
Appendix

Overview of the Appendix
The appendix mainly consists of three parts. In Section A we provide more detailed introduction to the set up of meta-
learning as well as neural tangent kernels that are missing from the main text due to page limit. In Section B we provide all
the missing proofs of the lemmas and theorems presented in the main paper. In Section C we discuss in depth about the
experiments in the paper. For the convenience of readers, we also provide a copy of the reference at the end of this appendix.

A. More on Meta-Learning and Neural Net Setup
In this section, we will provide more information on

• Appendix A.1: Query-support split of meta-learning.
• Appendix A.2: Unified framework for gradient-based meta-learning that optimizes all layers in the inner loop.
• Appendix A.3: NTK parameterization.

A.1. Query-Support Split

Sec. 3.2 introduces meta-training in the setting without query-support split. In this section, we adopt the notation of Sec.
3.2, and describe meta-training in the setting with query-support split below.

The n labelled samples in each training task is divided into two sets, nq query samples and ns support samples, i.e., for
i ∈ [N], the i-th task consists of

nq Query Samples & Labels: Xq
i ∈ Rnq×d, Y qi ∈ Rnqk

ns Support Samples & Labels: Xs
i ∈ Rns×d, Y si ∈ Rnqk

The optimization objective of ANIL on the training data {Xq
i , Y

q
i , X

s
i , Y

s
i }Ni=1 is

min
θ
LANIL(θ) :=

∑
i∈[N]

`(φ>θ<L(Xq
i) w′i, Y

q
i) (19)

s.t. w′i = InnerLoop(w, φ>θ<L(Xs
i), Y si , τ, λ) (20)

It is clear that the InnerLoop operation is performed on support data (Xs
i , Y

s
i), while the loss evaluation is on the query

data (Xq
i , Y

q
i).

A.2. Unified Framework for Gradient-Based Meta-Learning that Optimizes All Layers in the Inner Loop

For GBML algorithms that optimize all layers in the inner loop, their objectives can be summarized into the following
unified framework. In contrast to (13), we have

min
θ

LGBML(θ)︷ ︸︸ ︷[
min
{θi}N

i=1

∑
i∈[N]

`
(
fθi(Xi), Yi

)
+R(θi)

]
. (21)

Note that similar to (13), the parameters {θi}Ni=1 in (21) are transient, in the sense that GBML algorithms do not explicitly
save them during training. In contrast, θ contains all parameters to optimize in (21), and θ is optimized over `GBML(θ), which
is obtained by plugging in the minimizer of {θi}Ni=1 on the regularized loss. In other words, (21) is a bi-level optimization
problem, with outer-loop optimization on network parameters θ and inner-loop optimization on the transient parameters
{θi}Ni=1.

Bridging Multi-Task Learning and Meta-Learning

A.3. NTK Parameterization

NTK parameterization is a neural net parameterization that can be used to provide theoretical analyses of neural net
optimization and convergence (Lee et al., 2019a; Xiao et al., 2020). The training dynamics and predictions of NTK-
parameterized neural nets are the same as those of standard neural nets (Lee et al., 2019a), up to a width-dependent factor in
the learning rate. In what follows, we take a single-head neural net as an example to describe the NTK parameterization.
Notice that multi-head networks share the same parameterization with single-head networks, and the only difference is that
N -head networks have N copies of the output heads (parameterized in the same way as the output heads of single-head
networks).

In this paper, we consider a fully-connected feed-forward network with L layers. Each hidden layer has width li, for
i = 1, ..., L − 1. The readout layer (i.e., output layer) has width lL = k. At each layer i, for arbitrary input x ∈ Rd, we
denote the pre-activation and post-activation functions by hi(x), zi(x) ∈ Rli . The relations between layers in this network
are {

hi+1 = ziW i+1 + bi+1

zi+1 = σ
(
hi+1) and

{
W i
µ,ν = ωiµν ∼ N (0, σω√

li
)

biν = βiν ∼ N (0, σb)
, (22)

where W i+1 ∈ Rli×li+1 and bi+1 ∈ Rli+1 are the weight and bias of the layer, ωlµν and blν are trainable variables drawn

i.i.d. from zero-mean Gaussian distributions at initialization (i.e., σ
2
ω

li
and σ2

b are variances for weight and bias, and σ is a
point-wise activation function.

B. Proof
We present all the missing proofs from the main paper, summarized as follows:

• Appendix B.1: Proves the global convergence of MTL and ANIL, and demonstrates that neural net output and
meta-output functions are linearized under over-parameterization.

• Appendix B.2: Studies the training dynamics of MTL and ANIL, and derives analytic expressions for their predictors.
• Appendix B.3: Derives the expression of kernels for MTL and ANIL, and proves Lemma 1.
• Appendix B.4: Characterizes the structures and spectra of ANIL and MTL kernels for deep ReLU nets.
• Appendix B.5: Proves our main theorem, i.e., Theorem 1.
• Appendix B.6: Extends Theorem 1 to residual ReLU networks.

Shorthand. As described in Sec. 3.4, for both MTL and ANIL, we randomly initialize a test head wtest for fine-tuning in the
test phase. Now, we define the following shorthand for convenience.

• θtest = {θ<L, wtest}: a parameter set including first L− 1 layers’ parameters of θ and the test head wtest.
• θ̂test = {θ̂<L, wtest}: a parameter set including first L− 1 layers’ parameters of θ and the test head wtest.

B.1. Global Convergence of ANIL and MTL with Over-parameterized Deep Neural Nets

Throughout the paper, we use the squared loss as the objective function of training neural nets: `(ŷ, y) := 1
2‖ŷ − y‖

2
2. To

ease the presentation, we define the following meta-output functions.
Definition 2 (Meta-Output Functions). On any task T = (X,Y,X ′, Y ′), for the given adaptation steps τ , we define the
meta-output function as

F τθ (X,X ′, Y ′) = fθtest (X) ∈ Rnk (23)

where the adapted parameters θtest is obtained as follows: use θ as the initial parameter and update it by τ steps of gradient
descent on support samples and labels (X ′, Y ′), with learning rate λ and loss function `. Mathematically, ∀j = 0, ..., τ − 1,
we have

θ = θ0, θ
test = θτ , and θj+1 = θj − λ∇θj

`(fθj
(X ′), Y ′) (24)

Shorthand To make the notation uncluttered, we define some shorthand for the meta-output function,

• F τθ (X ,X ,Y) , (F τθ (Xi, Xi, Yi))Ni=1: the concatenation of meta-outputs on all training tasks.
• F τt , F

τ
θt

: shorthand for the meta-output function with parameters θt at training time t.

Bridging Multi-Task Learning and Meta-Learning

ANIL Loss With the squared loss function, the training objective of ANIL is expressed as

LANIL(θ) =
N∑
i=1

`(F τθ (Xi, Xi, Yi), Yi) = 1
2

N∑
i=1
‖F τθ (Xi, Xi, Yi)− Yi‖22 = 1

2‖F
τ
θ (X ,X ,Y)− Y‖22 (25)

MTL Loss With the squared loss function, the objective of MTL is

LMTL(θ̂) =
N∑
i=1

`(f̂θ̂(Xi, i), Yi) = 1
2

N∑
i=1
‖f̂θ̂(Xi, i)− Yi‖22 = 1

2‖f̂θ̂(X)− Y‖22 (26)

where we define the notation f̂θ̂(X) to be vec({f̂θ̂(Xi, i)}Ni=1).

Tangent Kernels Now, we define tangent kernels for MTL and ANIL, following Wang et al. (2020). Denote h as the
minimum width across hidden layers, i.e., h = minl∈[L−1] hl. Then, the tangent kernels of MTL and ANIL are defined as

ΦMTL = lim
h→∞

∇θ̂0
f̂θ̂0

(X) · ∇θ̂0
f̂θ̂0

(X)> (27)

ΦANIL = lim
h→∞

∇θ0F
τ
θ0

(X ,X ,Y) · ∇θ0F
τ
θ0

(X ,X ,Y)> (28)

Notice that by Wang et al. (2020), we know both kernels are deterministic positive-definite matrices, independent of the
initializations θ0 and θ̂0.

Next, we present the following theorem that characterizes the global convergence of the above two algorithms on over-
parametrized neural networks.
Theorem 3 (Global Convergence of ANIL and MTL with Over-parameterized Deep Neural Nets). Define

η0 = min
{

2
σmin(ΦMTL) + σmax(ΦANIL) ,

2
σmin(ΦMTL) + σmax(ΦANIL)

}
.

For arbitrarily small δ > 0, there exists constants R, λ0, h
∗ > 0 such that for networks with width greater than h∗, running

gradient descent on LMTL and LANIL with learning rate η > η0 and inner-loop learning rate λ < λ0, the following bounds
on training losses hold true with probability at least 1− δ over random initialization,

LANIL(θt) ≤
(

1− 1
3η0 · σmin(ΦANIL)

)2t
R (29)

LMTL(θ̂t) ≤
(

1− 1
3η0 · σmin(ΦMTL)

)2t
R (30)

where t ∈ N is the number of training steps. Furthermore, the displacement of the parameters during the training process
can be bounded by

sup
t≥0

1√
h
‖θt − θ0‖2 = O(h− 1

2), sup
t≥0

1√
h
‖θ̂t − θ̂0‖2 = O(h− 1

2) (31)

Remarks. Notice the bounds in (31) are derived in the setting of NTK parameterization (see Appendix A.3). When
switching to the standard parameterization, as shown by Theorem G.2 of Lee et al. (2019a), (31) is transformed to

sup
t≥0
‖θt − θ0‖2 = O(h− 1

2), sup
t≥0
‖θ̂t − θ̂0‖2 = O(h− 1

2), (32)

indicating a closeness between the initial and trained parameters as the network width h is large.

Proof. For ANIL, the global convergence can be straightforwardly obtained by following the same steps of Theorem 4 of
Wang et al. (2020), which proves the global convergence for MAML in the same setting10.

10Notice the only difference between ANIL and MAML is the layers to optimize in the inner loop, where ANIL optimizes less layers
than MAML. Hence, bounds on the inner loop optimization in Theorem 4 of Wang et al. (2020) cover that of ANIL, and the proof steps of
that theorem applies to the case of ANIL.

Bridging Multi-Task Learning and Meta-Learning

For MTL, it can be viewed as a variant of MAML with multi-head neural nets and inner-loop learning rate τ = 0, since
it only has the outer-loop optimization. Then, the global convergence of MTL can also be straightforwardly obtained by
following the proof steps of Theorem 4 from Wang et al. (2020). �

Linearization at Large Width. The following corollary provides us a useful toolkit to analyze the training dynamics of
both ANIL and MTL in the over-parametrization regime, which is adopted and rephrased from Wang et al. (2020) and Lee
et al. (2019a).

Corollary 3.1 (Linearized (Meta) Output Functions). For arbitrarily small δ > 0, there exists h∗ > 0 s.t. as long as the
network width h is greater than h∗, during the training of ANIL and MTL, with probability at least 1 − δ over random
initialization, the network parameters stay in the neighbourhood of the initialization s.t. θt ∈ {θ : ‖θ − θ0‖2 ≤ O(1/h2)}
or θ̂t ∈ {θ̂ : ‖θ̂ − θ̂0‖2 ≤ O(1/h2)}, where θ0 = {θ<L

0 , w0} and θ̂0 = {θ<L

0 } ∪ {ŵ
(i)
0 }i∈[N] are the initial parameters of

networks trained by ANIL and MTL, respectively. Then, for any network trained by ANIL, its output on any x ∈ Rd is
effectively linearized, i.e.,

fθ(x) = fθ0(x) +∇θ0fθ0(x)(θ − θ0) +O(1√
h

) (33)

Similarly, for any network trained by MTL, the output of the multi-head neural net on x with head index i ∈ [N] is
characterized by

f̂θ̂(x, i) = f̂θ̂0
(x, i) +∇θ̂0

f̂θ̂0
(x, i)(θ̂ − θ̂0) +O(1√

h
) (34)

Besides, the meta-output function is also effectively linearized, i.e., for any task T = (X,Y,X ′, Y ′),

F τθ (X,X ′, Y ′) = F τθ0
(X,X ′, Y ′) +∇θ0F

τ
θ0

(X,X ′, Y ′)(θ − θ0) +O(1√
h

), (35)

where F τθ0
(X,X ′, Y ′) can be expressed as

F τθ0
(X,X ′, Y ′) = fθ0(X) + K̂w0(X,X ′)K̂−1

w0
(X ′, X ′)

(
I − e−λK̂w0 (X′,X′)τ

)
[Y ′ − fθ0(X ′)] +O(1√

h
), (36)

and the gradient ∇θ0F
τ
θ0

(X,X ′, Y ′) as11

∇θ0F
τ
θ0

(X,X ′, Y ′) = ∇θ0fθ0(X)− K̂w0(X,X ′)K̂−1
w0

(X ′, X ′)
(
I − e−λK̂w0 (X′,X′)τ

)
∇θ0fθ0(X ′) +O(1√

h
), (37)

with K̂w0 defined as

K̂w0(·, ∗) = ∇wfθ0(·) · ∇wfθ0(∗)>

Remarks. One can replace θ0 in (35) with {θ<L

0 , wtest} or {θ̂<L

0 , wtest}, and similar results apply.

Proof. Notice that the proof of Theorem 3 above is based on Theorem 4 of Wang et al. (2020), which also proves that the
trained parameters stay in the neighborhood of the initialization with radius of O(1√

h
). Hence, following the proof steps of

Theorem 4 of Wang et al. (2020), one can also straightforwardly prove the same result for ANIL and MTL.

With the global convergence and the neighborhood results above, we can directly invoke Theorem H.1 of Lee et al. (2019a),
and obtain (33), (34) and (35). Notice, the expressions in (36) and (37) are derived in Sec. 2.3.1 of Lee et al. (2019a). �

11The proof of the gradient expression can be straightforwardly obtained by Lemma 6 of (Wang et al., 2020).

Bridging Multi-Task Learning and Meta-Learning

B.2. Training Dynamics of MTL and ANIL

Definition 4 (Empirical Tangent Kernels of ANIL and MTL). We define the following empirical tangent kernels of ANIL
and MTL, in a similar way to (Wang et al., 2020; Lee et al., 2019a):

Φ̂ANIL(X ,X) = ∇θ0F
τ
θ0

(X ,X ,Y) · ∇θ0F
τ
θ0

(X ,X ,Y)> ∈ RNn×Nn (38)

Φ̂MTL(X ,X) = ∇θ0 f̂θ̂0
(X) · ∇θ0 f̂θ̂0

(X)> ∈ RNn×Nn (39)

Shorthand. To simplify expressions, we define the following shorthand. For any kernel function Φ̂, learning rate η and
optimization steps t, we have

T η,tΦ̂ (·) = Φ̂−1(·, ·)
(
I − e−ηΦ̂(·,·)t

)
(40)

Lemma 2 (ANIL and MTL in the Linearization Regime). With linearized output functions shown in Corollary 3.1, the
training dynamics of ANIL and MTL under gradient descent on squared losses can be characterized by analytically solvable
ODEs, giving rise to the solutions:

• ANIL.
� Trained parameters at time t:

θt = θ0 +∇θ0F
τ
θ0

(X ,X ,Y)>Φ̂−1
ANIL(X ,X)

(
I − e−ηΦ̂ANIL(X ,X)t

) [
Y − F τθ0

(X ,X ,Y)
]

+O(1√
h

) (41)

� Prediction on any test task T = (X,Y,X ′, Y ′) with adaptation steps τ̂ (i.e., we take the hidden layers of the trained
network θ<L and append a randomly initialized head wtest to fine-tune):

F τ̂θtest
t

(X,X ′, Y ′) (42)

= F τ̂θtest
0

(X,X ′, Y ′) +∇θ<L
0
F τ̂θtest

0
(X,X ′, Y ′)∇θ<L

0
F τθ0

(X ,X ,Y)>T η,tΦ̂ANIL
(X)

[
Y − F τθ0

(X ,X ,Y)
]

+O(1√
h

)

where θ̂test
t = {θ̂<L

t , wtest} and θ̂test
0 = {θ̂<L

0 , wtest}.
• MTL.
� Trained parameters:

θ̂t = θ̂0 +∇θ̂0
f̂θ̂0

(X)>T η,tΦ̂MTL
(X)

[
Y − f̂θ̂0

(X)
]

+O(1√
h

) (43)

� Prediction on test task T = (X,Y,X ′, Y ′) with adaptation steps τ̂ (i.e., we take the hidden layers of the trained
network θ̂<L and append a randomly initialized head wtest to fine-tune):

F τ̂
θ̂test

t

(X,X ′, Y ′)

= F τ̂
θ̂test

0
(X,X ′, Y ′) +∇θ̂<L

0
F τ̂
θ̂test

0
(X,X ′, Y ′)∇θ̂<L

0
f̂θ̂0

(X)>T η,tΦ̂MTL
(X)

[
Y − f̂θ̂0

(X)
]

+O(1√
h

) (44)

where θ̂test
t = {θ̂<L

t , wtest}, θ̂test
0 = {θ̂<L

0 , wtest}.

Proof. Similar to Sec. 2.2 of Lee et al. (2019a), with linearized functions (34) and (35), the training dynamics of MTL and
ANIL under gradient flow with squared losses are governed by the ODEs,

• Training dynamics of ANIL.

dθt
dt = −η∇θ0Fθ0(X ,X ,Y)> (Fθt

(X ,X ,Y)− Y) (45)

dFθt
(X ,X ,Y)

dt = −ηΦ̂ANIL(X ,X) (Fθt
(X ,X ,Y)− Y) (46)

Solving the set of ODEs, we obtain the solution to θt as

θt = θ0 −∇θ0Fθ0(X ,X ,Y)>Φ̂ANIL(X ,X)−1
(
I − e−ηΦ̂ANIL(X ,X)t

)
(Fθ0(X ,X ,Y)− Y) (47)

up to an error of O(1√
h

). See Theorem H.1 of Lee et al. (2019a) for the bound on the error across training.

Bridging Multi-Task Learning and Meta-Learning

• Training dynamics of MTL.

dθ̂t
dt = −η∇θ̂0

f̂θ̂0
(X)>

(
f̂θt

(X)− Y
)

(48)

df̂θt
(X)

dt = −ηΦ̂MTL(X ,X)
(
f̂θ0(X)− Y

)
(49)

Solving the set of ODEs, we obtain the solution to θ̂t as

θ̂t = θ̂0 −∇θ̂0
f̂θ̂0

(X)>Φ̂MTL(X ,X)−1
(
I − e−ηΦ̂MTL(X ,X)t

)(
f̂θt

(X)− Y
)

(50)

up to an error of O(1√
h

). See Theorem H.1 of Lee et al. (2019a) for the bound on the error across training.

Now, with the derived expressions of trained parameters, we can certainly plug them in the linearized functions (34) and
(35) to obtain the outputs of trained ANIL and MTL models. Notice that during test, the predictions of ANIL and MTL
are obtained from a fine-tuned test head that are randomly initialized (see Sec. 3.4 for details). Thus, we need to take care
of the test heads when plugging trained parameters into the linearized functions. Specifically, for an arbitrary test task
T = (X,Y,X ′, Y ′), the test predictions of ANIL and MTL are derived below.

• Test predictions of ANIL. For notational simplicity, we define

K̂t(·, ∗) = ∇wtestfθtest
t

(·)∇wtestfθtest
t

(∗)>

Then, since the fine-tuning is on the test head wtest, following the Sec. 2.3.1. of Lee et al. (2019a), we know

F τ̂θtest
t

(X,X ′, Y ′) = fθtest
t

(X) + K̂t(X,X ′)Tλ,τ̂K̂t
(X ′)

(
Y ′ − fθtest

t
(X ′)

)
+O(1√

h
) (51)

where

fθtest
t

(X) (52)

= fθtest
0

(X) +∇θtest
0
fθtest

0
(X)(θtest

t − θtest
0) +O(1√

h
)

= fθtest
0

(X) +∇θ<L
0
fθtest

0
(X)(θ<L

t − θ<L

0) +∇wtestfθtest
0

(X)(wtest − wtest) +O(1√
h

)

= fθtest
0

(X) +∇θ<L
0
fθtest

0
(X)(θ<L

t − θ<L

0) +O(1√
h

)

= fθtest
0

(X) +∇θ<L
0
fθtest

0
(X)∇θ<L

0
Fθ0(X ,X ,Y)>Φ̂ANIL(X ,X)−1

(
I − e−ηΦ̂ANIL(X ,X)t

)
(Y − Fθ0(X ,X ,Y))

+O(1√
h

)

= fθtest
0

(X) +∇θ<L
0
fθtest

0
(X)∇θ<L

0
Fθ0(X ,X ,Y)>T η,tΦ̂ANIL

(X) (Y − Fθ0(X ,X ,Y)) +O(1√
h

)

and

∇wtestfθtest
t

(X) = ∇wtestfθtest
0

(X) +O(1√
h

) (53)

Bridging Multi-Task Learning and Meta-Learning

Pluging in everything, we have

F τ̂θtest
t

(X,X ′, Y ′) (54)

= fθtest
0

(X) +∇θ<L
0
fθtest

0
(X)∇θ<L

0
Fθ0(X ,X ,Y)>T η,tΦ̂ANIL

(X) (Y − Fθ0(X ,X ,Y))

+ K̂0(X,X ′)Tλ,τ̂K̂0
(X ′)

(
Y ′ − fθtest

t
(X ′)

)
+O(1√

h
)

= fθtest
0

(X) + K̂0(X,X ′)Tλ,τ̂K̂0
(X ′)(Y ′ − fθtest

0
(X ′))

+
(
∇θ<L

0
fθtest

0
(X)− K̂0(X,X ′)Tλ,τ̂K̂0

(X ′)∇θ<L
0
fθtest

0
(X ′)

)
∇θ<L

0
Fθ0(X ,X ,Y)>T η,tΦ̂ANIL

(X) (Y − Fθ0(X ,X ,Y))

+O(1√
h

)

= F τ̂θtest
0

(X,X ′, Y ′) +∇θ<L
0
F τ̂θtest

0
(X,X ′, Y ′)∇θ<L

0
F τθ0

(X ,X ,Y)>T η,tΦ̂ANIL
(X)

[
Y − F τθ0

(X ,X ,Y)
]

+O(1√
h

)

• Test prediction of MTL. Following the derivation for the test prediction of ANIL above, one can straightforwardly
derive that

F τ̂
θ̂test

t

(X,X ′, Y ′) = F τ̂
θ̂test

0
(X,X ′, Y ′) +∇θ̂<L

0
F τ̂
θ̂test

0
(X,X ′, Y ′)∇θ̂<L

0
f̂θ̂0

(X)>T η,tΦ̂MTL
(X)

[
Y − f̂θ̂0

(X)
]

+O(1√
h

)

�

B.3. Derivation of Kernels and Outputs for ANIL and MTL.

Notation 1 (NTK and NNGP). We denote

• Θ(·, ∗): kernel function of Neural Tangent Kernel (NTK).
• K(·, ∗): kernel function of Neural Network Gaussian Process (NNGP).

Equivalence to Kernels Lee et al. (2019a) shows that as the network width h approaches infinity, for parameter initializa-
tion θ0 = {θ<L

0 , w0}, we have the following equivalence relations,

∇θ0fθ0(·)∇θ0fθ0(∗)> = Θ(·, ∗) (55)

∇wfθ0(·)∇θ0fw(∗)> = K(·, ∗) (56)

Lemma 3 (ANIL and MTL Kernels). As the width of neural nets increases to infinity, i.e., h→∞, we define the following
kernels for ANIL and MTL, and they converge to corresponding analytical expressions shown below.

• ANIL kernels.
� ΦANIL(X ,X) = ∇θ0F

τ
θ0

(X ,X ,Y) · ∇θ0F
τ
θ0

(X ,X ,Y)> is a block matrix of N × N blocks. ∀i, j ∈ [N], its
(i, j)-th block is

[ΦANIL(X ,X)]ij = e−λK(Xi,Xi)τΘ(Xi, Xj)e−λK(Xj ,Xj)τ ,

� Φ′ANIL((X,X ′, τ̂),X) = ∇θ<L
0
F τ̂
θtest

0
(X,X ′, Y ′)∇θ<L

0
F τθ0

(X ,X ,Y)> is a block matrix of 1×N blocks, with the
(1, j)-th block as

[Φ′ANIL((X,X ′, τ̂),X)]1j =
[
Θ(X,Xj)−K(X,X ′)T τ̂K(X ′)Θ(X ′, Xj)

]
e−λK(Xj ,Xj)τ

• MTL Kernels.
� ΦMTL(X ,X) = ∇θ̂0

f̂θ̂0
(X) · ∇θ̂0

f̂θ̂0
(X)> is also a block matrix of N ×N blocks. ∀i, j ∈ [N], its (i, j)-th block

is

[ΦMTL(X ,X)]ij = Θ(Xi, Xj)− 1[i 6= j]K(Xi, Xj),

Bridging Multi-Task Learning and Meta-Learning

� Φ′MTL((X,X ′, τ̂),X) = ∇θ̂<L
0
F τ̂
θ̂test

0
(X,X ′, Y ′)∇θ̂<L

0
f̂θ̂0

(X)> is a block matrix of 1×N blocks, with the (1, j)-th
block as

[Φ′MTL((X,X ′, τ̂),X)]1j = Θ(X,Xj)−K(X,Xj)−K(X,X ′)T τ̂K(X ′)
[
Θ(X ′, Xj)−K(X ′, Xj)

]
(57)

= Θ(X,Xj)−K(X,X ′)T τ̂K(X ′)Θ(X ′, Xj)−K(X,X ′)e−λK(X′,X′)τ̂K(X ′, Xj)

Proof. The proof is presented in the same structure as the lemma statement above.

• ANIL Kernels
� ΦANIL(X ,X). With (37), we know

∇θ0F
τ
θ0

(X ,X ,Y) =
(
∇θ0F

τ
θ0

(Xi, Xi, Yi)
)N
i=1

=
(
∇θ0fθ0(Xi)−K(Xi, Xi)K−1(Xi, Xi)

(
I − e−λK(Xi,Xi)τ

)
∇θ0fθ0(Xi)

)N
i=1

=
(
e−λK(Xi,Xi)τ∇θ0fθ0(Xi)

)N
i=1

(58)

Thus, the (i, j)-th block of ΦANIL(X ,X) = ∇θ0F
τ
θ0

(X ,X ,Y) · ∇θ0F
τ
θ0

(X ,X ,Y)> is

[ΦANIL(X ,X)]ij = ∇θ0F
τ
θ0

(Xi, Xi, Yi)∇θ0F
τ
θ0

(Xj , Xj , Yj)>

= e−λK(Xi,Xi)τ∇θ0fθ0(Xi)fθ0(Xj)>e−λK(Xj ,Xj)τ

= e−λK(Xi,Xi)τΘ(Xi, Xj)e−λK(Xj ,Xj)τ (59)

Then, the whole matrix can be expressed as

ΦANIL(X ,X) = diag
(
{e−λK(Xi,Xi)τ}Ni=1

)
·Θ(X ,X) · diag

(
{e−λK(Xj ,Xj)τ}Nj=1

)
(60)

where diag
(
{e−λK(Xi,Xi)τ}Ni=1

)
is a diagonal block matrix with the i-th block as e−λK(Xi,Xi)τ .

� Φ′ANIL((X,X ′, τ̂),X). With (37), we can derive that

[Φ′ANIL((X,X ′, τ̂),X)]1j
= ∇θ<L

0
F τ̂θtest

0
(X,X ′, Y ′)∇θ<L

0
F τθ0

(Xj , Xj , Yj)>

=
(
∇θ<L

0
fθtest

0
(X)−K(X,X ′)K−1(X ′, X ′)

(
I − e−λK(X′,X′)τ̂

)
∇θ<L

0
fθ<L

0
(X ′)

)
·
(
∇θ<L

0
fθ0(Xj)−K(Xj , Xj)K−1(Xj , Xj)

(
I − e−λK(Xj ,Xj)τ

)
∇θ<L

0
fθ0(Xj)

)>
=
(
∇θ<L

0
fθtest

0
(X)−K(X,X ′)K−1(X ′, X ′)

(
I − e−λK(X′,X′)τ̂

)
∇θ<L

0
fθ0(X ′)

)
· ∇θ<L

0
fθ0(Xj)>e−λK(Xj ,Xj)τ

=
[
(Θ(X,Xj)−K(X,Xj))−K(X,X ′)K−1(X ′, X ′)

(
I − e−λK(X′,X′)τ̂

)
(Θ(X ′, Xj)−K(X ′, Xj))

]
e−λK(Xj ,Xj)τ

=
[
(Θ(X,Xj)−K(X,Xj))−K(X,X ′)Tλ,τ̂K (X ′) (Θ(X ′, Xj)−K(X ′, Xj))

]
e−λK(Xj ,Xj)τ (61)

where we used the equivalence

∇θ<L
0
fθtest

0
(·) · ∇θ<L

0
fθ0(∗)> = Θ(·, ∗)−K(·, ∗) (62)

in the infinite width limit at initialization.
• MTL
� ΦMTL(X ,X) = ∇θ̂0

f̂θ̂0
(X) · ∇θ̂0

f̂θ̂0
(X)>. Notice that for any input with head index i, we have

∇θ̂0
f̂θ̂0

(·, i) = ∇θ̂<L
0
f̂θ̂0

(·, i) +
N+1∑
j=1
∇ŵ(j) f̂θ̂0

(·, i)

= ∇θ̂<L
0
f̂θ̂0

(·, i) +∇ŵ(i) f̂θ̂0
(·, i) (63)

Bridging Multi-Task Learning and Meta-Learning

since for j 6= i, we have ∇ŵ(j) f̂θ̂0
(x, i) = 0 based on the multi-head structure.

Thus, we can write down the (i, j)-th block of ΦMTL(X ,X) as

[ΦMTL(X ,X)]ij = ∇θ̂0
f̂θ̂0

(Xi, i)∇θ̂0
f̂θ̂0

(Xj , j)>

= ∇θ̂<L
0
f̂θ̂0

(Xi, i)∇θ̂<L
0
f̂θ̂0

(Xj , j)> +∇ŵ(i) f̂θ̂0
(Xi, i)∇ŵ(j) f̂θ̂0

(Xj , j)>

Note that for i 6= j, we have∇ŵ(i) f̂θ̂0
(Xi, i)∇ŵ(j) f̂θ̂0

(Xj , j)> = 0, since ŵ(i) and ŵ(j) are in different dimensions
of θ̂. Thus,
* as i 6= j, we have12

[ΦMTL(X ,X)]ij = ∇θ̂<L
0
f̂θ̂0

(Xi, i)∇θ̂<L
0
f̂θ̂0

(Xj , j)> = Θ(Xi, Xj)−K(Xi, Xj)

* as i = j, we have

[ΦMTL(X ,X)]ii = ∇θ̂<L
0
f̂θ̂0

(Xi, i)∇θ̂<L
0
f̂θ̂0

(Xi, i)> +∇ŵ(i) f̂θ̂0
(Xi, i)∇ŵ(i) f̂θ̂0

(Xi, i)> = Θ(Xi, Xi)

In conclusion, for i, j ∈ [N], we have

[ΦMTL(X ,X)]ij = Θ(Xi, Xj)− 1[i 6= j]K(Xi, Xj)

Thus,

ΦMTL(X ,X) = Θ(X ,X)−K(X ,X) + diag
(
{K(Xi, Xi)}Ni=1

)
(64)

• Φ′MTL((X,X ′, τ̂),X) = ∇θ̂<L
0
F̂ τ̂
θ̂0

(X,X ′, Y ′)∇θ̂<L
0
f̂θ̂0

(X)>.
Based on (63), following (61), we can express the (1, j)-th block of Φ′MTL((X,X ′, τ̂),X) as

[Φ′MTL((X,X ′, τ̂),X)]1j
= ∇θ̂<L

0
F τ̂
θ̂test

0
(X,X ′, Y ′)∇θ̂<L

0
f̂θ̂0

(X)>

=
(
∇θ̂<L

0
fθ̂test (X)−K(X,X ′)K−1(X ′, X ′)

(
I − e−λK(X′,X′)τ̂

)
∇θ̂<L

0
fθ̂test (X ′)

)
· ∇θ̂<L

0
f̂θ̂0

(Xj , j)>

= ∇θ̂<L
0
fθ̂test (X)∇θ̂<L

0
f̂θ̂0

(Xj , j)> −K(X,X ′)K−1(X ′, X ′)
(
I − e−λK(X′,X′)τ̂

)
∇θ̂<L

0
fθ̂test (X ′)∇θ̂<L

0
f̂θ̂0

(Xj , j)>

=
[
Θ(X,Xj)−K(X,Xj)

]
−K(X,X ′)K−1(X ′, X ′)

(
I − e−λK(X′,X′)τ̂

) [
Θ(X ′, Xj)−K(X ′, Xj)

]
= Θ(X,Xj)−K(X,X ′)T τ̂K(X ′)Θ(X ′, Xj)−K(X,X ′)K−1(X ′, X ′)e−λK(X′,X′)τ̂K(X ′, Xj) (65)

�

Remarks. Notice that (61) and (65) indicate the following relation:

[Φ′ANIL((X,X ′, τ̂),X)]1j = [Φ′MTL((X,X ′, τ̂),X)]1j e
−λK(Xj ,Xj)τ

Furthermore, it is straightforward to show that

Φ′ANIL((X,X ′, τ̂),X) = Φ′MTL((X,X ′, τ̂),X) · diag
(
{e−λK(Xj ,Xj)τ}Nj=1

)
(66)

where diag
(
{e−λK(Xj ,Xj)τ}Nj=1

)
is a diagonal block matrix with the j-th block as e−λK(Xj ,Xj)τ .

12The following equivalence can be straightforwardly dervied based on Appendix D and E of (Lee et al., 2019a).

Bridging Multi-Task Learning and Meta-Learning

B.3.1. PROOF OF LEMMA 1

Now, we can prove Lemma 1 shown in Sec. 4.3, by leveraging Lemma 2 and Lemma 3 that we just proved. In particular,
without loss of generality, following Arora et al. (2019), we assume the outputs of randomly initialized networks have a
much smaller magnitude compared with the magnitude of training labels such that ‖fθ0(x)‖2 ≤ ‖y‖2 ≤ O(h− 1

2). Notice
this can be always achieved by choosing smaller initialization scale or scaling down the neural net output (Arora et al.,
2019), without any effect on the training dynamics and the predictions, up to a width-dependent factor on the learning rate.
Below, we present the steps of the proof in detail.

Proof of Lemma 1. Plugging the kernels expressions derived by Lemma 3 into (42) and (44), and combining with the fact
that limh→∞ K̂w0 → K (proved by Corollary 1 of Lee et al. (2019a)), we obtain the expressions of (16) and (15) in Lemma 1
in the infinite width limit. Notice that we consider sufficiently large width h, then the discrepancy between the infinite-width
kernels and their finite-width counter-parts (i.e., the finite-width correction) is bounded by O(1√

h
) with arbitrarily large

probability, indicated by Theorem 1 of Hanin & Nica (2020). Thus, the finite-width correction terms are absorbed into the
O(1√

h
) error terms in (42) and (44).

�

B.3.2. DISCREPANCY BETWEEN PREDICTIONS OF ANIL AND MTL

Based on (60), (64), and (66), for small λτ , the discrepancy between ANIL and MTL predictions can be written as (Note:
we consider neural nets trained under ANIL and MTL for infinite time t =∞, then take their parameters θ∞ and θ̂∞ for
test on any task T = (X,Y,X ′, Y ′)),

FANIL(X,X ′, Y ′)− FMTL(X,X ′, Y ′)
= Fθtest

∞
(X,X ′, Y ′)− Fθ̂test

∞
(X,X ′, Y ′)

=
[
Φ′ANIL((X,X ′, τ̂),X)Φ−1

ANIL(X ,X)− Φ′MTL((X,X ′, τ̂),X)Φ−1
MTL(X ,X)

]
Y

− Φ′ANIL((X,X ′, τ̂),X)Φ−1
ANIL(X ,X)

=O(λτσmax(K))︷ ︸︸ ︷
Gτ (X ,X ′,Y ′) +O(1√

h
)

=
[
Φ′MTL((X,X ′, τ̂),X) · diag

(
{e−λK(Xj ,Xj)τ}Nj=1

)
diag

(
{e−λK(Xi,Xi)τ}Ni=1

)−1
Θ(X ,X)−1diag

(
{e−λK(Xi,Xi)τ}Ni=1

)−1

− Φ′MTL((X,X ′, τ̂),X)Φ−1
MTL(X ,X)

]
Y +O(λτ) +O(1√

h
)

= Φ′MTL((X,X ′, τ̂),X)
[
Θ(X ,X)−1diag

(
{e−λK(Xi,Xi)τ}Ni=1

)−1
− Φ−1

MTL(X ,X)
]
Y +O(λτ) +O(1√

h
)

= Φ′MTL((X,X ′, τ̂),X)
[
Θ(X ,X)−1 diag

(
{e−λK(Xi,Xi)τ}Ni=1

)−1

︸ ︷︷ ︸
=I+O(λτσmax(K))

−Φ−1
MTL(X ,X)

]
Y +O(λτσmax(K)) +O(1√

h
)

= Φ′MTL((X,X ′, τ̂),X)
[
Θ(X ,X)−1 − Φ−1

MTL(X ,X)
]
Y +O(λτσmax(K)) +O(1√

h
) (67)

where σmax(K) , max
(
{σmax(K(Xi, Xi))}Ni=1

)
.

Remarks. (67) indicates that for small λτ , the discrepancy between ANIL’s and MTL’s test predictions is determined by

Θ(X ,X)−1 − Φ−1
MTL(X ,X). (68)

Thus, if this difference vanishes in some limit, ANIL and MTL will output almost the same predictions on any test task.

B.4. Kernel Structures for Deep ReLU Nets

Setup. As described by Sec. 4.3, we focus on networks that adopt ReLU activation and He’s initialization, and we consider
the inputs are normalized to have unit variance, without loss of generality. Besides, we also assume any pair of samples in
the training set are distinct.

Bridging Multi-Task Learning and Meta-Learning

NTK and NNGP Kernel Structures. Xiao et al. (2020) shows that for ReLU networks with He’s initialization and
unit-variance inputs, the corresponding NTK and NNGP kernels have some special structures. Specifically, at large depth,
the spectra of these kernels can be characterized explicitly, as shown by Lemma 4 below, which is adopted and rephrased
from the Appendix C.1 of Xiao et al. (2020).

Lemma 4 (Kernel Structures of NTK and NNGP). For sufficiently large depth L, NTK and NNGP kernels have the following
expressions13 (Note: we use the superscript (L) to mark the kernels’ dependence on the depth L)

Θ(L)(X ,X) = L

(
1
41Nn1>Nn + 3

4I
)

+ A(L)
X ,X (69)

K(L)(X ,X) = 1Nn1>Nn + 1
L2 B(L)

X ,X (70)

where A(L)
X ,X ,B

(L)
X ,X ∈ RNn×Nn is a symmetric matrix with elements of O(1).

The eigenvalues of Θ(L)(X ,X) and K(L)(X ,X) are all positive since Θ and K are guaranteed to be positive definite, and
these eigenvalues can be characterized as{

σmax(Θ(X ,X)) = Nn+3
4 L+O(1)

σbulk(Θ(X ,X)) = 3
4L+O(1)

{
σmax(K(X ,X)) = Nn+O(1

L

2)
σbulk(K(X ,X)) = O(1

L2)
(71)

where σbulk(·) denotes the eigenvalues besides the largest eigenvalue.

Discrepancy between Kernel Inverses. As shown by Appendix B.3.2, the discrepancy between the predictions of ANIL
and MTL is controlled by (68), i.e., Θ−1(X ,X)− Φ−1

MTL(X ,X). In the lemma below, we study (68) in the setting of ReLU
nets with He’s initialization, and prove a bound over the operator norm of (68).

Lemma 5 (Discrepancy between Kernel Inverses). There exists L∗ ∈ N+ s.t. for L ≥ L∗,
σmax

(
Θ(L)(X ,X)

)
' O(NnL)� σ2

(
Θ(L)(X ,X)

)
1
Nn1>NnΘ(L)(X ,X)1Nn ' O(NnL)� σ2

(
Θ(L)(X ,X)

)
σmax

(
Θ(L)(X ,X)

)
≥ O(L) · σmax

(
K(L)(X ,X)

) (72)

where σ2(·) denotes the second largest eigenvalue. Then, we have

‖Θ(X ,X)−1 − Φ−1
MTL(X ,X)‖op ≤ O(1

L2) (73)

Proof. From (64), we know (Note: we omit the superscript (L) for simplicity in this proof)

ΦMTL(X ,X) = Θ(X ,X)−K(X ,X) + diag
(
{K(Xi, Xi)}Ni=1

)
= Θ(X ,X)− K̃(X ,X)

where we denote K̃(X ,X) = K(X ,X) + diag
(
{K(Xi, Xi)}Ni=1

)
for simplicity.

Case I: n = 1.

In this case, obviously, for each i ∈ [N], we have K(Xi, Xi) = 1 +O(1
L

2) ∈ R. We can define a perturbed NNGP matrix
as

K̃(X ,X) = K(X ,X)− diag
(
{K(Xi, Xi)}Ni=1

)
(74)

= 1N1>N − I + 1
L2 B̃(L)

X ,X (75)

where we define B̃(L)
X ,X = B(L)

X ,X −
(
diag

(
{K(Xi, Xi)}Ni=1

)
− I
)
, i.e., B(L)

X ,X with the O(1
L

2) terms from
diag

(
{K(Xi, Xi)}Ni=1

)
.

13Notice that we use the little-o notation here: f(x) = o(g(x)) indicates that g(x) grows much faster than f(x). Thus the o(·) terms
are negligible here.

Bridging Multi-Task Learning and Meta-Learning

For convenience, let us define a perturbed NTK matrix as

Θ̃(X ,X) = Θ(X ,X)−
(
K̃(X ,X)− 1N1>N

)
= Θ(X ,X) + I − 1

L2 B̃(L)
X ,X . (76)

Obviously, we have

‖Θ(X ,X)−1 − Φ−1
MTL(X ,X)‖op = ‖Θ(X ,X)−1 − Θ̃−1(X ,X) + Θ̃−1(X ,X)− Φ−1

MTL(X ,X)‖op

≤ ‖Θ(X ,X)−1 − Θ̃−1(X ,X)‖op + ‖Θ̃−1(X ,X)− Φ−1
MTL(X ,X)‖op (77)

Thus, we can prove (73) by providing bounds for ‖Θ(X ,X)−1 − Θ̃−1(X ,X)‖op and ‖Θ̃−1(X ,X) − Θ−1(X ,X)‖op
separately.

• Bound ‖Φ−1
MTL − Θ̃−1(X ,X)‖op.

By the Woodbury identity, we have

Φ−1
MTL(X ,X) =

(
Θ(X ,X)− K̃(X ,X)

)−1

=
([Θ̃(X ,X),︷ ︸︸ ︷

Θ(X ,X) + I − 1
L2 B̃(L)

X ,X − o(
1
L2)

]
− 1N1>N

)−1

=
(

Θ̃(X ,X)− 1N1>N
)−1

= Θ̃(X ,X)−1 − ρ · Θ̃(X ,X)−11N1>N Θ̃(X ,X)−1

where
ρ = 1

1− 1>N Θ̃(X ,X)−11N
By (72) and some eigendecomposition analysis, we can easily derive that

ρ = 1
1− 1>N Θ̃(X ,X)−11N

' 1
1−O(1

L)

Θ̃(X ,X)−11N1>N Θ̃(X ,X)−1 ' O
(

1
N2L2

)
1N1>N

Thus

Φ−1
MTL(X ,X) = Θ̃(X ,X)−1 −O

(
1

N2L2(1−O(1
L))

)
1N1>N (78)

where the last term is negligible since its maximum eigenvalue is O(1
NL2(1−O(1

L))), while the minimum eigenvalue for

the first term is O(1
NL).

Thus, we can write

‖Φ−1
MTL(X ,X)− Θ̃(X ,X)−1‖op = ‖O

(
1

N2L2(1−O(1
L))

)
1N1>N‖op ≤ O(1

NL2) (79)

• Bound ‖Θ̃−1(X ,X)−Θ−1(X ,X)‖op
By (69), (76), we know

Θ̃(X ,X) =
(Θ(X ,X)︷ ︸︸ ︷
L

4 1N1>Nn + 3L
4 I + A(L)

X ,X

)
−
(K̃(X ,X)−1N 1>N︷ ︸︸ ︷

1N1>N − I + 1
L2 B̃(L)

X ,X

)
=
(
L

4 − 1
)

1N1>N +
(

3L
4 + 1

)
I +

(
A(L)
X ,X −

1
L2 B̃(L)

X ,X

)

Bridging Multi-Task Learning and Meta-Learning

By observation, it is obvious that for relatively large L, the perturbation 1N1>N − I + 1
L2 B̃(L)

X ,X has minimal effect,

e.g., the spectrum of Θ̃(X ,X) is almost identical to Θ(X ,X).
Now, let us bound the inverse of the perturbed matrix Θ̃(X ,X) formally.
Leveraging the identity (A+B)−1 = A−1A−1B(A+B)−1 from (Henderson & Searle, 1981). Defining

∆̂ = Θ̃(X ,X)−Θ(X ,X) = 1N1>N − I + 1
L2 B̃(L)

X ,X

then we have∥∥∥Θ̃(X ,X)−1 −Θ(X ,X)−1
∥∥∥
op

=
∥∥∥∥(Θ(X ,X) + ∆̂

)−1
∥∥∥∥
op

=
∥∥∥Θ(X ,X)−1 + Θ(X ,X)−1∆̂ (Θ(X ,X) + ∆)−1 −Θ(X ,X)−1

∥∥∥
op

=
∥∥∥Θ(X ,X)−1∆̂Θ̃(X ,X)−1

∥∥∥
op

=
∥∥∥∥Θ(X ,X)−1

(
1N1>N − I + 1

L2 B̃(L)
X ,X

)
Θ̃(X ,X)−1

∥∥∥∥
op

≤
∥∥∥Θ̃(X ,X)−11N1>N Θ̃(X ,X)−1

∥∥∥
op

+
∥∥∥Θ(X ,X)−1IΘ̃(X ,X)−1

∥∥∥
op

+ 1
L

2 ∥∥∥Θ̃(X ,X)−1B̃(L)
X ,X Θ̃(X ,X)−1

∥∥∥
op
(80)

≤ O
(

1
NL2

)
+O

(
1
L2

)
+O

(
1
L4

)
≤ O

(
1
L2

)
(81)

Finally, combining (77), (79) and (81), we have

‖Θ(X ,X)−1 − Φ−1
MTL(X ,X)‖op ≤ ‖Θ(X ,X)−1 − Θ̃−1(X ,X)‖op + ‖Θ̃−1(X ,X)− Φ−1

MTL(X ,X)‖op

≤ O(1
NL2) +O(1

L2) = O(1
L2) (82)

Case II: n > 1.

Compared to the case of n = 1, the only difference with (82) is caused by the term
∥∥∥Θ(X ,X)−1IΘ̃(X ,X)−1

∥∥∥
op

in (80) is

converted to ∥∥∥Θ(X ,X)−1diag
(
{1n1>n }Ni=1

)
Θ̃(X ,X)−1

∥∥∥
op

Since
‖diag

(
{1n1>n }Ni=1

)
‖op = ‖1n1>n ‖op = n = O(1) ,

we have ∥∥∥Θ(X ,X)−1diag
(
{1n1>n }Ni=1

)
Θ̃(X ,X)−1

∥∥∥
op
≤
∥∥∥Θ̃(X ,X)−1

∥∥∥2

op

∥∥diag
(
{1n1>n }Ni=1

)∥∥
op

≤ O(1
L2)

�

B.5. Proof of Theorem 1

The proof of Theorem 1 can be straightforwardly derived based on Lemma 5.

Bridging Multi-Task Learning and Meta-Learning

Proof. By (67), (73), we have

‖FANIL(X,X ′, Y ′)− FMTL(X,X ′, Y ′)‖2

≤ ‖Φ′MTL((X,X ′, τ̂),X)‖op‖Θ(X ,X)−1 − Φ−1
MTL(X ,X)‖op‖Y‖2 +O(λτσmax(K)) +O(1√

h
)

≤ O(1
L

) +O(λτ) +O(1√
h

)

where we used the facts that ‖Φ′MTL((X,X ′, τ̂),X)‖op = O(L), which can be straightforwardly derived from Lemma 3 and
4. �

B.6. Extension to Residual ReLU Networks

Corollary 1.1 states that the theoretical results of Theorem 1 apply to residual ReLU networks and residual ReLU networks
with LayerNorm. The proof of this corollary is simply derived from Appendix C.2 and C.4 of Xiao et al. (2020).

Proof. For residual ReLU networks, the corresponding NTK and NNGP have a factor of eL compared (69) and (70),
which has no effect on the predictors FANIL and FMTL, since the factors from the kernel and kernel inverse cancel out (e.g.,
eLΦ′MTL((X,X ′, τ̂),X) · (eLΦMTL(X ,X))−1 = Φ′MTL((X,X ′, τ̂),X)ΦMTL(X ,X)−1). Thus, Theorem 1 applies to this
class of networks.

For residual ReLU networks with LayerNorm, Appendix C.3 of Xiao et al. (2020) shows the kernel structures of NTK
and NNGP is the same as ReLU networks without residual connections. Thus, Theorem 1 directly applies to this class of
networks. �

C. Details of Experiments
In this section, we will provide more details about the experiment in Sec. 5. Specifically,

• Appendix C.1: presents more experimental details about Sec. 5.1, the empirical validation of Theorem 1.
• Appendix C.2: presents more experimental details about Sec. 5.2, the empirical study on few-shot image classification

benchmarks.

C.1. Empirical Validation of Theorem 1

Implementation. We implement MTL and ANIL kernels with Neural Tangents (Novak et al., 2020), a codebase built on
JAX (Bradbury et al., 2018), which is a package designed for high-performance machine learning research in Python. Since
MTL and ANIL kernel functions are composite kernel functions built upon NTK and NNGP functions, we directly construct
NTKs and NNGPs using Neural Tangents and then compose them into MTL and ANIL kernels.

About Figure 1. Note that the value at L = 10 in the first image is a little smaller than the value at λτ = 0 in the second
image. That is because the random seeds using in the two images are different. Even though we take an average over 5
random seeds when plotting each image, there still exists some non-negligible variance.

C.2. Experiments on Few-Shot Image Classification Benchmarks

Fine-Tuning in Validation and Test. In the meta-validation and meta-testing stages, following Sec. 3.4, we fine-tune a
linear classifier on the features (i.e., outputs of the last hidden layer) with the cross-entropy loss and a `2 regularization.
Specifically, similar to Tian et al. (2020), we use the logistic regression classifier from sklearn for the fine-tuning (Pedregosa
et al., 2011), and we set the `2 regularization strength to be 0.33 based on the following ablation study on `2 penalty (i.e.,
Table 5.

`2 Penalty 0.0001 0.001 0.01 0.1 0.33 1 3

Test Accuracy(%) 76.86 77.02 77.28 77.61 77.72 77.55 76.82

Table 5. Ablation study of the `2 penalty on the fine-tuned linear layer. Evaluated on mini-ImageNet (5-way 5-shot classification).

