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A. Proof of Theorem 1

To prove Theorem 1, we rst introduce the following
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Lemma 1 says the sum of elementAf .k +1: 4 iS equal to

the sum of elements iy s1. g 1.x. Let ;i = i, andrj = Gaj , then we can rewritg

as:
With Lemma 1, now we can prove Theorem 1 as following.
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Proof. LetE denote the matrix of the rstl eigenvectors of e (18)
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then apply Fubini’s Theorem (Fubini, 1907)do
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l.e., the following inequality holds:
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Sincee] Le; = |, the inequality is tight when
(Uy;  sug)=(e1; ;eq): (25)

P
Therefore, we conclude that id:l G i is the global mini-
mum, ande1;  ;e€q) iS one minimizer.

Next, we prove unigueness. Assume that there is another

minimizer for this problem, denoted &s;; ;tq). We
have
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Here we requiret; 6 e because the sign &f is arbitrary
and hence we do not distinguish them. Agdii;  ;trg)
can be written age;;  ;eq)Q, whereQ = (¢; ) 2 RY ¢
is an orthogonal matrix. Therefore, proposition in E(26)

is equivalent to
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DenoteA = (&) = Q Q= (¢ ). By the optimality of
(trg; ; thg), we have
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The equality holds if and only i = 0;8(i;j) 2
f(i;j)jj > i g. Additionally, according to Lemma 1, we

have
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Accordingly, all off-diagonal elements &f are O,i.e., & =
0;8i 6 j. Moreover, sinc&) is orthogonal, the following

equality holds
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, 8 12f1, ;doe 2f1, 1g

which contradicts with proposition in Eqi27). Based
on the above, we conclude th@,; ;eq) is the unique
global miminizer. O
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B. Extension to Continuous setting

In Sec. 2 and Sec. 3, we discuss the Laplacian representati(ﬁ
and our proposed objective in discrete case. In this section
we extend previous discussions to continuous settings. Con-

sider a graph with in nitely many node& ., states), where

Lemma 2. Letfq; :fq bed orthonormal functions in
span(f er; ;€40), and g; be the inner product of;

de,ie, g = Mi;gin;8j 2 f1, ;dg. Then
we have ()8 2 f1, :dg; [, ¢ = 1, and (i)

8 2f1, ;dg; idzl 9 =

weighted edges represent pairwise non-negative af nities

(denoted byD (u;v)  0for nodesu andv).

Following (Wu et al., 2019), we give the following def- consider projection off; ontoey;

initions. A Hilbert spaceH is de ned to be the set of
square-integrable regd-valued functions on graph nades,
H=1ff:S! Rj (if (wj%d (u) < 1g , associated
with the inner-product

Z

Hgiy = Sf(U)g(U)d (u); (33)

where is a probability measure.e. RS d (u=1.The
norm of a functiorf is de ned adf; f iy . Functiond; g
are orthogonal itf;giy = O; functionsf,; ;f4 are
orthonormal iftf;fjiy = ;8i;j 21, ;dg. The
graph Laplacian is de ned as a linear operatoron H,
given by
Z
f (v)D(u;v)d (v):
S

L f(u)= f(u) (34)

Our goal is to learrf,;  ;fq4 for approximating thed
eigenfunctionse; ; : 4 associated with the smallegt
eigenvalues ;; ; g4 of L . The graph drawing objective
used in (Wu et al., 2019) is

min

[ min. R L fiip

i=1
Hi;fjiH =

(39)

s.t i ;8 =1; ;d:

Extending this objective to the generalized form gives us

. xd
min
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[ min. Ghi L fiiy
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s.t ;d:

Similarly, for continuous setting, Theorem 1 can be exThen, fork 2 f 1;

tended to the following theorem:

Theorem 2. AssumeBi;f; 2 span(fey;
1 < < 4). Theng >

;eqg), and
> Ccg4 is a suf cient condi-

Proof. First, sinceey; : g form an orthonormal basis,

;eq. We have
xd . xd
fi= Higing = Ggig (37)
i=1 j=1
Sincef; has a norm of 1, we have
. Xj Xj .
Hi;filn =h  gig; Gigin
j=1 j=1
38
x (38)
= Oﬁ =1

The above equation proves (i). Then, consider projection

of g ontofy; ;fa (note thatf q; :fq also form an
orthogonal basis for the subspace spanneé,by ;ey).
We have,

W .
g = he ;fiigf; = Qif| (39)
i=1 i=1
Sinceg; also has a norm of 1, we have
. W Xj .
he;gin =h qifi; Gifiin
i=1 i=1
40
x (40)
= qi =1
i=1
This equation shows that (ii) holds. O

Lemma 3. Letfq; :fq bed orthonormal functions in
spanfe;; ;eq0), gi be the inner product df; ande;,
ie, g = M giy;8ij 211, ;dg, andg;i = oﬁ.
;d  1g, we have

tion for the generalized graph drawing objective to have a

unique global minimizeff ; ; P fg) = (e
the corresponding minimum is ?:1 G .

;€q), and

To prove the Theorem 2, we need the following Lemma 2

and Lemma 3.
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Therefore, we have

XX X xd X X
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With Lemma 3, we can prove Theorem 2.

Proof. Sincef; 2 span(fey;
erality, we may rewritd; as

; €40), without loss of gen-

(44)

whereg; = Hfi; g iy . Then, the objective of proble(36)
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P
Let g denote the gap between the objective an,?il G i-

Then we have

xd xd
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We can see that Eqf46) has the same form as EqA.7).
Thus we can follow the same steps as in the proof of Theo-
rem 1 (.e., from Eqn.(18)to Eqn.(32), replacing Lemma 1
with Lemma 3) to nish proving Theorem 2. O

C. Obtaining Training objective

In (Wu et al., 2019), the authors express the graph drawing
objective as an expectation

)4( 2
EssoT (fi(s) fi (30)) (47)
1

and transform the orthonormal constraints into the following
penalty term

i) (Fi(Of(s) )

[48)
Herek denotes the dimension of the representation arﬁp

is short for ikzl }‘:1 . From Eqn.(5), we can see that

our objective can be viewed as the sundafraph drawing
objectives. Thus we can obtain Eqi6) by summingd

objectives in Eqn(47)with k varying from1to d. Similarly,
we can obtain Eqn(7) by summingd penalty terms in
Eqn. (48).
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D. Environment Descnphons Table 2.Network architecture of the fully connected network.

Two discrete gridworld environments used in our experi-

ments: GridRoom and GridMaze , are built with Min- Layer Number of units  Activation
iGrid (Chevalier-Boisvert et al., 2018). Th&ridRoom Linear 256 RelLU
environment is a 2020 grid with 271 states, and the Linear 256 RelLU
GridMaze environment is a 1818 grid with 161 states. Linear 256 RelLU

In both environments, the agent has 4 four actions: moving
left, right, up anddown When the agent hits the wall, it
remains in previous position. Two raw state representationg,p|e 3 Network architecture of the convolutional network. (C, K,

are considered(x;y) coordinates (scaled withih 1;1]) s p) correspond to number of output channels, kemnel size, stride
and top-view image of the grid (scaled witHy 1]). and padding.

Two continuous control navigation environments used in our

experimentsPointRoom andPointMaze |, are built with Layer  Con gurations (C, K, S, P) Activation

PyBullet (Coumans & Bai, 2016 2019). THeointRoom Conv2D (16,4, 2,2) RelLU
environment is of size 2020 and each room is of size ~ Conv2D (16,4,2,2) RelLU
5 5. TheGridMaze environment is of size 1818 and Conv2D (16,4,1,0) RelLU

the width of each corridor is 2. For both environments, a ball
with diameter 1 is controlled to navigate in the environment.

It takes a continuous action (within ranffe2 ]) to decide Table 4.Hyperparameters of DQN for learning options.
the direction and then move a small step forward along this
direction. We consider thg; y) positions as the raw state Timesteps 100,000
representations. Episode length 50
Optimizer Adam
. . Learning rate le-3
E. Experiment Con gurations Learning starts 5000
E.1 Learning Laplacian Representations Training frequency 1
i ) ) ) Target update frequency 50
For learning Laplacian representations@nidRoom and Target update rate 0.05
GridMaze environments, we collect a dataset of 100,000 Replay size 100,000
transitions using a uniformly random policy with random Batch size 128
starts. Each episode has a length of 50. Following (Wu et al., Discount factor 0

2019), we use a fully connected neural network(fary)
position observations and a convolutional neural network for
image observations. The network structures are described in ) )
Tab. 2 and Tab. 3. An additional linear layer is used to madz'2 Option Discovery

the output into representations. We train the networks fofy/e run option discovery experiments @midRoom and
200,000 iterations by Adam optimizer (Kingma & Ba, 2015) GridMaze environments witi{x; y) position observations.
with batch size 1024 and learning rate 0.001. The weightollowing (Machado et al., 2017), we approximate the
for the penalty term in Eqr(7) is set to 1.0. Following (Wu  options greedily ( = 0). For each dimension of the

et al., 2019), we use the discounted mUlti-Step tranSitionfearned representation’ one Option is trained by Deep Q-
with discount parameter 0.9. learning (Mnih et al., 2013) with an intrinsic reward func-

For learning Laplacian representations BaintRoom tionri(s;s) = fi(s) fi(s) and the other with r(s; ).

and PointMaze environments, we collect a dataset of 1€ termination set of an option is de ned as the set of
1,000,000 transitions using a uniformly random policy with States wheré; (s) is a local maximum (or minimum for the
random starts. Each episode has a length of 500. We ugher direction). For the deep Q-network (DQN), we use
the same fully connected network as mentioned above anti€ Same fully connected network as one used for learning

keep other con gurations unchanged except using a |arger,epresentations. The hyperparameters for training DQN are
batch size of 8192. summarized in Tab. 4.

To computeN;; j, we rstaugment the agent's action space
with the learned options. For each starting state in room
we record how many steps an agent takes to arrive in room
j when it follows a uniformly random policy. We run 50
trajectories for each starting state to stabilize the result.

For computingSimGT andSimRUN for continuous states,
we calculate the inner summation in E¢f) and Egn(10)
over sampled states rather than the entire state space.
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Figure 12.Goal positions inGridRoom andGridMaze for re-
ward shaping experiments. Each green cell represents a goal.

Figure 13 Results of reward shaping with each dimension of Lapla-

cian representations learned by baseline methodenotes reward
Table 5.Hyperparameters of DQN for reward shaping. shaping with L2 distance in raw observation spaae, (X;y) po-
sition), andsparsedenotes no reward shaping.

Timesteps 200,000
Episode length 150
Optimizer Adam
Learning rate le-3
Learning starts 5000
Training frequency 1
Target update frequency 50
Target update rate 0.05
Replay size 100,000
Dis?c?ttﬂt] ;i?or 0.19298 Figure 14 Results of reward shaping with learned Laplacian rep-

resentations., denotes reward shaping with L2 distance in raw
observation space.€., (x;y) position), andsparsedenotes no
reward shaping.

. Table 6.Absolute cosine similarity (averaged across dimen-
E.3 Reward Shaping sions) between our learned representation and ground truth, on

We run reward shaping experiments GnidRoom and ~ CridRoom environment.

GridMgze environments. FoI'IOV\'/ing (Wu et gl., 2019), Coefcients  Similarity
we train the agent in goal-achieving tasks using Deep Q-

learning (Mnih et al., 2013) witk; y) positions as obser- group 1 0.9905
vations. At each step, the agent receives a reward of O if it group 2 0.9653
reaches the goal state and -1 otherwise. The success rate of default 0.9913

reaching the goal state is used to measure the performance.
As mentioned in the main paper, we use multiple goals to ]
eliminate the bias brought by the goal position. Their lo-F-2 Reward Shaping

cations are depicted in Fig. 12. For the Q-network, we US§s completeness, we show the results with each dimension
the same fully connected network as one used for leamings o arned representation for baseline method in Fig. 13, and

representations. The hyperparameters for training DQN arg,c|ude the results for all dims - ours in Fig. 14.
summarized in Tab. 5.

F.3 Evaluation On Other Coef cient Choices

F. Additional Results , -
In Sec. 4.4.2, Fig. 11 shows the similarities between our
F.1 Learning Laplacian Representations learned representation (with different coef cient groups)

. . . . and the ground truth o®ridMaze . Here we show the
In Sec. 4.1, Fig. 3 and Fig. 4 visualize the learned represen; ¢ ,its orGridRoom in Tab. 6

tations onGridMaze andPointRoom . Here we include
gdd!tlonal wsua!lzatlons foGridRoom andPointMaze F.4 Visualization of the discovered options
in Fig. 15 and Fig. 16.

In Fig. 19 and 20, we visualize the discovered options by

In Sec. 4.1, Fig. 5 visualize rst 3 dimensions of learned .. .
different representations.

representations in different runs @ridRoom . Here we
show all 10 dimensions in Fig. 17 and Fig. 18.
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Figure 15.Visualization of the learned 10-dimension Laplacian representation and the ground ttidBoom . Each heatmap shows
a dimension of the representation for all states in the environment. Best viewed in color.

Figure 16.Visualization of the learned 10-dimension Laplacian representations and the ground tRdimtiaze . Each heatmap
shows a dimension of the representation for all the states in the environment. Best viewed in color.
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Figure 17.Visualization of the Laplacian representations learned by our meth@tidRoom in 3 different runs.

Figure 18.Visualization of the Laplacian representations learned by baseline méttididoom in 3 different runs.
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Figure 19.Visualization of the discovered options@ridRoom .
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Figure 20.Visualization of the discovered options@ridRoom (continued).



