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A. Proof of Theorem 1
To prove Theorem 1, we first introduce the following
Lemma 1.

Lemma 1. Let Q = (qij) ∈ Rd×d be an orthogonal matrix,
and A = (aij) = Q�Q = (q2

ij). For k ∈ {1, · · · , d− 1},
we have

k∑
i=1

d∑
j=k+1

aij =

k∑
i=1

d∑
j=k+1

aji (11)

Proof. Since Q is an orthogonal matrix, we know that the
sum ofA’s first k rows is equal to that ofA’s first k columns,
i.e.:

k∑
i=1

d∑
j=1

aij =

k∑
i=1

d∑
j=1

aji = k (12)

Therefore, we have

k∑
i=1

d∑
j=k+1

aij =

k∑
i=1

d∑
j=1

aij −
k∑
i=1

k∑
j=1

aij

=

k∑
i=1

d∑
j=1

aji −
k∑
i=1

k∑
j=1

aij

=

k∑
i=1

d∑
j=1

aji −
k∑
i=1

k∑
j=1

aji

=

k∑
i=1

d∑
j=k+1

aji

(13)

If we view A as a block matrix, i.e.

A =

(
A1:k,1:k A1:k,k+1:d

Ak+1:d,1:k Ak+1:d,k+1:d

)
, (14)

Lemma 1 says the sum of elements in A1:k,k+1:d is equal to
the sum of elements in Ak+1:d,1:k.

With Lemma 1, now we can prove Theorem 1 as following.

Proof. Let E denote the matrix of the first d eigenvectors of
d, i.e., E = (e1, · · · , ed). Since ui ∈ span({e1, · · · , ed}),
and u>i uj = δij , we may rewrite (u1, · · · ,ud) = EQ,
where Q = (qij) ∈ Rd×d is an orthogonal matrix. Let
A = (aij) = Q � Q = (q2

ij). Then, the objective of
problem (3) becomes:

h(u1, · · · ,ud) ,
d∑
i=1

ciu
>
i Lui

=

d∑
i=1

ci(

d∑
j=1

qjiej)
>L(

d∑
j=1

qjiej)

=

d∑
i=1

ci

d∑
j=1

q2
jie
>
j Lej

=

d∑
i=1

d∑
j=1

ciajiλj

(15)

We first prove optimality. Let g denote the gap between the
objective and

∑d
i=1 ciλi. We have

g ,
d∑
i=1

ciu
>
i Lui −

d∑
i=1

ciλi

=

d∑
i=1

ci

d∑
j=1

ajiλj −
d∑
i=1

ciλi

(16)

Note that
∑d
j=1 aji = 1, then we have:

g =

d∑
i=1

ci

d∑
j=1

ajiλj −
d∑
i=1

ci

d∑
j=1

ajiλi

=

d∑
i=1

ci

d∑
j=1

aji(λj − λi)

=

d∑
i=1

d∑
j=1

ciaji(λj − λi)

(17)

Let ∆ji = λj − λi, and rji = ciaji, then we can rewrite g
as:

g =

d∑
i=1

d∑
j=1

rji∆ji (18)

Note that ∆ii = 0 and that, for j > i, ∆ji = ∆i+1,i +

∆i+2,i+1 + · · ·+∆j−1,j−2 +∆j,j−1 =
∑j−1
k=i ∆k+1,k. We
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then apply Fubini’s Theorem (Fubini, 1907) to g:

g =
∑
j>i

rji∆ji +
∑
j6i

rji∆ji

=
∑
j>i

(rji − rij)∆ji

=
∑
j>i

(rji − rij)
j−1∑
k=i

∆k+1,k

=
∑
j>k>i

(rji − rij)∆k+1,k

=

d−1∑
k=1

(

k∑
i=1

d∑
j=k+1

(rji − rij))∆k+1,k

,
d−1∑
k=1

sk∆k+1,k

(19)

Note that for sk, we have

sk =

k∑
i=1

d∑
j=k+1

(rji − rij)

=

k∑
i=1

d∑
j=k+1

(ciaji − cjaij)

=

k∑
i=1

ci

d∑
j=k+1

aji −
d∑

j=k+1

cj

k∑
i=1

aij

>ck

k∑
i=1

d∑
j=k+1

aji − ck+1

d∑
j=k+1

k∑
i=1

aij

(20)

According to Lemma 1, we know

k∑
i=1

d∑
j=k+1

aji =

d∑
j=k+1

k∑
i=1

aij (21)

Therefore, we have

sk > (ck − ck+1)

k∑
i=1

d∑
j=k+1

aji > 0. (22)

Since ∆k+1,k > 0, with Eqn. (22), we can obtain

g =

d∑
i=1

ciu
>
i Lui −

d∑
i=1

ciλi

=

d−1∑
k=1

sk∆k+1,k

>0.

(23)

I.e., the following inequality holds:

d∑
i=1

ciu
>
i Lui >

d∑
i=1

ciλi (24)

Since e>i Lei = λi, the inequality is tight when

(u1, · · · ,ud) = (e1, · · · , ed). (25)

Therefore, we conclude that
∑d
i=1 ciλi is the global mini-

mum, and (e1, · · · , ed) is one minimizer.

Next, we prove uniqueness. Assume that there is another
minimizer for this problem, denoted as (ũ1, · · · , ũd). We
have

(ũ1, · · · , ũd) 6= (e1, · · · , ed)
⇔ ∃i ∈ {1, · · · , d}, ũi 6= ±ei

(26)

Here we require ũi 6= ±ei because the sign of ei is arbitrary
and hence we do not distinguish them. Again, (ũ1, · · · , ũd)
can be written as (e1, · · · , ed)Q̃, where Q̃ = (q̃ij) ∈ Rd×d
is an orthogonal matrix. Therefore, proposition in Eqn. (26)
is equivalent to

∃i ∈ {1, · · · , d}, q̃ii /∈ {1,−1}. (27)

Denote Ã = (ãij) = Q̃� Q̃ = (q̃2
ij). By the optimality of

(ũ1, · · · , ũd), we have

d∑
i=1

ciũ
>
i Lũi −

d∑
i=1

ciλi = 0 (28)

From Eqn. (16) to Eqn. (22), we know

d∑
i=1

ciũ
>
i Lũi −

d∑
i=1

ciλi > 0 (29)

The equality holds if and only if ãji = 0,∀(i, j) ∈
{(i, j)| j > i}. Additionally, according to Lemma 1, we
have

k∑
i=1

d∑
j=k+1

ãji =
k∑
i=1

d∑
j=k+1

ãij (30)

Therefore, we also have ãji = 0,∀(i, j) ∈ {(i, j)| j < i}.
Accordingly, all off-diagonal elements of Ã are 0, i.e., ãij =

0,∀i 6= j. Moreover, since Q̃ is orthogonal, the following
equality holds

d∑
j=1

ãij =

d∑
j=1

q̃2
ij = 1,∀i ∈ {1, · · · , d}. (31)

So we have

∀i ∈ {1, · · · , d}, ãii = 1,

⇔ ∀i ∈ {1, · · · , d}, q̃ii ∈ {1,−1}
(32)

which contradicts with proposition in Eqn. (27). Based
on the above, we conclude that (e1, · · · , ed) is the unique
global miminizer.



Towards Better Laplacian Representation in Reinforcement Learning with Generalized Graph Drawing

B. Extension to Continuous setting
In Sec. 2 and Sec. 3, we discuss the Laplacian representation
and our proposed objective in discrete case. In this section
we extend previous discussions to continuous settings. Con-
sider a graph with infinitely many nodes (i.e., states), where
weighted edges represent pairwise non-negative affinities
(denoted by D(u, v) ≥ 0 for nodes u and v).

Following (Wu et al., 2019), we give the following def-
initions. A Hilbert space H is defined to be the set of
square-integrable real-valued functions on graph nodes, i.e.
H = {f : S → R |

∫
S |f(u)|2 dρ(u) < ∞}, associated

with the inner-product

〈f, g〉H =

∫
S
f(u)g(u) dρ(u), (33)

where ρ is a probability measure, i.e.
∫
S dρ(u) = 1. The

norm of a function f is defined as 〈f, f〉H. Functions f, g
are orthogonal if 〈f, g〉H = 0; functions f1, · · · , fd are
orthonormal if 〈fi, fj〉H = δij ,∀i, j ∈ {1, · · · , d}. The
graph Laplacian is defined as a linear operator L on H,
given by

L f(u) = f(u)−
∫
S
f(v)D(u, v) dρ(v). (34)

Our goal is to learn f1, · · · , fd for approximating the d
eigenfunctions e1, · · · , ed associated with the smallest d
eigenvalues λ1, · · · , λd of L . The graph drawing objective
used in (Wu et al., 2019) is

min
f1,··· ,fd

d∑
i=1

〈fi,L fi〉H

s.t. 〈fi, fj〉H = δij ,∀i, j = 1, · · · , d.

(35)

Extending this objective to the generalized form gives us

min
f1,··· ,fd

d∑
i=1

ci〈fi,L fi〉H

s.t. 〈fi, fj〉H = δij ,∀i, j = 1, · · · , d.

(36)

Similarly, for continuous setting, Theorem 1 can be ex-
tended to the following theorem:

Theorem 2. Assume ∀i, fi ∈ span({e1, · · · , ed}), and
λ1 < · · · < λd). Then, c1 > · · · > cd is a sufficient condi-
tion for the generalized graph drawing objective to have a
unique global minimizer (f∗1 , · · · , f∗d ) = (e1, · · · , ed), and
the corresponding minimum is

∑d
i=1 ciλi.

To prove the Theorem 2, we need the following Lemma 2
and Lemma 3.

Lemma 2. Let f1, · · · , fd be d orthonormal functions in
span({e1, · · · , ed}), and qji be the inner product of fi
and ej , i.e., qji = 〈fi, ej〉H,∀i, j ∈ {1, · · · , d}. Then
we have (i) ∀i ∈ {1, · · · , d},

∑d
j=1 q

2
ji = 1, and (ii)

∀j ∈ {1, · · · , d},
∑d
i=1 q

2
ji = 1.

Proof. First, since e1, · · · , ed form an orthonormal basis,
consider projection of fi onto e1, · · · , ed. We have

fi =

d∑
j=1

〈fi, ej〉Hej =

d∑
j=1

qjiej . (37)

Since fi has a norm of 1, we have

〈fi, fi〉H =〈
d∑
j=1

qjiej ,

d∑
j=1

qjiej〉H

=

d∑
j=1

q2
ji = 1.

(38)

The above equation proves (i). Then, consider projection
of ej onto f1, · · · , fd (note that f1, · · · , fd also form an
orthogonal basis for the subspace spanned by e1, · · · , ed).
We have,

ej =

d∑
i=1

〈ej , fi〉Hfi =

d∑
i=1

qjifi. (39)

Since ej also has a norm of 1, we have

〈ej , ej〉H =〈
d∑
i=1

qjifi,

d∑
i=1

qjifi〉H

=

d∑
i=1

q2
ji = 1.

(40)

This equation shows that (ii) holds.

Lemma 3. Let f1, · · · , fd be d orthonormal functions in
span({e1, · · · , ed}), qji be the inner product of fi and ej ,
i.e., qji = 〈fi, ej〉H,∀i, j ∈ {1, · · · , d}, and aji = q2

ji.
Then, for k ∈ {1, · · · , d− 1}, we have

k∑
i=1

d∑
j=k+1

aij =

k∑
i=1

d∑
j=k+1

aji (41)

Proof. By Lemma 2, we have

k∑
i=1

d∑
j=1

aij =

k∑
i=1

d∑
j=1

aji = k (42)



Towards Better Laplacian Representation in Reinforcement Learning with Generalized Graph Drawing

Therefore, we have

k∑
i=1

d∑
j=k+1

aij =

k∑
i=1

d∑
j=1

aij −
k∑
i=1

k∑
j=1

aij

=

k∑
i=1

d∑
j=1

aji −
k∑
i=1

k∑
j=1

aij

=

k∑
i=1

d∑
j=1

aji −
k∑
i=1

k∑
j=1

aji

=

k∑
i=1

d∑
j=k+1

aji

(43)

With Lemma 3, we can prove Theorem 2.

Proof. Since fi ∈ span({e1, · · · , ed}), without loss of gen-
erality, we may rewrite fi as

fi =

d∑
j=1

qjiej , (44)

where qji = 〈fi, ej〉H. Then, the objective of problem (36)
is

h(f1, · · · , fd) ,
d∑
i=1

ci〈fi,L fi〉H

=

d∑
i=1

ci〈
d∑
j=1

qjiej ,L
d∑
j=1

qjiej〉H

=

d∑
i=1

ci〈
d∑
j=1

qjiej ,

d∑
j=1

qjiL ej〉H

=

d∑
i=1

ci〈
d∑
j=1

qjiej ,

d∑
j=1

qjiλjej〉H

=

d∑
i=1

ci

d∑
j=1

q2
jiλj〈ej , ej〉H

=

d∑
i=1

ci

d∑
j=1

ajiλj ,

(45)

where aji = q2
ji.

Let g denote the gap between the objective and
∑d
i=1 ciλi.

Then we have

g ,
d∑
i=1

ci〈fi,L fi〉H −
d∑
i=1

ciλi

=

d∑
i=1

ci

d∑
j=1

ajiλj −
d∑
i=1

ciλi

=

d∑
i=1

ci

d∑
j=1

aji(λj − λi)

=

d∑
i=1

d∑
j=1

ciaji(λj − λi)

(46)

We can see that Eqn. (46) has the same form as Eqn. (17).
Thus we can follow the same steps as in the proof of Theo-
rem 1 (i.e., from Eqn. (18) to Eqn. (32), replacing Lemma 1
with Lemma 3) to finish proving Theorem 2.

C. Obtaining Training objective
In (Wu et al., 2019), the authors express the graph drawing
objective as an expectation

E(s,s′)∼T

k∑
i=1

(fi(s)− fi(s′))
2 (47)

and transform the orthonormal constraints into the following
penalty term

Es∼ρ,s′∼ρ
k∑
i,j

(fi(s)fj(s)− δij) (fi(s
′)fj(s

′)− δij) .

(48)
Here k denotes the dimension of the representation and

∑k
i,j

is short for
∑k
i=1

∑k
j=1. From Eqn. (5), we can see that

our objective can be viewed as the sum of d graph drawing
objectives. Thus we can obtain Eqn. (6) by summing d
objectives in Eqn. (47) with k varying from 1 to d. Similarly,
we can obtain Eqn. (7) by summing d penalty terms in
Eqn. (48).
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D. Environment Descriptions
Two discrete gridworld environments used in our experi-
ments: GridRoom and GridMaze, are built with Min-
iGrid (Chevalier-Boisvert et al., 2018). The GridRoom
environment is a 20×20 grid with 271 states, and the
GridMaze environment is a 18×18 grid with 161 states.
In both environments, the agent has 4 four actions: moving
left, right, up and down. When the agent hits the wall, it
remains in previous position. Two raw state representations
are considered: (x, y) coordinates (scaled within [−1, 1])
and top-view image of the grid (scaled within [0, 1]).

Two continuous control navigation environments used in our
experiments: PointRoom and PointMaze, are built with
PyBullet (Coumans & Bai, 2016–2019). The PointRoom
environment is of size 20×20 and each room is of size
5×5. The GridMaze environment is of size 18×18 and
the width of each corridor is 2. For both environments, a ball
with diameter 1 is controlled to navigate in the environment.
It takes a continuous action (within range [0, 2π]) to decide
the direction and then move a small step forward along this
direction. We consider the (x, y) positions as the raw state
representations.

E. Experiment Configurations
E.1 Learning Laplacian Representations

For learning Laplacian representations on GridRoom and
GridMaze environments, we collect a dataset of 100,000
transitions using a uniformly random policy with random
starts. Each episode has a length of 50. Following (Wu et al.,
2019), we use a fully connected neural network for (x, y)
position observations and a convolutional neural network for
image observations. The network structures are described in
Tab. 2 and Tab. 3. An additional linear layer is used to map
the output into representations. We train the networks for
200,000 iterations by Adam optimizer (Kingma & Ba, 2015)
with batch size 1024 and learning rate 0.001. The weight
for the penalty term in Eqn. (7) is set to 1.0. Following (Wu
et al., 2019), we use the discounted multi-step transitions
with discount parameter 0.9.

For learning Laplacian representations on PointRoom
and PointMaze environments, we collect a dataset of
1,000,000 transitions using a uniformly random policy with
random starts. Each episode has a length of 500. We use
the same fully connected network as mentioned above and
keep other configurations unchanged except using a larger
batch size of 8192.

For computing SimGT and SimRUN for continuous states,
we calculate the inner summation in Eqn. (9) and Eqn. (10)
over sampled states rather than the entire state space.

Table 2. Network architecture of the fully connected network.

Layer Number of units Activation

Linear 256 ReLU
Linear 256 ReLU
Linear 256 ReLU

Table 3. Network architecture of the convolutional network. (C, K,
S, P) correspond to number of output channels, kernel size, stride
and padding.

Layer Configurations (C, K, S, P) Activation

Conv2D (16, 4, 2, 2) ReLU
Conv2D (16, 4, 2, 2) ReLU
Conv2D (16, 4, 1, 0) ReLU

Table 4. Hyperparameters of DQN for learning options.

Timesteps 100,000
Episode length 50

Optimizer Adam
Learning rate 1e-3

Learning starts 5000
Training frequency 1

Target update frequency 50
Target update rate 0.05

Replay size 100,000
Batch size 128

Discount factor γ 0

E.2 Option Discovery

We run option discovery experiments on GridRoom and
GridMaze environments with (x, y) position observations.
Following (Machado et al., 2017), we approximate the
options greedily (γ = 0). For each dimension of the
learned representation, one option is trained by Deep Q-
learning (Mnih et al., 2013) with an intrinsic reward func-
tion ri(s, s′) = fi(s)− fi(s′) and the other with −ri(s, s′).
The termination set of an option is defined as the set of
states where fi(s) is a local maximum (or minimum for the
other direction). For the deep Q-network (DQN), we use
the same fully connected network as one used for learning
representations. The hyperparameters for training DQN are
summarized in Tab. 4.

To computeNi→j , we first augment the agent’s action space
with the learned options. For each starting state in room i,
we record how many steps an agent takes to arrive in room
j when it follows a uniformly random policy. We run 50
trajectories for each starting state to stabilize the result.
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Figure 12. Goal positions in GridRoom and GridMaze for re-
ward shaping experiments. Each green cell represents a goal.

Table 5. Hyperparameters of DQN for reward shaping.

Timesteps 200,000
Episode length 150

Optimizer Adam
Learning rate 1e-3

Learning starts 5000
Training frequency 1

Target update frequency 50
Target update rate 0.05

Replay size 100,000
Batch size 128

Discount factor γ 0.99

E.3 Reward Shaping

We run reward shaping experiments on GridRoom and
GridMaze environments. Following (Wu et al., 2019),
we train the agent in goal-achieving tasks using Deep Q-
learning (Mnih et al., 2013) with (x, y) positions as obser-
vations. At each step, the agent receives a reward of 0 if it
reaches the goal state and -1 otherwise. The success rate of
reaching the goal state is used to measure the performance.
As mentioned in the main paper, we use multiple goals to
eliminate the bias brought by the goal position. Their lo-
cations are depicted in Fig. 12. For the Q-network, we use
the same fully connected network as one used for learning
representations. The hyperparameters for training DQN are
summarized in Tab. 5.

F. Additional Results
F.1 Learning Laplacian Representations

In Sec. 4.1, Fig. 3 and Fig. 4 visualize the learned represen-
tations on GridMaze and PointRoom. Here we include
additional visualizations for GridRoom and PointMaze
in Fig. 15 and Fig. 16.

In Sec. 4.1, Fig. 5 visualize first 3 dimensions of learned
representations in different runs on GridRoom. Here we
show all 10 dimensions in Fig. 17 and Fig. 18.

Figure 13. Results of reward shaping with each dimension of Lapla-
cian representations learned by baseline method. `2 denotes reward
shaping with L2 distance in raw observation space (i.e., (x, y) po-
sition), and sparse denotes no reward shaping.

Figure 14. Results of reward shaping with learned Laplacian rep-
resentations. `2 denotes reward shaping with L2 distance in raw
observation space (i.e., (x, y) position), and sparse denotes no
reward shaping.

Table 6. Absolute cosine similarity (averaged across dimen-
sions) between our learned representation and ground truth, on
GridRoom environment.

Coefficients Similarity

group 1 0.9905
group 2 0.9653
default 0.9913

F.2 Reward Shaping

For completeness, we show the results with each dimension
of learned representation for baseline method in Fig. 13, and
include the results for “all dims - ours” in Fig. 14.

F.3 Evaluation On Other Coefficient Choices

In Sec. 4.4.2, Fig. 11 shows the similarities between our
learned representation (with different coefficient groups)
and the ground truth on GridMaze. Here we show the
results on GridRoom in Tab. 6.

F.4 Visualization of the discovered options

In Fig. 19 and 20, we visualize the discovered options by
different representations.
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Figure 15. Visualization of the learned 10-dimension Laplacian representation and the ground truth on GridRoom. Each heatmap shows
a dimension of the representation for all states in the environment. Best viewed in color.

Figure 16. Visualization of the learned 10-dimension Laplacian representations and the ground truth on PointMaze. Each heatmap
shows a dimension of the representation for all the states in the environment. Best viewed in color.
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Figure 17. Visualization of the Laplacian representations learned by our method on GridRoom in 3 different runs.

Figure 18. Visualization of the Laplacian representations learned by baseline method GridRoom in 3 different runs.
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Figure 19. Visualization of the discovered options in GridRoom.
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Figure 20. Visualization of the discovered options in GridRoom (continued).


