma 30. Let 1) be as defined in Definition 2 with 1 > € > 0. Suppose o is a constant. Assume n > clog(Zy)d,t >
ca,d > ¢4 for some constants c, ¢z, c4. With probability at least 1—m exp(—Q(n)) —O(54+m) exp(—Q(me*d? /n? )),

X 17€2do?
|Fror(n) — Fror(n)] < —

foralln € [0,17),

In Lemma 34, we show FT;)T concentrates on Fppr at any fixed step size. The proof is almost the same as
Lemma 11. We omit its proof.

Lemma 34. Suppose o is a constant. For any fixed n and any 1 > € > 0, with probability at least 1 — exp(—§(e?>m)),

Fryr(n) — Frr(n)| < e

Next, we construct an e-net for Fry7 in [0, 7j]. The proof is very similar as in Lemma 12. We defer its proof into
Section C.4.

Lemma 35. Let 1) be as defined in Definition 2 with 1 > ¢ > 0. Assume the conditions in Lemma 33 hold. Assume
n > clog(Zy)d for some constant c. There exists an 8e’do® d" -net N C [0,7)] for Fryp with [N| = O(4Y). That means,
foranyn € [O 7],
8e2do?
|Fryr(n) — Fryr(n')] < )

n

forn' = argmin,en nr<y(n—n").
We also construct an e-net for the empirical meta objective. The proof is very similar as in Lemma 13. We leave its

proof into Section C.4.

Lemma 36. Let 1) be as defined in Definition 2 with 1 > ¢ > 0. Assume the conditions in Lemma 33 hold. Assume
n > 40d. With probability at least 1 — m exp(—$(n)), there exists an < d” -net N' C [0,1)] for Fryr with |[N'| =
O(5Y4 + m). That means, for any n € [0, 1),

. . e2do?
|Fryr(n) — Fryr(n')| < —

forn' = argmingen: yr<n(n—1n").
Combing the above three lemmas, we give the proof of Lemma 30.
Proof of Lemma 30. We assume o as a constant in this proof. By Lemma 34, we know with probability at least

edcr

1 — exp(—Q(me*d?/n?)), |Fror(n) — Fror(n)| < for any fixed n. By Lemma 35, we know as long as

n > clog(Z)d for some constant c, there exists an ¢ g" -net N for Frpyr with size O(%Y). By Lemma 36, we know
with probability at least 1 — m exp(—2(n)), there exists an << d" -net N’ for Frpyp with size O(H4 4+ m). It’s not hard
to verify that N U N’ is still an %—net for Fryy and FTW. That means, for any n € [0, 7j], we have

8e2do?

\Pryr(n) — Fror ()], | Pror(n) — Fryr(n')| < .

/ : i
for n’ = arg min, e Nun' 7 <n(n —n").
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Taking a union bound over N' U N’, we have with probability at least 1 — O(5Y4 + m) exp(—Q(me*d? /n?)),

2do?

n

Fryr(n) — Fror(n)| <

forally € NUN'.
Overall, we know with probability at least 1—m exp(—Q(n))—O( 54 +m) exp(—Q(me*d? /n?)), forally € [0,7],

|Fryr(n) — Fror(n)|
Fror ()| + |Pror(n) — Fror(0)| + | Fror(n) — Fror(n')|

<|Frer(n) — ('
17€¢2do?
<—,
n
where ’I7l — arg minn//eNuN/m//Sn(n — ’I]H). O

C.4 Proofs of Technical Lemmas

Proof of Lemma 31. According to Lemma 52, we know with probability at least 1 — 2 exp(—t2/2),

\f_\/g_tgai(xlrain) < \/'E'i'\/g'i't

forall ¢ € [d]. Since d < %, we have \/n — % —t < 0i(Xigain) < VN + %g + t. Choosing t = (§ — \/%)e\/ﬁ,

we have with probability at least 1 — exp(—Q(e2n)),
€ €
(1 - g)\/ﬁ S Ui(Xtrain) S (1 + g)\/ﬁ

Since A\ (Hyain) = 1/10%(Xiain), we have 1 — € < X\j(Hypain) < 1+ €. |

Proof of Lemma 32. The proof is almost the same as in Lemma 9. We omit the details here. Basically, in Lemma 9,
the only property we rely on is that the norm threshold is larger than 2 ||wi|| conditioning on &;. Conditioning on &1,
we Know || wiin|| < 50. Recall that the norm threshold is still set as 400. So this property is preserved and the previous
proof works. ]

Proof of Lemma 33. The proof is very similar as in Lemma 10. Conditioning on &;, we know || Hyin|| < 3/2 and
| Wirain || < 5o. So the GD sequence never exceeds the norm threshold 400 for any 7 < 4/3. That means,

1 _
E§ ||wt,77 - wtrain”QHlmin 1 {51 N 82(77)} =0

foralln < 4/3.

To lower bound the loss for large step size, we need to first lower bound ||wy,i, || . Recall that wyy, = w* +
(Xtrain) T€irain- Conditioning on &1, we know ||ain|| < 2v/n0 and 0q(Xain) > /1/2, which implies ||(Xmin)TH <
2/+/n. By Johnson-Lindenstrauss Lemma (Lemma 53), we have HProj Xy Strain H < %\/ d/n ||&urain|| With probability at
least 1 — exp(—£2(d)). Call this event 3. Conditioning on £; N &5, we have

2 3 /d d
H(Xtra.in)TgLrainH < ZﬁJﬁQ\/; < 6\/;0'7

which is smaller than 1/2 as long as n > 122do?. Note that we assume o is a constant. This then implies ||wiin || > 1/2.
Let {w; ,} be the GD sequence without truncation. For any step size 7 € [6, oc], conditioning on £; N &3, we have

1 1
Hw;f,n” 2 ((6 X 5 - 1)t - 1) HwtrainH > (2t - 1) 5 > 400‘7
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where the last inequality holds as long as ¢ > ¢ for some constant c;. Therefore, we know when 7 € [6,00),
1{& N&(n)} = 1{& NE;}. Assuming n > 40d, we know &; holds with probability at least 1 — exp(—£(n)).
Then, we have for any n > 6,

1 9 - 1 9 e2do?
]EE 1wty — Wirain | 3, 1 {&1n&(n)} 21 (400 — 50)° Pr[&y N &3] > —

where the last inequality assumes n > ¢, d > ¢4 for some constant ¢, c4.

Overall, we know E2 |[w;,, — wtramH?{m 1{& N & (n)} equals zero for all n € [0,4/3] and is at least 62‘2"2 for
all n € [6, 00). By definition, we know 7} € (4/3,6). O
Proof of Lemma 35. By Lemma 33, we know 1) is a constant. The proof is very similar as in Lemma 12. Let & and
&>(n) be as defined in Definition 2. For the simplicity of the proof, we assume E3 [|w; ;7 — Wiain Hi[m 1{&N&N)} <

e2do?
n

. The other case can be resolved using techniques in the proof of Lemma 12.
Recall the population meta objective

n—d ,
5 0

1
FTbT(n) = ]E§ Hwt,n - "vUtrainHirm,in +

Therefore, we only need to construct an e-net for the first term.
- 2
We can divide E2 ||w;.,) — Wiain||7,  as follows,
2 )M Hipain

1 2
E§ ||wt,n - w"ai“HHm,in

1 R 1 —
=EJ [lwey — Wainl|7, . 1{E1 N E(A)} + ES llwen — Wainl|3, 1 {E N E(M)}

1 _
+ ]E§ Hwt,n - wtrain||2Hlmn 1 {51} .

We will construct an e-net for the first term and show the other two terms are small. Let’s first consider the third term.
Assuming n > 40d, we know Pr[€;] < exp(—€(n)). Since 3 [|wy,, — wtfain“?{m is O(1)-subexponential, by Cauchy-
Schwarz inequality, we have E2 [|w;,, — w"ai“”ilmm 1{&} = O(1) exp(—Q(n)). Choosing n > clog(n/(ed)) for

= 2 2
some constant ¢, we know 3 [Jwy ;3 — wtrainHime 1{&} < <l
. S 2 2

Then we upper bound the second term. Since EL [|w; ; — w‘min”?{mi“ 1{& N&(A)} < <4 and
% lwe s, — wlram”ilmin > 351"2 when w ; diverges, we know Pr[&1 N E (M) < g;zi Then, we can upper bound the
second term as follows,

3 x 45202 4€%d < 6e2do?
4 352n =  n

1 5 n
ES llwey — Wi |7, T {E1 N E2(M)} <

Next, similar as in Lemma 12, we can show the first term £ [|wy,,, — wtfﬂi“”?{m'n 1{& N &(n)} is O(t)-lipschitz.
Therefore, there exists an #-net N for E3 [Jwy,, — wtrain”ilm 1{& N & (A)} with size O(4Y). That means, for
any 7 € [0, 7],
e2do?

n

1 R 1 .
Ei ||wtﬂ7 - wtrain”zmm 1 {51 N 52(77)} - Ei ||wt,77’ - wtrain”i[(mm 1 {El N 52(77)} <
for / = arg min, e N yr<n(n —n").
Combing with the upper bounds on the second term and the third term, we have for any 7 € [0, 7],

8e2do?

n

|Fror(n) — Fror(n')| <
for ' = argmin,en ,r<n(n —n"). =
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Proof of Lemma 36. By Lemma 33, we know 1) is a constant. For each k € [m], let £ ; be the event that
Vn/2 <oy [mm) < 3y/n/2and 1/2 < \( [mm) < 3/2foralli € [d] and \/no/2 < (k) ‘ < 2/no. Assuming

train
n > 40d, by Lemma 31, we know with probability at least 1 — m exp(—Q(n)), &1 x’s hold for all k € [m)].

Then, similar as in Lemma 13, there exists an 62‘:;’2 -net N with |N’| = O(% + m) for Fpyp. That means, for
any 1) € [0, 7],

e2do?

FTbT(n) _FTbT(n/) < ”

for ' = arg min, e N’ yr<n(n —1n"). O

D Proofs of train-by-train v.s. train-by-validation (SGD)

Previously, we have shown that train-by-validation generalizes better than train-by-train when the tasks are trained by
GD and when the number of samples is small. In this section, we show a similar phenomenon also appears in the SGD
setting.

In the traln -by-train setting, each task P contains a training set Sain = { (2, ¥:) } 72 1 The inner objective is defined
as f(w) = or D () €S (W T) — y)” . Let {w,. » } be the SGD sequence running on f(w) from initialization 0 (with-
out truncation). That means, w,.,, = w, 1.~V f(w,_1.,), where V f (w,_1.,)) = ((wr -1, Ti(r—1)) = Yi(r—1)) Ti(r—1)-
Here index i(7 — 1) is independently and uniformly sampled from [n]. We denote the SGD noise as n,_;, =
Vf(wr 1) — Vf(wT_lm). The meta-loss on task P is defined as follows,

A 1
Aryrny (1, P) = Esap f(wi,y) = ]ESGD% ( )ZES ((we,p, ) —y)?,
z,y train

where the expectation is taken over the SGD noise. Note w; ,, depends on the SGD noise along the trajectory. Then, the
empirical meta objective Fryp(,,)(1) is the average of the meta-loss across m different specific tasks

. 1 &
Fryrm)(n) = - Z Aqyrin) (1, Pr)- (6)
=1

In order to control the SGD noise in expectation, we restrict the feasible set of step sizes into O(1/d). We show
within this range, the optimal step size under Fryp(y,) is €(1/d) and the learned weight is far from ground truth w* on
new tasks. We prove Theorem 9 in Section D.1.

Theorem 9. Let the meta objective FTbT(n) be as defined in Equation 6 with n. € [d/4,3d/4]. Suppose o is a constant.
Assume unroll length t > cod and dimension d > ¢4 log(m) for certain constants ¢, c4. Then, with probability at least
0.99 in the sampling of training tasks Py, - - - , Py, and test task P,

* %112
Mrain = U1/d) and Bscp ||wt,p,, —w*||” = Q(o?),
Sforalln;, .. € arg m1n0<n< FTbT(n)( ), where L = 100 and wy ,,» is trained by running SGD on test task P.

In the train-by-validation setting, each task P cqntains a training set Sy, With ny samples and a validation set
with ny samples. The inner objective is defined as f(w) = ﬁ 2 () €S (W T) — y)? . Let {w-,} be the SGD

sequence running on f (w) from initialization 0 (with the same truncation defined in Section 4). For each task P, the
meta-1oss Appy (n,,ny) (1, P) is defined as

1
ATbY (ny,n2) (0, P) = ESGD% Z (w,p, @) — y)2.
(2,y) € Svaiia
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The empirical meta objective FTW(mm) (n) is the average of the meta-loss across m different tasks Py, P, ..., P,

. 1 &
Fryvn, ma)(1n) = oo Z A7y (ny s (M, Pr). @)
k=1
In order to bound the SGD noise with high probability, we restrict the feasible set of the step sizes into O(#gzd).

Within this range, we prove the optimal step size under FTbV(nhnz) is ©(1/t) and the learned weight is better than
initialization O by a constant on new tasks. Theorem 10 is proved in Section D.2.

Theorem 10. Let the meta objective FTW(m o) be as defined in Equation 7 with ny,nz € [d/4,3d/4]. Assume noise

level o is a large constant c1. Assume unroll length t > cod? logQ(d), number of training tasks m > cs and dimension
d > c4 for certain constants ca, c3, c4. There exists constant cs such that with probability at least 0.99 in the sampling
of training tasks, we have
2
Moatia = ©(1/t) and E Hwt —wr||" =]

*
Mhalid

lw*[|? — Q1)

for all m;,;; € argming, ]:_'Tbv(nl,n?)(n), where the expectation is taken over the new tasks and SGD

noise.

1
c5d? log2(d)

Notations: In the following proofs, we use the same set of notations defined in Appendix B. We use Ep.. 1 to denote
the expectation over the sampling of tasks and use Eggp to denote the expectation over the SGD noise. We use E to
denote Ep..7Escp. Same as in Appendix B, we use letter L to denote constant 100, which upper bounds || Higin || with
high probability.

D.1 Train-by-train (SGD)

Recall Theorem 9 as follows.

Theorem 9. Let the meta objective F’TbT(n) be as defined in Equation 6 with n € [d/4,3d/4]. Suppose o is a constant.
Assume unroll length t > cod and dimension d > c4log(m) for certain constants ca, cy. Then, with probability at least
0.99 in the sampling of training tasks Py, - - - , P,, and test task P,

Nirain = $2(1/d) and Esgp Hwt,n;m —w*||” = Q(c?),

for all 0y, € argming<, < FTbT(n) (n), where L = 100 and Wy 1S trained by running SGD on test task P.

2L13d
In order to prove Theorem 9, we first show that ;.. is ©(1/d) in Lemma 37. The proof is similar as in the GD

setting. As long as 7 = O(1/d), the SGD noise is dominated by the full gradient. Then, we can show that Apyr(n, P)
is roughly (1 — ©(1)n)*, which implies that 7%,.. = Q(1/d). We leave the proof of Lemma 37 into Section D.1.1.

Lemma 37. Assume t > cod with certain constant co. With probability at least 1 — m exp(—€Q(d)) in the sampling of

m training tasks,
1

’r]t*rain > m ’

foralln} ., € arg minogngﬁ Ervr(n).
Let P = (D(w*), Siain, ¢) be an independently sampled test task with |Syain| = n € [d/4,3d/4]. For any
step size ) € [g755, 3754)» let wy,, be the weight obtained by running SGD on f(w) for ¢ steps. Next, we show

Escp ||lwi ., — w*||> = Q(o2) with high probability in the sampling of P.
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Lemma 38. Suppose o is a constant. Assume unroll length t > cod for some constant co. With probability at least
1 — exp(—Q(d)) in the sampling of test task P,

o
E
scp l|lwey — w|* > To8L"
foralln e [ﬁ, ﬁ], where wy ,, is obtained by running SGD on task P for t iterations.
With Lemma Lemma 37 and Lemma 38, the proof of Theorem 9 is straightforward.
Proof of Theorem 9. Combing Lemma 37 and Lemma 38, we know as long as o is a constant, ¢ > cod,d >
cqlog(m), with probability at least 0.99, 0k, = (1/d) and Eggp Hwtﬂhﬁa;n ? = Q(0?), for all n,, €

arg m1n0<n< FTbT (n). O

D.1.1 Detailed Proofs

Proof of Lemma 37. The proof is very similar to the proof of Lemma 1 except that we need to bound the SGD noise
term. For each k € [m], let & be the event that \/g/\/f < 03 (Xirain) < v/Ld and 1/L < \i(Hyain) < Lforall i € [n]
and Vdo /4 < ||irain]] < V/do. According to Lemma 7 and Lemma 49, we know for each k € [m], & happens with
probability at least 1 — exp(—£2(d)). Taking a union bound over all k € [m], we know Nye)Ex holds with probability
at least 1 — m exp(—(d)). From now on, we assume My Ex holds.

For each k € [m], we have

Aqpr(n, Py) := *ESGDHw(k) w(k)

train

FON

train

Since 1/L < \; (H(k)) < Land (wgkn) — ) is in the span of H™ we have

train train train®

L

wt(kn) wt(r’;i)n < ATbT(T], Pk) < ESGD Hw(k) wt(r]Zi)n

Ly ‘
97, SGD

Recall the updates of stochastic gradient descent,

k k k k k k
wt(n) wt(ral)n (I nHl(ral)n)(wE )1 R wl(rai)n) - nnz(f—)l,n'
Therefore,
k k)12 (k k k k) £ |2 K |1?
Escp |:Hw( ) wt(rai)n |w( ) :| - H I nHl(ral)n)(wg )1 mo wl(rai)n) +772ESGD |:an(f—)l,7]H |w2§—)1,77:| ’

We know for any n < 1/L,

2
(1—277L)Hw(k) —w® <(- 77)Hw(k) )

2
k k k
< H(I - nHt(ral)n)(wg )1 n wt(rai)n)

t—1,n train 7 t—1,m train
The noise can be bounded as follows,
n°Escp _ ngk)1 ”H |wt(li)1,n:|
:anSGD xi(tfl)xiT(tfl)(wgli)l,n - wt(r];)n) - Ht(r]:i)n(wyi)l,n - wl(r];)n) |wt )1,7;}
<n*Escp - xi(t—l)xj(tq)(wt(ﬁ)l,n _wt(r’;i)n) wt(k)l,n]

<7] I(rtla}l( ||xz(t 1)“ Hwélj)l,n_wt(rii)n

(k) *
Htrain
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Since || Xiwain|| < VLVd, we immediately know max; ;1) Hxi(t,l) H < +v/LV/d. Therefore, we can bound the noise as
follows,

k k k
n7(5 )1 UH |w§)1”’]:| <77 max H$1(t 1)” legf)l,n _wt(rai)n

2
E ’
1 LsGp [ Fra|

a®

train

k
§L2772d Hwtfl,n - wfrai)n

Aslongasn < 2L3d, we have

(1 - T’L) Hw(k) - w(k) wt(kn) wl(r’;i)n

t—1,n train

2 2 2
k k k
< ESGD |:‘ |w£)1,77:| < (1 2L) H ( )1 N wt(rai)n

This further implies

2
(1= L) Jwanll® < Esop [y —wihn | < (1= 35)" v .

Let 15 := 5757, we have

L 1
ATbT(nvpk) < 5(1 - 4L4d)t Hwtrain”2

Let 11 := 5755, forall € [0,7:] we have

1 1 9

Aryr(n, Pr) > ﬁ(l - 6L4d) | Wecain |~ -
As long as ¢ > cod for certain constant co, we know
1 1 2 L 1 2
—(1— t rain —(1=— rain .

As this holds for all k& € [m] and Fryp = 1/m St Aqyr(n, Py), we know the optimal step size 75, is within
[6L15d7 2L13d]' ]
We rely the following technical lemma to prove Lemma 38.

Lemma 39. Suppose o is a constant. Given any € > 0, with probability at least 1 — O(1/¢) exp(—(e2d)),
|<Bt,nw;¢¢i11 - ’LU*, Bt,n(Xtmin)TftrainM S €,

foralln € [0, 375].

Proof of Lemma 39. By Lemma 7, with probability at least 1 — exp(—Q(d)), Vd/VL < 0;(Xuun) < VILd

and 1/L < X\i(Huan) < L for all i € [n]. Therefore ||[(Xyain)']" Bey(Beywiy, — w*)|| < 2VL/Vd. Notice

that &y is independent with [(Xywin) '] T By (Bt gWiyn — w*). By Hoeffding’s inequality, with probability at least

1 — exp(—Q(e?d)),
|<[(Xtrain)wTBt,TI(BtJ]w;ain - w*)7 5train>| <e

Next, we construct an e-net for 7 and show the crossing term is small for all ) € [0, ﬁ] For simplicity, denote
9(n) == (Bt Wiiain — W*, Bey(Xirain) &rain ) - Taking the derivative of g(n), we have

g —t <Htra1n I— 77Htra1n) wlramv By N (Xtram) ftra1n>
+1 <Bt,nwtmin - w ) Htrain(I - 77Htrain) (Xtrain)Tgtrain>

According to Lemma 49, we know with probability at least 1 — exp(—(d)), ||&win|| < V/do. Therefore, the
derivative ¢’(n) can be bounded as follows,



Similar as in Lemma 18, there exists an e-net N, with size O(1/€) such that for any n € [0, z75], there exists n’ €
N, with |g(n) — g(n)| < €. Taking a union bound over N, we have with probability at least 1 —O(1/€) exp(—(€2d)),
for every n € N,

|<Bt”7w;ai“ —w’, Btm(Xtrain)TgtrainM <e

which implies for every n € [0, 3757]-

|<Bt7nw:;ain - ’LU*, Bt,'r](Xlrain)TEtrain>| < 2e.

Changing e to ¢’ /2 finishes the proof. O

Proof of Lemma 38. According to Lemma 7 and Lemma 49, we know with probability at least 1 — exp(—(d)),
\/E/\E < 0 (Xirain) < V'Ld and 1/L < Ni(Hyain) < L forall i € [n] and \/ao/4 < [ &rain|| < Vdo. We assume
these properties hold in the proof and take a union bound at the end.

Recall that Esgp [|wy,, — w* ||2 can be lower bounded as follows,

t—1

Btm(wt*rain + (Xtrain)Tftrain) -n Z(I - T]Htrain)t_l_TnT’n —w*
7=0

Escp ||we,y — w*||* =Escp

* * 2
> ||Bt,n (wlrain + (Xtrain)Té-train) —w

Z ||Bt,n (Xtrain)Jrgtrain||2 + 2 <Bt,nw;ain - w*a Bt,n (Xtrain)TStrain>

For any 1 € [5755, 5754)» We can lower bound the first term as follows,

t\\? o2
HBt,n<X1rain)TftrainH2 > (1 — exXp <—72>) 10-67_[/

where the last inequality holds as long as ¢ > cad for certain constant cs.
Choosing € = % in Lemma 39, we know with probability at least 1 — exp(—£2(d)),

2

* * g
‘<Bt,1]wtrain -—w 7Bt,n (Xtrain)TftrainH < Ma
for all n € [0, 575].
Overall, we have Eggp ||wy,,, — w* 12 > 1582 7 Taking a union bound over all the bad events, we know this happens
with probability at least 1 — exp(—Q(d)). O

D.2 Train-by-validation (SGD)
Recall Theorem 10 as follows.

Theorem 10. Let the meta objective FTbV(nl ,ns) be as defined in Equation 7 with ny,ny € [d/4,3d/4]. Assume noise
level o is a large constant c1. Assume unroll length t > cyd? log2(d), number of training tasks m > c3 and dimension
d > cy4 for certain constants cs, c3, cq. There exists constant c5 such that with probability at least 0.99 in the sampling
of training tasks, we have

* %12 *
Thatia = ©(1/t) and E ||w; w*||” = [Jw*|* — Q(1)

. —
Mhalia

for all n;,;,, € argming, < FTW(nlynz)(n), where the expectation is taken over the new tasks and SGD

noise.

1
c5d? log2(d)
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To prove Theorem 10, we first study the behavior of the population meta objective Frpy-. That is,

1 2
Fryv(n) := Ep~7Arpv (1, P) :]EPNTESGD§ |wey —w* — (Xvalid)Tévand||Hva“d

1 o?
:]EPNT}ESGDi H’LUtm — ’lU*H2 + ?

We show that the optimal step size for the population meta objective Frrpy is ©(1/t) and Ep~7Escp ||wy,, — w* I? =

[w*||> — (1) under the optimal step size.

Lemma 40. Suppose o is a large constant c1. Assume t > cod? log2 (d),d > c4 for some constants ca, c4. There exist
m, N2, N3 = O(1/t) with 1 < 1y < n3 and constant ¢ such that

9 o2
o+
10 +

2
H .

1 *
Fryv(n2) < B [|w

Fryv(n) >

1, 6 o2 1
= Jlw*|* - 10¢ T 50 € 0.m]u [ns, ]

2 2 csd? log?(d)
where C' is a positive constant.

In order to relate the behavior of Fryy to FTW, we show a generalization result from FTW to Frpy forn €
0. e

Lemma 41. For any 1 > ¢ > 0, assume o is a constant and d > c41og(1/€) for some constant c4. There exists
constant cs such that with probability at least 1 — O(1/¢€) exp(—Q(e*m)),

|Frov () — Pryv (n)] < e,

foralln € [0, m].

Combining Lemma 40 and Lemma 41, we give the proof of Theorem 10.

Proof of Theorem 10. The proof is almost the same as in the GD setting (Theorem 8). We omit the details here. []

D.2.1 Behavior of Fryy for 1) € [0, o]

In this section, we give the proof of Lemma 40. Recall the lemma as follows,

Lemma 40. Suppose o is a large constant ¢,. Assume t > cod? log® (d),d > ¢y for some constants co, c4. There exist
M,M2,M3 = O(1/t) withn; < ne < n3 and constant cs such that

1 2 9 0'2
P < S|P - =0+ Z
oy (12) < 5 [Jw™]| 100"' 5
1 2 6 0'2 1
F > —||w'|" - =C+ —,Yne0,m]Uny, ———5—
rov(n) 2 5 lw” " = 15 5+ "0 € 10,m] U [ns C5d210g2(d)}

where C'is a positive constant.

Recall that Fryy () = EprEsopl/2 [Jws,, — w*||* + 02/2. Denote Q(1) := Esapl/2 ||w;, — w*|?. Recall
that we truncate the SGD sequence once the weight norm exceeds 4v/Lo. Due to the truncation, the expectation of
1/2||wy,, — w* |* over SGD noise is very tricky to analyze.

Instead, we define an auxiliary sequence {w?, , } that is obtained by running SGD on task P without truncation and
we first study Q' (n) := 1/2Escp Hwém — w*||*. In Lemma 42, we show that with high probability in the sampling of

task P, the minimizer of @Q’(n) is ©(1/t). The proof is very similar as the proof of Lemma 17 except that we need to
bound the SGD noise at step size 172. We defer the proof into Section D.2.3.
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Lemma 42. Given a task P, let {w; ,} be the weight obtained by running SGD on task P without truncation.
Choose o as a large constant c1. Assume unroll length t > cod for some constant co. With probability at least
1 — exp(—Q(d)) over the sampling of task P, \/d /'L < 05(Xyain) < VLd and 1)L < X\j(Hyain) < L for all i € [n]
and \/&O’/Zl < |rain|| < Vdo and there exists 1,712,173 = O(1/t) withmy < ny < n3 such that

*][2 1 *
Q' (n2) == 1/2Esgp ||wy,, —w*||” < 3 lw*|* — C
/ / * 2 1 w112 C
Q'(n) == 1/2Escp ||w},, — w*||” > 3 ™l = 5 ¥ € [0,m] U lns, 1/L]

where C'is a positive constant.

To relate the behavior of Q' (n) defined on {w;. , } to the behavior of Q(7) defined on {w; , }. We show when the
step size is small enough, the SGD sequence gets truncated with very small probability so that sequence {w ,,} almost
always coincides with sequence {w;. ,, }. The proof of Lemma 43 is deferred into Section D.2.3.

Lemma 43. Given a task P, assume \/&/\/Z < 0i(Xiprain) < VLd and 1)L < N\j(Hygin) < L for all i € [n] and

Vdo /4 < ||€rain|| < Vdo. Given any € > 0, suppose n < mﬁ” some constant cs, we have

Q(n) — Q' (n)] < e

Combining Lemma 42 and Lemma 43, we give the proof of lemma 40.
Proof of Lemma 40. Recall that we define Q(n) := 1/2Esgp |lwe,,;, — w*||* and Q'(n) = 1/2Esgp ||}, — w*|
Here, {w] , } is a SGD sequence running on task P without truncation.

According to Lemma 42, with probability at least 1 — exp(—$(d)) over the sampling of task P, v/d/vL <
0i(Xwain) < VLd and 1/L < Xj(Hygin) < L for all ¢ € [n] and \/&0/4 < || < V/do and there exists
m, 2,13 = ©(1/t) with ; < ne < n3 such that

1 *
Q'(m) < 5 |w”* - C

1, ., c
Q') 2 5w I* = 5. ¥n € [0,m] U [, 1/L]

where C' is a positive constant. Call this event £. Suppose the probability that £ happens is 1 — §. We can write
Ep~7Q(n) as follows,

| 2

Ep~7Q(n) = Ep~7[Q(n)|E] Pr[E] + Ep~7[Q(n) €] Pr[E].

According to the algorithm, we know [|wy , || is always bounded by 4v/Lo. Therefore, Q(n) := 1/2 ||w; ,, — w* I? <

13Lo%. By Lemma 43, we know conditioning on &, |Q(n) — Q'(n)| < € for any n < m. As long as
t > cod?log?(d/e) for certain constant ¢y, we know 73 < m.
When 1 = 72, we have

Ep7Q(n2) <(Q'(m2) + €) (1 — ) + 13Lc%5
< (; lw*|)* = C + e) (1—46)+13Lo%s
1

1 9C
<5 lw* = C+13L0% + e < o fJw”|* - 5.
where the last inequality assumes § < WCLGZ and € < %.

When ne [0, 7]1] U [773, Wz%d/e)]’ we have

Ep7Q(n2) > (Q'(n) —€) (1 —6) — 13Lo?5
> @ lw*|* - % — e) (1 —6) — 13Lo%6

=<

b} 1
———5—13L025—ez §||w*||2— 6C

1
> [w T
2 10
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where the last inequality holds as long as § < ﬁ and e < %
According to Lemma 42, we know 6 < exp(—£(d)). Therefore, the conditions for ¢ can be satisfied as long as d is

larger than certain constant. The condition on € can be satisfied as long as n < m for some constant c5. [

D.2.2  Generalization for 1) € [0, 5]

In this section, we prove Lemma 41 by showing that F'74y (1) is point-wise close to Fryy () foralln € [0
Recall Lemma 41 as follows.

D S
’ c5d? logz(d/e)]'

Lemma 41. For any 1 > € > 0, assume o is a constant and d > cqlog(1/€) for some constant cy. There exists

constant cs such that with probability at least 1 — O(1/¢€) exp(—Q(€2m)),

\Fryy () — Frov(n)| <e,

1
for alln S [0, Wgz(d/e)]
In order to prove Lemma 41, we first show that for a fixed n with high probability Friv (n) is close to Fryy (n).
Similar as in Lemma 20, we can still show that each Aryy (1, P) is O(1)-subexponential. The proof is deferred into
Section D.2.3.

Lemma 44. Suppose o is a constant. Given any 1 > ¢ > 0, for any fixed 1) with probability at least 1 —exp(—§(e?>m)),

Fryy(n) — Frov(n)| < e

Next, we show that there exists an e-net for Frryy with size O(1/€). By e-net, we mean there exists a finite set N,
of step sizes such that |Frryy () — Fryy ()| < e for any i and " € arg min, ey, |7 — 7’| The proof is very similar
as in Lemma 21. We defer the proof of Lemma 45 into Section D.2.3.

Lemma 45. Suppose o is a constant. For any 1 > ¢ > 0, assume d > c4log(1/¢€) for some c4. There exists constant

s and an e-net N, C [0 | for Fryy with |[N.| = O(1/€). That means, for any n € [0

1 1
? c5d? log?(d/e) ’ c5d? 10g2(d/e)]’

|Frov(n) — Frov(n')] <e,

forn' € argmin,en, |n—1n'|.

Next, we show that with high probability, there also exists an e-net for Fryy with size O(1/e). The proof is very
similar as the proof of Lemma 22. We defer the proof into Section D.2.3.

Lemma 46. Suppose o is a constant. For any 1 > € > 0, assume d > c4log(1/e€) for some cy. With probability at

least 1 — exp(—Q(em)), there exists constant c5 and an e-net N! C [0, m]fm Fryy with |N¢| = O(1/e).

That means, for any 1) € [0, m],

\FTbV(n) — FTbV(n/M <,

forn' € argmingen, |n -1,
Combing Lemma 44, Lemma 45 and Lemma 46, now we give the proof of Lemma 41.

Proof of Lemma 41. The proof is almost the same as the proof of Lemma 15. We omit the details here. ]
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D.2.3 Proofs of Technical Lemmas

In Lemma 47, we show when the step size is small, the expected SGD noise square is well bounded. The proof follows
from the analysis in Lemma 37.

Lemma 47. Let {w! , } be an SGD sequence running on task P without truncation. Let n’, , be the SGD noise at w, .
Assume \/ﬁ/ﬁ < 0i(Xpain) < VLo foralli € [n] and ||Epain) < Vdo. Suppose n € [0, TlgdL we have

ESGD ||’I7/{,_77]||2 < 4L302d
forall T < t.

Proof of Lemma 47. Similar as the analysis in Lemma 37, for n < ﬁ, we have

Eson [ [ [0} —1,,] < L2 [0, — wian]”

and
n

_ 2
- 2L)T ! ||wtrainH2 S ||w;ain + (Xtrain)fgtrainH S 4LU2~

]ESGD Hw;’—l-ﬁ - wtrain“2 < (1

Therefore, we have , ,
Escp |0}, ||~ < LdEsep ||w] ,, — weain||” < 4L%0”d.

]
Proof of Lemma 42. We can expand Q’(n) as follows,
1 12
Q'(n) =5Esap |w},, — w*||
1 t—1 2
:§ESGD Btmwty;ain + Bt,n(Xtrain)Tgtmin -1 Z(I - nHtrain)t_l_Tn;—’n —w*
7=0
1 1 - t—1 2
* %12 —1—T
D) | Bty Werain — 0™ ™ + ) HBt,n(Xtrain)TftrainH + ?ESGD ;(I - UHtrain)t ! nffﬂl
+ <Btﬂ7wtﬂ;ain - w*a Bt,n(Xtrain)Tgtrain>
Denote
1 1 o 2 t—1 2
* %112 1=
G(U) = 5 ||Bt,7lwtrain —w H + 5 ||Bt,'r)(Xtrain)T€train|| + ?ESGD Tz:;)(l - nHtrain)t ! n{,-m

We first show that with probability at least 1 — exp(—£2(d)), there exist 11, 12,73 = O(1/t) with 11 < 12 < 13 such
that G(13) < 1/2 |w*||> = 5C/4 and G(n) > 1/2 ||w*||* — C /4 forall 5y € [0,71] U [ns, 1/L].

According to Lemma 7, we know with probability at least 1 — exp(—Q(d)), Vd/vVL < 0;(Xiain) < VLVd and
1/L < A\j(Hyain) < L forall ¢ € [n]. According to Lemma 49, we know with probability at least 1 — exp(—£(d)),
\/80/4 < Hftrain” < \/go'.

Upper bounding G(73): We can expand G(7) as follows:

1 2
1 * *12 1 2 772 S —1-7
G(Tl) ::i HBt,nwu—ain —w || + 5 HBt,n(Xtrain)TgtrainH + ?ESGD Z(I - nHtrain)t ! n;_m
7=0
t—1 2
Lopz L . o2 1 2 i
25 Hw || + 5 ||Bt,77wtrain|| + 5 HBt,n(Xtrain)TgtrainH + ?ESGD Z(I - nHtrain)t ! n/m]
7=0

- <Bt>77w;ain7 w*> .
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Same as in Lemma 17, we know 1 || By, nwtram +1 HBt 0 Xm)TgmHQ < L3n*t?02. For the SGD noise, by
Lemma 47 we know Escp ||n. y H < 4L3¢?d for all 7 < t as long as 1) < 5747. Therefore,
2 t—1 77 — 9
?]ESGD Z(I — NHyain) ™0 <5 Z sap ||, || < 2L%n?0%dt < 2L%n*0*t?,
7=0 T7=0

where the last inequality assumes ¢ > d. According to Lemma 19, for any fixed ) € [0, L/t], with probability at least
1- eXp(—Q(d)) over Xtrain;

ooy Nt
<Bt777wtrain7w > = 16L°
Therefore, for any step size n < 3 Lg 7>
1 2 nt
G < = * 3L3 2 2t2
() < 5 Io"ll? 4 3E3P0% — 0 < L P~
where the second inequality holds as long as n < o5 L4 5; - Choosing np 1= 55 Li 5; that is smaller than ﬁ assuming
t > d. Then, we have
2 bC
Gm) < 5 Il = 22,

where constant C' = 3072%'
Lower bounding G(n) for n € [0,71] : Now, we prove that there exists 177 = ©(1/t) with 1; < 7 such that for any
ne0,m],G(n) > Ljw*|* - . Recall that

t—1 2

Z(I - nHtrain)tiliTnfr’n
7=0

1 * 12 1 * 2 1 T 2 772
Gn) =5 10" + 5 1 Buyinll® + 5 |1 B (Xiin) uin|* + L Eso

1 2
25 ”w*H - <Bt ﬁw;ain’w*> .

Same as in Lemma 17, by choosing 7; = %, we have for any 7 € [0, 7],
1 s C
G(n) > = ||lw*||” — =.
OEEI

Lower bounding G(n) for ) € [n3,1/L]: Now, we prove that there exists 3 = ©(1/t) with i3 > 72 such that for
all n € [n3,1/L],

1 s C
G(n) > = |Jw*|* = =.
) > 5w - 5
Recall that
1 1 2 n? = ’
G(’I]) :E ||Bt,nw:;ain - w*H2 + 5 HBt,n(Xtrain)TflrainH + E]ESGD Z(I - nleain)t_l_T’ng_,n
7=0

! 2
25 HBtyn(Xlrain)TftrajnH .
Same as in Lemma 17, by choosing 73 = log(2)L/t, as long as o > 8v/L, we have

1 *
Gn) > 5w
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for all ) € [n3,1/L]. Note 3 < 1/L as long as t > log(2)L?.
Overall, we have shown that there exist 71, 72,73 = O(1/t) with 1, < 15 < 73 such that G(n2) < 1/2 [|w*|?
5C/4and G(n) > 1/2 ||w*||*~C/4forally € [0,7:]U[ns, 1/L]. Recall that Q' (1) = G(n)+ +{( Bty Wikin — W*, Bey(Xiain)  Eirain ) -
Choosing ¢ = C'/4 in Lemma 18, we know with probability at least 1 —exp(—£2(d)), |<Bt nWikain — WY, By (Xtram)fftramﬂ <
C/4 for all € [0,1/L]. Therefore, we know Q' (12) < 1/2||w*||* — C and Q'(n) > 1/2 ||w*||* — C/2 for all

n € [0,m]u[ns, 1/L]. O
In order to prove Lemma 43, we first construct a super-martingale to show that as long as task P is well behaved,
with high probability in SGD noise, the weight norm along the trajectory never exceeds 4v/Lo.

Lemma 48. Assume \/d/\'L < 0i(Xiain) < VLdand 1)L < Xi(Hyain) < L foralli € [n] and /do /4 < ||Epain]] <
Vdo. Givenany 1 > § > 0, suppose n < for some constant cs, with probability at least 1 — § in the SGD

noise,
‘ <4VLo

1
c5d? log?(d/$)

(e

forall T <t.

Proof of Lemma 48. According to the proofs of Lemma 47, as long as < Ld ~» we have

U / 12
) [|wi -1, — Weain]|”

Esap {Hwin - 'LUtrain||2 \w{_lm} <(1- i

Since log is a concave function, by Jenson’s inequality, we know

ESGD |:10g Hwém - wtrainH2 |w271,7]i|

2
S 10g]ESGD {Hwé”’ - wtrain” |w1/§_1777:| S log ||w1/§_1,77 - wtrainH + 1Og(]— - %)
Defining G; = log ||w§77 — Wirain H —tlog(1l— ) we know G, is a super-martingale. Next, we bound the martingale

differences.
We can bound |Gy — Esgp[G¢|w;_; ]| as follows,

log <H(I - nHtrain)(wgan - wtrain) - 77”{5 1, 77H2>

|G — Esep[Gilw;_y ]| < = max /
|| (I - T]Htrain)(wt—l,n - wtram nnt 1 "7“

Lt 1, r)’nt 1,n
2
We can expand H(I — nHtmin)(wi_Ln — Wirain) — nn;_lm H as follows,

H(I - nHtrain)(w;:fl,n - wtrain) - 77771271,77“2
= ||(I - nHtrain)(wi—l,n - wlrain)H2 —2n <n271,m (I - 77Htrain)(w7/5—1,n - wtrain)> + 772 Hné—l,nHQ

We can bound the norm of the noise as follows,

Hn:‘,—l,nH = ’ xi(tfl)x;{tfl)(wi—l,n - wlrain) - Htrain(wé_lm - wtrain)

<

xi(t—l)x;{tfl)(wifl,n - wlrain) + HHLra.in(wéan - wtrain)”

< (Ld + L) ngfl’n - erainH <2Ld ij/stn — Wtrain

)

where the second inequality uses Hxi(t_l) || < v/ Ld. Therefore, we have

|277 <n;_177]7 (I - nHtrain)(wi_Ly] - wtrain)>| S 4L7]d ng_lm - wtrain||2
I

)

2],/ 2 2.2 52 ’
0 {1l < AL%07d? [Jwi s ;) — wiain
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This further implies,
|Gy — Esop|Gt|w;_q

<lo (H(I — DHin) ()1, — wean) || + (4Lnd + 4L2d?) [y, wtrain”2>
(I = nHuin) (W), — weain)||” — 4L ||Jw}_y . — wigain|

8Lnd + 4L*n*d? 9 9.
<l 1 < 16Lnd + 8L“n*d
—°g< T U 2Ly —dLga) ) = OEme TR
where the second inequality uses ||(I — anain)(wg_lm — wtrain)HZ > (1 —2Ln) wa’t—lm — wtminHQ . The last in-
equality assumes 7 < 15— and uses numerical inequality log(1 + x) < x. Assuming 17 < 1/(Ld), we further have

|Gt — ESGD[Gt|w2_1m]| < L2nd.
By Azuma’s inequality, we know with probability at least 1 — 4 /¢,

Gt < Go + L*V2tndlog(t/s).
Plugging in G; = log ||w£n — w[rainHQ —tlog(1 — &) and G = log ||wo — wnainHz = log ||wtminH2 , we have
tog ||, ~ weain|* <10 llwieanl|” + t1og(1 = ) + L2v20dlog(t/0)
< l0g [w|* = St + L?V2ind log(t/9).
This implies,

2 1
it = i < i exp (1 (= 1+ 222 logta/00v ) )

= [[wicinl* exp (O(d® log?(d/8))n)
< ||wtrainH2 €xp (2/3> ,
where the second inequality assumes 1 < W"’(d/& for some constant c5. Furthermore, since ||wiain|| < (1++v/'L)o,

we have ngnn < (14 eY3) ||\ wiain|| < 4V Lo
Overall, we know as long as n < le(d/é)’ with probability at least 1 — §/¢,

w; || < 4v/Lo. Since this
analysis also applies to any 7 < t, we know for any 7, with probability at least 1 — §/¢, ||w}, || < 4v/Lo. Taking a
union bound over 7 < ¢, we have with probability at least 1 — 4, ||w’Tn H < 4V/Lo forall 7 < t. (|
Proof of Lemma 43. Let £ be the event that Hw’TnH < 4V Lo for all 7 < t. We first show that Esgp ||w; , — w* 12 is
1 {€}. It’s not hard to verify that

close to Esgp Hwé)n —w*
2 —
Escp ||we,, — w*||* = Esep Hwin —w*||"1{E} + |lu— w* || Pr[€],

where w is a fixed vector with norm 4v/Lo. By Lemma 48, we know Pr[€] < ¢/(25Lc?) as long as 77 < m
for some constant c5. Therefore, we have

2
’ESGD ||wt,,, — w*HQ — ESGD ||w£,n — w*| 1 {5}’ S €.

Next, we show that Esgp ||wl(/,77 — w*H2 1{&} is close to Esgp ngm - w*HQ. For any 1 < 7 < t, let &, be the
event that Hw’TnH > 4v/Lo and Hw’T/nH < 4v/Lo for all 7/ < 7. Basically £, means the weight norm exceeds the
threshold at step 7 for the first time. It’s easy to see that Ul _, &, = £. Therefore, we have

t
Esop [|wf,, — w*|* = Bsao [|uwf,, —w*|* 1{€} + 3" Esop ut,, — || 1{&:}.

T=1
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Conditioning on &, we know ||w/ _ < 4v/Lo. Since we assume vd < 0 (Xiain) < V/L\/d for all i € [n] and
g 717 VL

Ewain < Vdo, we know | Wirain || < 2v/Lo. Therefore, we have Hw’PLn — wtramH < 6v/Lo. Recall the SGD updates,

’ ’ ’
Wr p — Wirain = (I - nHuain)(wffl,n - wt_rain) —NNr_1,n:

!

For the noise term, we have 7 Hn;_mH < 2nLd Hw’T_L 1.

— wtrainH that is at most Hw — wtrainH assuming

n

n < ﬁ. Therefore, we have Hw’T77 — wﬁainH <2 ||w'T_17n — wtrainH < 12v/Lo. Note that event &; is independent
1

with the SGD noises after step 7. Therefore, according to the previous analysis, we know as long as n < 5757,

Escp |:||w1/:,77 - wtrainH2 ‘5T:| < Hw;ﬂ? - wlrainH2 < 20202,
Then, we can bound Esgp [Hw;n —w* ||2 \6}} as follows,

Esan [[[wr,, — w*|* €]
=Esop {Hwi,n — Wiain + Wiain — w* |€T}
<Esco ([t — i |” 1€] + 2Esco (||}, = ]| 1€ leain = w* | + oizain — "]
<2L%0%+2-2L0 -3V Lo + 9Lo* < 3L%0*.
Therefore, we have

2
|

t t
Z]ESGD ng,n - u]*”2 1 {57—} = Z]ESGD |:Hw2777 — w*| 87_:| PI‘[ET]
=1 T=1

¢
<3L%0? Z Pr[&,] = 3L%0? Pr[€] < 3L%0%.
=1
This then implies that ‘]ESGD Hw,’fn —w* H2 — Escp ||w,’577 —w* ||2 1 {5}’ < 3L%0%.
Finally, we have

‘ESGD lws,, — w*||* - Escp Hwén - TU*HQ‘

1 {5}‘ + ’ESGD Hwém — w*H2 — Esgp ngm —w*

*14¢}]

< ‘]ESGD lwe,, — w*||> = Esop HUJQW — IU*|
< (3L202 + 1) €
as long as 7 < m. Therefore, |Q(1) — Q'(n)| < (3L%0? + 1) ¢/2. Choosing €’ = (rz7517y finishes the

proof. ]
Proof of Lemma 44. Recall that

- 1 & 1 & 1 . o 112
Frov(n) = — > Ay (n,P) = - Z]ESGD§ Hwt(n) - wsagd’ R
k=1 k=1 valid
2
Similar as in Lemma 15, we can show % Hwyﬁ?) - w‘(,fl?d (o 18 O(1)-subexponential, which implies

9 valid
(k)

valid is O(1)-subexponential. Therefore, F'ryy (1) is the average of mn i.i.d. O(1)-subexponential

(k)

valid

random variables. By standard concentration inequality, we know for any 1 > ¢ > 0, with probability at least
1 — exp(—Q(e?m)),

1 (k)
Esop3 me —w

Fryyv(n) — FTbV(n)‘ <e.
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Proof of Lemma 45. Recall that
]‘ *
Fryy (n) :EPNTIESGDi we.y — w*||* + 02/2

We only need to construct an e-net for E pNTESGD% lws,, — w* ||2 Let £ be the event that \/g/ VL < 0i(Xirain) <
VLdand 1/L < \j(Hyain) < Lforalli € [n] and Vdo /4 < ||€yain]| < V/do We have

1 :
Ep~rBsops [[wen —w I
1 1 R
=Ep~r [Q]ESGD [wey — w*||? |5} Pr&] + Epor {Z]ESGD [wey — w*||? 5} Pr(&]

According to Lemma 43, we know conditioning on &,
1 s 1
3Esan e — w1 = JEsen |l — u

2
|‘§e,

as longasn < m. Note {w/ , } is the SGD sequence without truncation.
For the second term, we have

1 _ — —
Epvr |:2ESGD e,y — w*||? |g] Pr[€] < 13Lo” Pr[€] < e,

where the last inequality assumes Pr[€] < i37-5. According to Lemma 7 and Lemma 49, we know Pr[€] <

exp(—£(d)). Therefore, given any € > 0, we have Pr[£] < —F— aslong as d > ¢4 log(1/¢) for some constant cy.

13Lo7
Then, we only need to construct an e-net for Ep.. {%ESGD Hw,Q77 —w*|]? |5} Pr[£]. By the analysis in Lemma 37,

it’s not hard to prove
0 1 |2 M \t—1
e | 5Bsan [t - w'|” ] Pre] = oetr - gy,

foralln € [0, m]. Similar as in Lemma 18, for any € > 0, we know there exists an e-net N, with size O(1/¢)

such that for any 7 € [0, m]’

1 w12 1 w2
‘EPNT |:2ESGD Hwé)n —w | 5:| Pr[é’] — EPNT l:QESGD Hw,'m, —w | g:l PI‘[(C;]’ S €
for /€ argmin,en, [n —1'|.
Combing with the bounds on ’%]ESGD ey — w[|? 1{E} — LEsap [[uw], — w*|’ 1 {5}’ and
Ep7 [%]ESGD wpy — w*|? \E} Pr[€], we have for any 7 € [0, m},
Fryy(n) — Frov(n') < de
for 7 € arg min, ey, | — 1’|. We finish the proof by replacing 4¢ by €'. O

Proof of Lemma 46. The proof is very similar as the proof of Lemma 22. The only difference is that we need to first
relate the SGD sequence with truncation to the SGD sequence without truncation and then bound the Lipschitzness on
the SGD sequence without truncation (as we did in Lemma 45). We omit the details here. O
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E Tools

E.1 Norm of random vectors

We use the following lemma to bound the noise in least squares model.

Lemma 49 (Theorem 3.1.1 in Vershynin (2018)). Let X = (X1, X2, -+, X,,) € R™ be a random vector with each
entry independently sampled from N'(0,1). Then

Pr[|||lz]| — v/n| > t] < 2exp(—t?/C?),

where C'is an absolute constant.

E.2 Singular values of Gaussian matrices
Given a random Gaussian matrix, in expectation its smallest and largest singular value can be bounded as follows.

Lemma 50 (Theorem 5.32 in Vershynin (2010)). Let A be an N x n matrix whose entries are independent standard
normal random variables. Then

\/N - \/ﬁ < Esmin(A) < Esmax(A) < \/N + \/ﬁ

Lemma 51 shows a lipchitz function over i.i.d. Gaussian variables concentrate well on its mean. We use this lemma
to argue for any fixed step size, the empirical meta objective concentrates on the population meta objective.

Lemma 51 (Proposition 5.34 in Vershynin (2010)). Let f be a real valued Lipschitz function on R™ with Lipschitz
constant K. Let X be the standard normal random vector in R™. Then for every t > 0 one has

t2

Pr[f(X) —Ef(X) >t] < eXp(*m

).

The following lemma shows a tall random Gaussian matrix is well-conditioned with high probability. The proof
follows from Lemma 50 and Lemma 51. We use Lemma 52 to show the covariance matrix is well conditioned in the
least squares model.

Lemma 52 (Corollary 5.35 in Vershynin (2010)). Let A be an N X n matrix whose entries are independent standard
normal random variables. Then for every t > 0 with probability at least 1 — 2 exp(—t/2) one has

\/N_\/ﬁ_tgsmin(A) Ssmax(A) S\/N_F\/ﬁ'i_t

E.3 Johnson-Lindenstrauss lemma

We also use Johnson-Lindenstrauss Lemma in some of the lemmas. Johnson-Lindenstrauss Lemma tells us the
projection of a fixed vector on a random subspace concentrates well as long as the subspace is reasonably large.

Lemma 53 (Johnson & Lindenstrauss (1984)). Let P be a projection in R? onto a random n-dimensional subspace
uniformly distributed in G ,,. Let z € R? be a fixed point and € > 0, then with probability at least 1 — 2 exp(—ce>n),

(=[5 10 < 1Pl < 1+ 2

F Experiment details

We describe the detailed settings of our experiments in Section F.1 and give more experimental results in Section F.2.

68



F.1 Experiment settings

Optimizing step size for quadratic objective In this experiment, we meta-train a learning rate for gradient descent
on a fixed quadratic objective. Our goal is to show that the autograd module in popular deep learning softwares,
such as Tensorflow, can have numerical issues when using the log-transformed meta objective. Therefore, we first
implement the meta-training process with Tensorflow to see the results. We then re-implement the meta-training using
the hand-derived meta-gradient (see Eqn 5) to compare the result.

A general setting for both implementations is as follows. The inner problem is fixed as a 20-dimensional quadratic
objective as described in Section 3, and we use the log-transformed meta objective for training. The positive semi-
definite matrix [ is generated by first sampling a 20 x 20 matrix X with all entries drawn from the standard normal
distribution and then setting H = X7 X. The initial point wy is drawn from standard normal as well. Note that we
use the same quadratic problem (i.e., the same H and wg) throughout the meta-training. We do 1000 meta-training
iterations, and collect results for different settings of the initial learning rate 7 and the unroll length ¢.

We first implement the meta-training code with Tensorflow. Our code is adapted from Wichrowska et al. (2017) .
We use their global learning rate optimizer and specify the problem set to have only one quadratic objective instance. We
implemented the quadratic objective class ourselves (the "MyQuadratic” class). We also turned off multiple advanced
features in the original code, such as attention and second derivatives, by assigning their flags as false. This ensures
that the experiments have exactly the same settings as we described. The meta-training learning rate is set to be 0.001,
which is of similar scale as our next experiment. We also try RMSProp as the meta optimizer, which alleviates some of
the numerical issues as it renormalizes the gradient, but our experiments show that even RMSProp is still much worse
than our implementation.

We then implement the meta-training by hand to show the accurate training results that avoid numerical issues.
Specifically, we compute the meta-gradient using Eq (5), where we also scaled the numerator and denominator as
described in Claim 5 to avoid numerical issues. We use the algorithm suggested in Theorem 4, except we choose the
meta-step size to be 1/(100v/k) as the constants in Theorem 4 were not optimized.

Train-by-train vs. train-by-validation, synthetic data In this experiment, we find the optimal learning rate n* for
least-squares problems trained in train-by-train and train-by-validation settings and then see how the learning rate works
on new tasks.

Specifically, we generate 300 different 1000-dimensional least-squares tasks with noise as defined in Section 4
for inner-training and then use the meta-objectives defined in Eq (3) and (4) to find the optimal learning rate. The
inner-training number of steps ¢ is set as 40. We try different sample sizes and different noise levels for comparison.
Subsequently, in order to test how the two n* (for train-by-train and train-by-validation respectively) work, we use them
on 10 test tasks (the same setting as the inner-training problem) and compute training and testing root mean squared
error (RMSE).

Note that since we only need the final optimal n* found under the two meta-objective settings (regardless of how we
find it), we do not need to actually do the meta-training. Instead, we do a grid search on the interval [10_6, 1], which is
divided log-linearly to 25 candidate points. For both the train-by-train and train-by-validation settings, we average the
meta-objectives over the 300 inner problems and see which 7 minimizes this averaged meta-objective. The results are
shown in Appendix F.2.

Train-by-train vs. train-by-validation, MLP optimizer on MNIST To observe the trade-off between train-by-train
and train-by-validation in a broader and more realistic case, we also do experiments to meta-train an MLP optimizer as
in Metz et al. (2019) to solve the MNIST classification problem. We use part of their code ’ to integrate with our code
in the first experiment, and we use exactly the same default setting as theirs, which is summarized below.

The MLP optimizer is a trainable optimizer that works on each parameter separately. When doing inner-training, for
each parameter, we first compute some statistics of that parameter (explained below), which are combined into a feature
vector, and then feed that feature vector to a Muti-Layer Perceptron (MLP) with ReLU activations, which outputs

STheir open source code is available at https://github.com/tensorflow/models/tree/master/research/learned_
optimizer

TTheir code is available at https://github.com/google-research/google-research/tree/master/task_specific_
learned_opt
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Table 1: Whether the implementation converges for different ¢ (fixed 1y = 0.1)

t 10 20 40 80

Ours v v v Vv
Tensorflow GD X X X X
Tensorflow RMSProp | vV v X X

two scalars, the update direction and magnitude. The update is computed as the direction times the exponential of the
magnitude. The feature vector is 31-dimensional, which includes gradient, parameter value, first-order moving averages
(5-dim), second-order moving averages (5-dim), normalized gradient (5-dim), reciprocal of square root second-order
moving averages (5-dim) and a step embedding (9-dim). All moving averages are computed using 5 different decay
rates (0.5, 0.9, 0.99, 0.999, 0.9999), and the step embedding is tanh distortion of the current number of steps divided by
9 different scales (3, 10, 30, 100, 300, 1000, 3000, 10000, 300000). After expanding the 31-dimensional feature vector
for each parameter, we also normalize the set of vectors dimension-wise across all the parameters to have mean 0 and
standard deviation 1 (except for the step embedding part). More details can be found in their original paper and original
implementation.

The inner-training problem is defined as using a two-layer fully connected network (i.e., another “MLP”’) with ReLU
activations to solve the classic MNIST 10-class classification problem. We use a very small network for computational
efficiency, and the two layers have 100 and 20 neurons. We fix the cross-entropy loss as the inner-objective and use
mini-batches of 32 samples when inner-training.

When we meta-train the MLP optimizer, we use exactly the same process as fixed in experiments by Wichrowska
et al. (2017). We use 100 different inner problems by shuffling the 10 classes and also sampling a new subset of data if
we do not use the complete MNIST data set. We run each of the problems with three inner-training trajectories starting
with different initialization. Each inner-training trajectory is divided into a certain number of unrolled segments, where
we compute the meta-objective and update the meta-optimizer after each segment. The number of unrolled segments in
each trajectory is sampled from 10 + Exp(30), and the length of each segment is sampled from 50 4+ Exp(100), where
Exp(-) denotes the exponential distribution. Note that the meta-objective computed after each segment is defined as
the average of all the inner-objectives (evaluated on the train/validation set for train-by-train/train-by-val) within that
segment for a better convergence. We also do not need to log-transform the inner-objective this time because the cross
entropy loss has a log operator itself. The meta-training, i.e. training the parameters of the MLP in the MLP optimzier,
is completed using a classic RMSProp optimizer with meta learning rate 0.01.

For each settings of sample sizes and noise levels, we train two MLP optimizer: one for train-by-train, and one for
train-by-validation. When we test the learned MLP optimizer, we use similar settings as the inner-training problem, and
we run the trajectories longer for full convergence (4000 steps for small data sets; 40000 steps for the complete data
set). We run 5 independent tests and collect training accuracy and test accuracy for evaluation. The plots show the
mean of the 5 tests. We have also tuned a SGD optimizer (with the same mini-batch size) by doing a grid-search of the
learning rate as baseline.

F.2 Additional results

Optimizing step size for quadratic objective We try experiments for the same settings of the initial 79 and inner
training length ¢ for all of three implementations (our hand-derived GD version, Tensorflow GD version and the
Tensorflow RMSProp version). We do 1000 meta-training steps for all the experiments.

For both Tensorflow versions, we always see infinite meta-objectives if 7y is large or ¢ is large, whose meta-gradient
is usually treated as zero, so the training get stuck and never converge. Even for the case that both 7y and ¢ is small, it
still has very large meta-objectives (the scale of a few hundreds), and that is why we also try RMSProp, which should
be more robust against the gradient scales. Our hand-derived version, however, does not have the numerical issues and
can always converge to the optimal n*. The detailed convergence is summarized in Tab 1 and Tab 2. Note that the
optimal n* is usually around 0.03 under our settings.
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Table 2: Whether the implementation converges for different 7y (fixed ¢t = 40)

Mo 0.001 0.01 0.1 1

Ours v v v v
Tensorflow GD X X X X
Tensorflow RMSProp v v X X

Train-by-train vs. train-by-validation, MLP optimizer on MNIST We also do additional experiments on training
an MLP optimizer on the MNIST classification problem. We first try using all samples under the 20% noised setting.
The results are shown in Fig 6. The train-by-train setting can perform well if we have a large data set, but since there is
also noise in the data, the train-by-train model still overfits and is slightly worse than the train-by-validation model.
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Figure 6: Training and testing accuracy for different models (all samples, 20% noise)

We then try an intermediate sample size 12000. The results are shown in Fig 7 (no noise) and Fig 8 (20% noise).
We can see that as the theory predicts, as the amount of data increases (from 1000 samples to 12000 samples and then
to 60000 samples) the gap between train-by-train and train-by-validation decreases. Also, when we condition on the
same number of samples, having additional label noise always makes train-by-train model much worse compared to
train-by-validation.
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Figure 7: Training and testing accuracy for different models (12000 samples, no noise)
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Figure 8: Training and testing accuracy for different models (12000 samples, 20% noise)
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