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A. Proof of Theorem 1

To prove Theorem 1, we �rst introduce the following
Lemma 1.

Lemma 1. LetQ = ( qij ) 2 Rd� d be an orthogonal matrix,
andA = ( aij ) = Q � Q = ( q2

ij ). For k 2 f 1; � � � ; d � 1g,
we have
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Proof. SinceQ is an orthogonal matrix, we know that the
sum ofA ’s �rst k rows is equal to that ofA ’s �rst k columns,
i.e.:
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Therefore, we have
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If we view A as a block matrix,i.e.

A =
�

A1:k; 1:k A1:k;k +1: d
Ak+1: d;1:k Ak+1: d;k +1: d

�
; (14)

Lemma 1 says the sum of elements inA1:k;k +1: d is equal to
the sum of elements inAk+1: d;1:k .

With Lemma 1, now we can prove Theorem 1 as following.

Proof. Let E denote the matrix of the �rstd eigenvectors of
d, i.e., E = ( e1; � � � ; ed). Sinceu i 2 span(f e1; � � � ; edg),
andu>

i u j = � ij , we may rewrite(u1; � � � ; ud) = EQ,
whereQ = ( qij ) 2 Rd� d is an orthogonal matrix. Let
A = ( aij ) = Q � Q = ( q2

ij ). Then, the objective of
problem (3) becomes:
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We �rst prove optimality. Letg denote the gap between the
objective and

P d
i =1 ci � i . We have
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Note that
P d

j =1 aji = 1 , then we have:
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Let � ji = � j � � i , andr ji = ci aji , then we can rewriteg
as:
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Note that� ii = 0 and that, forj > i , � ji = � i +1 ;i +
� i +2 ;i +1 + � � � + � j � 1;j � 2 + � j;j � 1 =

P j � 1
k= i � k+1 ;k . We
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then apply Fubini’s Theorem (Fubini, 1907) tog:
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Note that forsk , we have
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According to Lemma 1, we know
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Therefore, we have
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Since� k+1 ;k > 0, with Eqn. (22), we can obtain
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I.e., the following inequality holds:
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Sincee>
i Lei = � i , the inequality is tight when

(u1; � � � ; ud) = ( e1; � � � ; ed): (25)

Therefore, we conclude that
P d

i =1 ci � i is the global mini-
mum, and(e1; � � � ; ed) is one minimizer.

Next, we prove uniqueness. Assume that there is another
minimizer for this problem, denoted as(~u1; � � � ; ~ud). We
have

(~u1; � � � ; ~ud) 6= ( e1; � � � ; ed)
, 9 i 2 f 1; � � � ; dg; ~u i 6= � ei

(26)

Here we require~u i 6= � ei because the sign ofei is arbitrary
and hence we do not distinguish them. Again,(~u1; � � � ; ~ud)
can be written as(e1; � � � ; ed) ~Q, where ~Q = (~qij ) 2 Rd� d

is an orthogonal matrix. Therefore, proposition in Eqn.(26)
is equivalent to

9i 2 f 1; � � � ; dg; ~qii =2 f 1; � 1g: (27)

Denote ~A = (~aij ) = ~Q � ~Q = (~q2
ij ). By the optimality of

(~u1; � � � ; ~ud), we have
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From Eqn. (16) to Eqn. (22), we know
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The equality holds if and only if~aji = 0 ; 8(i; j ) 2
f (i; j )j j > i g. Additionally, according to Lemma 1, we
have
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Therefore, we also have~aji = 0 ; 8(i; j ) 2 f (i; j )j j < i g.
Accordingly, all off-diagonal elements of~A are 0,i.e., ~aij =
0; 8i 6= j . Moreover, since~Q is orthogonal, the following
equality holds
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So we have
8i 2 f 1; � � � ; dg; ~aii = 1 ;

, 8 i 2 f 1; � � � ; dg; ~qii 2 f 1; � 1g
(32)

which contradicts with proposition in Eqn.(27). Based
on the above, we conclude that(e1; � � � ; ed) is the unique
global miminizer.
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B. Extension to Continuous setting

In Sec. 2 and Sec. 3, we discuss the Laplacian representation
and our proposed objective in discrete case. In this section
we extend previous discussions to continuous settings. Con-
sider a graph with in�nitely many nodes (i.e., states), where
weighted edges represent pairwise non-negative af�nities
(denoted byD (u; v) � 0 for nodesu andv).

Following (Wu et al., 2019), we give the following def-
initions. A Hilbert spaceH is de�ned to be the set of
square-integrable real-valued functions on graph nodes,i.e.
H = f f : S ! R j

R
S jf (u)j2 d� (u) < 1g , associated

with the inner-product

hf; g i H =
Z

S
f (u)g(u) d� (u); (33)

where� is a probability measure,i.e.
R

S d� (u) = 1 . The
norm of a functionf is de�ned ashf; f i H . Functionsf; g
are orthogonal ifhf; g i H = 0 ; functions f 1; � � � ; f d are
orthonormal ifhf i ; f j i H = � ij ; 8i; j 2 f 1; � � � ; dg. The
graph Laplacian is de�ned as a linear operatorL on H ,
given by

L f (u) = f (u) �
Z

S
f (v)D (u; v) d� (v): (34)

Our goal is to learnf 1; � � � ; f d for approximating thed
eigenfunctionse1; � � � ; ed associated with the smallestd
eigenvalues� 1; � � � ; � d of L . The graph drawing objective
used in (Wu et al., 2019) is
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Extending this objective to the generalized form gives us
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Similarly, for continuous setting, Theorem 1 can be ex-
tended to the following theorem:

Theorem 2. Assume8i; f i 2 span(f e1; � � � ; edg), and
� 1 < � � � < � d). Then,c1 > � � � > c d is a suf�cient condi-
tion for the generalized graph drawing objective to have a
unique global minimizer(f �

1 ; � � � ; f �
d ) = ( e1; � � � ; ed), and

the corresponding minimum is
P d

i =1 ci � i .

To prove the Theorem 2, we need the following Lemma 2
and Lemma 3.

Lemma 2. Let f 1; � � � ; f d bed orthonormal functions in
span(f e1; � � � ; edg), and qji be the inner product off i
and ej , i.e., qji = hf i ; ej i H ; 8i; j 2 f 1; � � � ; dg. Then
we have (i)8i 2 f 1; � � � ; dg;
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Proof. First, sincee1; � � � ; ed form an orthonormal basis,
consider projection off i ontoe1; � � � ; ed. We have

f i =
dX

j =1

hf i ; ej i H ej =
dX

j =1

qji ej : (37)
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The above equation proves (i). Then, consider projection
of ej onto f 1; � � � ; f d (note thatf 1; � � � ; f d also form an
orthogonal basis for the subspace spanned bye1; � � � ; ed).
We have,
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This equation shows that (ii) holds.

Lemma 3. Let f 1; � � � ; f d bed orthonormal functions in
span(f e1; � � � ; edg), qji be the inner product off i andej ,
i.e., qji = hf i ; ej i H ; 8i; j 2 f 1; � � � ; dg, and aji = q2

ji .
Then, fork 2 f 1; � � � ; d � 1g, we have
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Proof. By Lemma 2, we have
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Therefore, we have
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With Lemma 3, we can prove Theorem 2.

Proof. Sincef i 2 span(f e1; � � � ; edg), without loss of gen-
erality, we may rewritef i as
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whereqji = hf i ; ej i H . Then, the objective of problem(36)
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whereaji = q2
ji .

Let g denote the gap between the objective and
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Then we have
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We can see that Eqn.(46) has the same form as Eqn.(17).
Thus we can follow the same steps as in the proof of Theo-
rem 1 (i.e., from Eqn.(18) to Eqn.(32), replacing Lemma 1
with Lemma 3) to �nish proving Theorem 2.

C. Obtaining Training objective

In (Wu et al., 2019), the authors express the graph drawing
objective as an expectation

E(s;s 0) �T

kX

i =1

(f i (s) � f i (s0))2 (47)

and transform the orthonormal constraints into the following
penalty term

Es� �;s 0� �

kX

i;j

(f i (s)f j (s) � � ij ) ( f i (s0)f j (s0) � � ij ) :

(48)
Herek denotes the dimension of the representation and

P k
i;j

is short for
P k

i =1
P k

j =1 . From Eqn.(5), we can see that
our objective can be viewed as the sum ofd graph drawing
objectives. Thus we can obtain Eqn.(6) by summingd
objectives in Eqn.(47)with k varying from1 to d. Similarly,
we can obtain Eqn.(7) by summingd penalty terms in
Eqn. (48).
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D. Environment Descriptions

Two discrete gridworld environments used in our experi-
ments: GridRoom andGridMaze , are built with Min-
iGrid (Chevalier-Boisvert et al., 2018). TheGridRoom
environment is a 20� 20 grid with 271 states, and the
GridMaze environment is a 18� 18 grid with 161 states.
In both environments, the agent has 4 four actions: moving
left, right, up anddown. When the agent hits the wall, it
remains in previous position. Two raw state representations
are considered:(x; y) coordinates (scaled within[� 1; 1])
and top-view image of the grid (scaled within[0; 1]).

Two continuous control navigation environments used in our
experiments:PointRoom andPointMaze , are built with
PyBullet (Coumans & Bai, 2016�2019). ThePointRoom
environment is of size 20� 20 and each room is of size
5� 5. TheGridMaze environment is of size 18� 18 and
the width of each corridor is 2. For both environments, a ball
with diameter 1 is controlled to navigate in the environment.
It takes a continuous action (within range[0; 2� ]) to decide
the direction and then move a small step forward along this
direction. We consider the(x; y) positions as the raw state
representations.

E. Experiment Con�gurations

E.1 Learning Laplacian Representations

For learning Laplacian representations onGridRoom and
GridMaze environments, we collect a dataset of 100,000
transitions using a uniformly random policy with random
starts. Each episode has a length of 50. Following (Wu et al.,
2019), we use a fully connected neural network for(x; y)
position observations and a convolutional neural network for
image observations. The network structures are described in
Tab. 2 and Tab. 3. An additional linear layer is used to map
the output into representations. We train the networks for
200,000 iterations by Adam optimizer (Kingma & Ba, 2015)
with batch size 1024 and learning rate 0.001. The weight
for the penalty term in Eqn.(7) is set to 1.0. Following (Wu
et al., 2019), we use the discounted multi-step transitions
with discount parameter 0.9.

For learning Laplacian representations onPointRoom
and PointMaze environments, we collect a dataset of
1,000,000 transitions using a uniformly random policy with
random starts. Each episode has a length of 500. We use
the same fully connected network as mentioned above and
keep other con�gurations unchanged except using a larger
batch size of 8192.

For computingSimGT andSimRUN for continuous states,
we calculate the inner summation in Eqn.(9) and Eqn.(10)
over sampled states rather than the entire state space.

Table 2.Network architecture of the fully connected network.

Layer Number of units Activation

Linear 256 ReLU
Linear 256 ReLU
Linear 256 ReLU

Table 3.Network architecture of the convolutional network. (C, K,
S, P) correspond to number of output channels, kernel size, stride
and padding.

Layer Con�gurations (C, K, S, P) Activation

Conv2D (16, 4, 2, 2) ReLU
Conv2D (16, 4, 2, 2) ReLU
Conv2D (16, 4, 1, 0) ReLU

Table 4.Hyperparameters of DQN for learning options.

Timesteps 100,000
Episode length 50

Optimizer Adam
Learning rate 1e-3

Learning starts 5000
Training frequency 1

Target update frequency 50
Target update rate 0.05

Replay size 100,000
Batch size 128

Discount factor
 0

E.2 Option Discovery

We run option discovery experiments onGridRoom and
GridMaze environments with(x; y) position observations.
Following (Machado et al., 2017), we approximate the
options greedily (
 = 0 ). For each dimension of the
learned representation, one option is trained by Deep Q-
learning (Mnih et al., 2013) with an intrinsic reward func-
tion r i (s; s0) = f i (s) � f i (s0) and the other with� r i (s; s0).
The termination set of an option is de�ned as the set of
states wheref i (s) is a local maximum (or minimum for the
other direction). For the deep Q-network (DQN), we use
the same fully connected network as one used for learning
representations. The hyperparameters for training DQN are
summarized in Tab. 4.

To computeN i ! j , we �rst augment the agent’s action space
with the learned options. For each starting state in roomi ,
we record how many steps an agent takes to arrive in room
j when it follows a uniformly random policy. We run 50
trajectories for each starting state to stabilize the result.
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Figure 12.Goal positions inGridRoom andGridMaze for re-
ward shaping experiments. Each green cell represents a goal.

Table 5.Hyperparameters of DQN for reward shaping.

Timesteps 200,000
Episode length 150

Optimizer Adam
Learning rate 1e-3

Learning starts 5000
Training frequency 1

Target update frequency 50
Target update rate 0.05

Replay size 100,000
Batch size 128

Discount factor
 0.99

E.3 Reward Shaping

We run reward shaping experiments onGridRoom and
GridMaze environments. Following (Wu et al., 2019),
we train the agent in goal-achieving tasks using Deep Q-
learning (Mnih et al., 2013) with(x; y) positions as obser-
vations. At each step, the agent receives a reward of 0 if it
reaches the goal state and -1 otherwise. The success rate of
reaching the goal state is used to measure the performance.
As mentioned in the main paper, we use multiple goals to
eliminate the bias brought by the goal position. Their lo-
cations are depicted in Fig. 12. For the Q-network, we use
the same fully connected network as one used for learning
representations. The hyperparameters for training DQN are
summarized in Tab. 5.

F. Additional Results

F.1 Learning Laplacian Representations

In Sec. 4.1, Fig. 3 and Fig. 4 visualize the learned represen-
tations onGridMaze andPointRoom . Here we include
additional visualizations forGridRoom andPointMaze
in Fig. 15 and Fig. 16.

In Sec. 4.1, Fig. 5 visualize �rst 3 dimensions of learned
representations in different runs onGridRoom . Here we
show all 10 dimensions in Fig. 17 and Fig. 18.

Figure 13.Results of reward shaping with each dimension of Lapla-
cian representations learned by baseline method.`2 denotes reward
shaping with L2 distance in raw observation space (i.e., (x; y ) po-
sition), andsparsedenotes no reward shaping.

Figure 14.Results of reward shaping with learned Laplacian rep-
resentations.̀2 denotes reward shaping with L2 distance in raw
observation space (i.e., (x; y ) position), andsparsedenotes no
reward shaping.

Table 6.Absolute cosine similarity (averaged across dimen-
sions) between our learned representation and ground truth, on
GridRoom environment.

Coef�cients Similarity

group 1 0.9905
group 2 0.9653
default 0.9913

F.2 Reward Shaping

For completeness, we show the results with each dimension
of learned representation for baseline method in Fig. 13, and
include the results for �all dims - ours� in Fig. 14.

F.3 Evaluation On Other Coef�cient Choices

In Sec. 4.4.2, Fig. 11 shows the similarities between our
learned representation (with different coef�cient groups)
and the ground truth onGridMaze . Here we show the
results onGridRoom in Tab. 6.

F.4 Visualization of the discovered options

In Fig. 19 and 20, we visualize the discovered options by
different representations.
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Figure 15.Visualization of the learned 10-dimension Laplacian representation and the ground truth onGridRoom . Each heatmap shows
a dimension of the representation for all states in the environment. Best viewed in color.

Figure 16.Visualization of the learned 10-dimension Laplacian representations and the ground truth onPointMaze . Each heatmap
shows a dimension of the representation for all the states in the environment. Best viewed in color.
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Figure 17.Visualization of the Laplacian representations learned by our method onGridRoom in 3 different runs.

Figure 18.Visualization of the Laplacian representations learned by baseline methodGridRoom in 3 different runs.
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Figure 19.Visualization of the discovered options inGridRoom .
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Figure 20.Visualization of the discovered options inGridRoom (continued).


