
Fairness of Exposure in Stochastic Bandits

Lequn Wang 1 Yiwei Bai 1 Wen Sun 1 Thorsten Joachims 1

Abstract

Contextual bandit algorithms have become widely
used for recommendation in online systems (e.g.
marketplaces, music streaming, news), where they
now wield substantial influence on which items
get exposed to the users. This raises questions of
fairness to the items — and to the sellers, artists,
and writers that benefit from this exposure. We ar-
gue that the conventional bandit formulation can
lead to an undesirable and unfair winner-takes-all
allocation of exposure. To remedy this problem,
we propose a new bandit objective that guaran-
tees merit-based fairness of exposure to the items
while optimizing utility to the users. We formu-
late fairness regret and reward regret in this set-
ting, and present algorithms for both stochastic
multi-armed bandits and stochastic linear bandits.
We prove that the algorithms achieve sub-linear
fairness regret and reward regret. Beyond the
theoretical analysis, we also provide empirical
evidence that these algorithms can fairly allocate
exposure to different arms effectively.

1. Introduction
Bandit algorithms (Thompson, 1933; Robbins, 1952;
Bubeck & Cesa-Bianchi, 2012; Slivkins, 2019; Lattimore &
Szepesvári, 2020) provide an attractive model of learning for
online platforms, and they are now widely used to optimize
retail, media streaming, and news-feed. Each round of ban-
dit learning corresponds to an interaction with a user, where
the algorithm selects an arm (e.g. product, song, article),
observes the user’s response (e.g. purchase, stream, read),
and then updates its policy. Over time, the bandit algorithm
thus learns to maximize the user responses, which are often
well aligned with the objective of the online platform (e.g.
profit maximization, engagement maximization).

1Department of Computer Science, Cornell Univer-
sity, Ithaca, NY, USA. Correspondence to: Lequn Wang
<lw633@cornell.edu>, Wen Sun <ws455@cornell.edu>,
Thorsten Joachims <tj@cs.cornell.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

While maximizing user responses may arguably be in the
interest of the platform and its users at least in the short term,
there is now a growing understanding that it can also be
problematic in multiple respects. In this paper, we focus on
the fact that this objective ignores the interests of the items
(i.e. arms), which also derive utility from the interactions.
In particular, sellers, artists and writers have a strong interest
in the exposure their items receive, as it affects their chance
to get purchased, streamed or read. It is well understood that
algorithms that maximize user responses can be unfair in
how they allocate exposure to the items (Singh & Joachims,
2018). For example, two items with very similar merit
(e.g. click-through rate) may receive substantially different
amounts of exposure — which is not only objectionable in
itself, but can also degrade the long-term objectives of the
platform (e.g. seller retention (Mehrotra et al., 2018), anti-
discrimination (Noble, 2018), anti-polarization (Epstein &
Robertson, 2015)).

To illustrate the problem, consider a conventional (non-
personalized) stochastic multi-armed bandit algorithm that
is used to promote new music albums on the front-page of
a website. The bandit algorithm will quickly learn which
album draws the largest click-through rate and keep display-
ing this album, even if other albums are almost equally good.
This promotes a winner-takes-all dynamic that creates super-
stars (Mehrotra et al., 2018), and may drive many deserving
artists out of business. Analogously, a (personalized) con-
textual bandit for news-feed recommendation can polarize a
user by quickly learning which type of articles the user is
most likely to read, and then exclusively recommend such
articles instead of a portfolio that is more reflective of the
user’s true interest distribution.

To overcome these problems of the conventional bandit ob-
jective, we propose a new formulation of the bandit problem
that implements the principle of Merit-based Fairness of
Exposure (Singh & Joachims, 2018; Biega et al., 2018). For
brevity, we call this the FairX bandit problem. It incorpo-
rates the additional fairness requirement that each item/arm
receives a share of exposure that is proportional to its merit.
We define the merit of an arm as an increasing function of its
mean reward, and the exposure as the probability of being
selected by the bandit policy at each round. Based on these
quantities, we then formulate the reward regret and the fair-
ness regret so that minimizing these two regrets corresponds
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to maximizing responses while minimizing unfairness to
the items.

For the FairX bandit problem, we present a fair upper con-
fidence bound (UCB) algorithm and a fair Thompson sam-
pling (TS) algorithm in the stochastic multi-armed bandits
(MAB) setting, as well as a fair linear UCB algorithm and a
fair linear TS algorithm in the stochastic linear bandits set-
ting. We prove that all algorithms achieve fairness regret and
reward regret with sub-linear dependence on the number of
rounds, while the TS-based algorithms have computational
advantages. The fairness regret of these algorithms also
depends on the minimum merit of the arms and a bounded
Lipschitz constant of the merit function, and we provide fair-
ness regret lower bounds based on these quantities. Beyond
the theoretical analysis, we also conduct an empirical eval-
uation that compares these algorithms with conventional
bandit algorithms and more naive baselines, finding that
the fairness-aware algorithms can fairly allocate exposure to
different arms effectively while maximizing user responses.

2. Related Work
The bandit problem was first introduced by Thomp-
son (Thompson, 1933) to efficiently conduct medical trials.
Since then, it has been extensively studied in different vari-
ants, and we refer to these books (Bubeck & Cesa-Bianchi,
2012; Slivkins, 2019; Lattimore & Szepesvári, 2020) for a
comprehensive survey. We focus on the classic stochastic
MAB setting where each arm has a fixed but unknown re-
ward distribution, as well as the stochastic linear bandits
problem where each arm is represented as a d-dimensional
vector and its expected reward is a linear function of its vec-
tor representation. In both stochastic MAB and stochastic
linear bandits, some of the algorithms we designed leverage
the idea of optimism in the face of uncertainty behind the
UCB algorithm (Lai & Robbins, 1985), while other algo-
rithms leverage the idea of posterior sampling behind the
TS (Thompson, 1933) algorithm. The theoretical results of
the proposed fair UCB and fair linear UCB algorithm bor-
row some ideas from several prior finite time analysis works
on the conventional UCB and linear UCB algorithm (Auer,
2002; Dani et al., 2008; Abbasi-Yadkori et al., 2011). We
adopt the Bayesian regret framework (Russo & Van Roy,
2014) for our theoretical analysis of the fair TS and the fair
linear TS algorithm.

Algorithmic fairness has been extensively studied in bi-
nary classification (Hardt et al., 2016; Chouldechova, 2017;
Kleinberg et al., 2017; Agarwal et al., 2018). These works
propose statistical criteria to test algorithmic fairness that
often operationalize definitions of fairness from political
philosophy and sociology. Several prior works (Blum et al.,
2018; Blum & Lykouris, 2019; Bechavod et al., 2019) study
how to achieve these fairness criteria in online learning.

These algorithms achieve fairness to the incoming users.
We, in contrast, achieve fairness to the arms.

Joseph et al. (Joseph et al., 2016b;a; 2018) study fairness
in bandits that ensure a better arm is always selected with
no less probability than a worse arm. Different from our
definition of fairness, their optimal policy is still the one that
deterministically selects the arm with the largest expected
reward while giving zero exposure to all the other arms.
Another type of fairness definition in bandits is to ensure
a minimum and/or maximum amount of exposure to each
arm or group of arms (Heidari & Krause, 2018; Wen et al.,
2019; Schumann et al., 2019; Li et al., 2019; Celis et al.,
2018; Claure et al., 2020; Patil et al., 2020; Chen et al.,
2020). However, they do not take the merit of the items into
consideration. Gillen et al. (Gillen et al., 2018) propose to
optimize individual fairness defined in (Dwork et al., 2012)
in the adversarial linear bandits setting, where the difference
between the probabilities that any two arms are selected is
bounded by the distance between their context vectors. They
require additional feedback of fairness-constraint violations.
We work in the stochastic bandits setting and we do not
require any additional feedback beyond the reward. We also
ensure that similar items obtain similar exposure, but we
focus on similarity of merit, which corresponds to closeness
in mean reward conditioned on context.

The most relevant work may arguably be (Liu et al., 2017),
which considers fairness in stochastic MAB problems where
the reward distribution is Bernoulli. They aim to achieve
calibrated fairness where each arm is selected with the prob-
ability equal to that of its reward being the largest, while
satisfying a smoothness constraint where arms with simi-
lar merit should receive similar exposure. They propose
a TS-based algorithm that achieves fairness regret with a
T 2/3 dependence on the time horizon T . Our formulation
is more general in a sense that we consider arbitrary reward
distributions and merit functions, with their formulation as a
special case. What is more, our proposed algorithms achieve
fairness regret with a

√
T dependence on T . In addition, we

further study the more general setting of stochastic linear
bandits.

Our definition of fairness has connections to the fair division
problem (Steihaus, 1948; Brams & Taylor, 1996; Procaccia,
2013), where the goal is to allocate a resource to different
agents in a fair way. In our problem, we aim to allocate the
users’ attention among the items in a fair way. Our definition
of fairness ensures proportionality, one of the key desiderata
in the fair division literature to ensure each agent receives
its fair share of the resource. Recently, merit-based fairness
of exposure has been studied for ranking problems in the
statistical batch learning framework (Singh & Joachims,
2018; 2019). We build upon this work, and extend merit-
based fairness of exposure to the online-learning setting.
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3. Stochastic Multi-Armed Bandits in the
FairX Setting

We begin by introducing the FairX setting for stochastic
MAB, including our new formulation of fairness and reward
regret. We then develop two algorithms, called FairX-UCB
and FairX-TS, and bound their fairness and reward regret.
In the subsequent section, we will extend this approach to
stochastic linear bandits.

3.1. FairX Setting for Stochastic MAB

A stochastic MAB instance can be represented as a collec-
tion of reward distributions v = (Pa : a ∈ [K]), wherePa is
the reward distribution of arm a with mean µ?a = Er∼Pa [r].
The learner interacts with the environment sequentially over
T rounds. In each round t ∈ [T ], the learner has to choose
a policy πt over the K arms based on the interaction history
before round t. The learner then samples an arm at ∼ πt.
In response to the selected arm at, the environment samples
a reward rt,at ∼ Pat ∈ R from the reward distribution
Pat and reveals the reward rt,at to the learner. The history
Ht =

(
π1, a1, r1,a1 , . . . , πt−1, at−1, rt−1,at−1

)
consists of

all the deployed policies, chosen arms, and their associated
rewards. Conventionally, the goal of learning is to maximize
the cumulative expected reward

∑T
t=1 Eat∼πtµ?at . Thus

conventional bandit algorithms converge to a policy that
deterministically selects the arm with the largest expected
reward.

As many have pointed out in other contexts (Singh &
Joachims, 2018; Mehrotra et al., 2018; Biega et al., 2018;
Beutel et al., 2019; Geyik et al., 2019; Abdollahpouri et al.,
2020), such winner-takes-all allocations can be considered
unfair to the items in many applications and can lead to
undesirable long-term dynamics. Bringing this insight to
the task of bandit learning, we propose to incorporate merit-
based fairness-of-exposure constraints (Singh & Joachims,
2018) into the bandits objective. Specifically, we aim to
learn a policy π? which ensures that each arm receives an
amount of exposure proportional to its merit, where merit is
quantified through an application-dependent merit function
f(·) > 0 that maps the expected reward of an arm to a
positive merit value.

π?(a)

f(µ?a)
=
π?(a′)

f(µ?a′)
∀a, a′ ∈ [K].

The merit function f is an input to the bandit algorithm, and
it provides a design choice that permits tailoring the fairness
criterion to different applications. The following theorem
shows that there is a unique policy that satisfies the above
fairness constraints.

Theorem 3.1.1 (Optimal Fair Policy). For any mean reward
parameter µ? and any choice of merit function f(·) > 0,

there exist a unique policy π? of the form

π?(a) =
f(µ?a)∑
a′ f(µ?a′)

∀a ∈ [K],

that fulfills the merit-based fairness of exposure constraints.

We refer to π? as the optimal fair policy. All the proofs of
the theorems are in Appendix A.

When the bandit converges to this optimal fair policy π?,
the expected reward also converges to the expected reward
of the optimal fair policy. We thus define the reward regret
RRT at round T as the gap between the expected reward of
the deployed policy and the expected reward of the optimal
fair policy π?

RRT =

T∑
t=1

∑
a

π?(a)µ?a −
T∑
t=1

∑
a

πt(a)µ?a. (1)

While this reward regret quantifies how quickly the reward
is optimized, we also need to quantify how effectively the
algorithm learns to enforce fairness. We thus define the fol-
lowing fairness regret FRT , which measures the cumulative
`1 distance between the deployed policy and the optimal
fair policy at round T

FRT =

T∑
t=1

∑
a

|π?(a)− πt(a)|. (2)

The fairness regret and the reward regret depend on both the
randomly sampled rewards, as well as the arms randomly
sampled from the policy. They are thus random variables
and we aim to minimize the regrets with high probability.

To prepare for the theoretical analysis, we introduce the
following two conditions on the merit function f to suitably
characterize a FairX bandit problem.

Condition 3.1.2 (Minimum Merit). The merit of each arm
is positive, i.e. minµ f(µ) ≥ γ for some positive constant
γ > 0.

Condition 3.1.3 (Lipschitz Continuity). The merit func-
tion f is L-Lipschitz continuous, i.e. ∀ µ1, µ2, |f(µ1) −
f(µ2)| ≤ L|µ1 − µ2| for some positive constant L > 0.

The following two theorems show that neither of the two
conditions can be dropped, if we want to obtain bandit algo-
rithms with fairness regret that is sub-linear in the number
of rounds T .

Theorem 3.1.4 (Lower Bound on Fairness Regret is Lin-
ear without Minimum-Merit Condition). For time horizon
T > 0, there exists a 1-Lipschitz continuous merit func-
tion f where minµ f(µ) = 1/

√
T , such that for any bandit

algorithm, there must exist a MAB instance such that the
expected fairness regret is at least E [FRT ] ≥ 0.015T .



Fairness of Exposure in Stochastic Bandits

Theorem 3.1.5 (Lower Bound on Fairness Regret is Linear
without Bounded Lipschitz-Continuity Condition). For time
horizon T > 0, there exists a

√
T -Lipschitz continuous

merit function f with minimum merit 1, such that for any
bandit algorithm, there must exist a MAB instance such that
the expected fairness regret is at least E[FRT ] ≥ 0.015T .

3.2. FairX-UCB Algorithm

Algorithm 1 FairX-UCB Algorithm
1: input: K, T , f , w0

2: for t = 1 to T do
3: ∀a Nt,a =

∑t−1
τ=1 1{aτ = a}

4: ∀a µ̂t,a =
∑t−1
τ=1 1{aτ = a}rτ,aτ /Nt,a

5: ∀a wt,a = w0/
√
Nt,a

6: CRt = (µ : ∀a µa ∈ [µ̂t,a − wt,a, µ̂t,a + wt,a])

7: µt = arg maxµ∈CRt

∑
a

f(µa)∑
a′ f(µa′ )

µa

8: Construct policy πt(a) =
f(µt,a)∑
a′ f(µt,a′ )

9: Sample arm at ∼ πt
10: Observe reward rt,at
11: end for

The first algorithm we introduce is called FairX-UCB and it
is detailed in Algorithm 1. It utilizes the idea of optimism
in the face of uncertainty. At each round t, the algorithm
constructs a confidence region CRt which contains the true
parameter µ? with high probability. Then the algorithm
optimistically selects a parameter µt ∈ RK within the con-
fidence region CRt that maximizes the estimated expected
reward subject to the constraint that we construct a fair
policy as if the selected parameter is the true parameter.
Compared to the conventional UCB algorithm which selects
the arm with the largest UCB deterministicly in each round,
the proposed FairX-UCB algorithm selects arms stochasti-
cally to ensure fairness. Finally, we apply the constructed
policy πt, observe the feedback, and update the confidence
region.

The following two theorems characterize the fairness and
reward regret upper bounds of the FairX-UCB algorithm.

Theorem 3.2.1 (FairX-UCB Fairness Regret). Under Con-
dition 3.1.2 and 3.1.3, suppose ∀t, a : rt,a ∈ [−1, 1], when
T > K, for any δ ∈ (0, 1), set w0 =

√
2 ln (4TK/δ),

the fairness regret of the FairX-UCB algorithm is FRT =

Õ
(
L
√
KT/γ

)
with probability at least 1− δ.

Theorem 3.2.2 (FairX-UCB Reward Regret). Suppose
∀t, a : rt,a ∈ [−1, 1], when T > K, for any δ ∈ (0, 1),
set w0 =

√
2 ln (4TK/δ), the reward regret of the FairX-

UCB algorithm is RRT = Õ
(√

KT
)

with probability at
least 1− δ.

Õ ignores logarithmic factors in O. Note that the well-

Algorithm 2 FairX-TS Algorithm
1: input: f , V1

2: for t = 1 to∞ do
3: Sample parameter from posterior µt ∼ Vt
4: Construct policy πt(a) =

f(µt,a)∑
a′ f(µt,a′ )

5: Sample arm at ∼ πt
6: Observe reward rt,at
7: Update posterior Vt+1 = Update(V1,Ht+1)
8: end for

known Ω
(√

KT
)

reward regret lower bound (Auer et al.,
2002) developed for the conventional bandit problem also
holds for the FairX setting because the conventional stochas-
tic MAB problem that only minimizes the reward regret is a
special case of the FairX setting where we set the merit func-
tion f to be an infinitely steep increasing function. Since the
reward regret upper bound of FairX-UCB we proved does
not depend on Conditions 3.1.2 and 3.1.3 about the merit
function f , our reward regret upper bound of the FairX-UCB
algorithm is tight up to logarithmic factors.

The fairness regret has the same dependence on the number
of arms K and the number of rounds T as the reward regret.
It further depends on the minimum merit constant γ and the
Lipschitz continuity constant L, which we treat as absolute
constants due to Theorem 3.1.4 and Theorem 3.1.5.

Compared to Fair SD TS algorithms proposed in (Liu et al.,
2017), our proposed FairX-UCB algorithm focuses on fair-
ness and reward regret across rounds instead of achieving
a smooth fairness constraint for each round. This allows
FairX-UCB to achieve improved fairness and reward regret
(
√
KT compared to (KT )

2/3). In addition, FairX-UCB
works for general reward distributions and merit functions
while SD TS only works for Bernoulli reward distribution
and identity merit function.

One challenge in implementing Algorithm 1 lies in Step 7,
since finding the most optimistic parameter is a non-convex
constrained optimization problem. We solve this optimiza-
tion problem approximately with projected gradient descent
in our empirical evaluation. In the next subsection, we will
introduce the FairX-TS algorithm that avoids this optimiza-
tion problem.

3.3. FairX-TS Algorithm

Another approach to designing stochastic bandit algorithms
that has proven successful both empirically and theoretically
is Thompson Sampling (TS). We find that this approach
can also be applied to the FairX setting. In particular, our
FairX-TS as shown in Algorithm 2 uses posterior sampling
similar to a conventional TS bandit. The algorithm puts a
prior distribution V1 on the expected reward of each arm
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µ?. For each round t, the algorithm samples a parameter µt
from the posterior Vt, and constructs a fair policy πt from
the sampled parameter to deploy. Finally, the algorithm
observes the feedback and updates the posterior distribution
of the true parameter.

Following (Russo & Van Roy, 2014), we analyze the
Bayesian reward and fairness regret of the algorithm. The
Bayesian regret framework assumes that the true parameter
µ? is sampled from the prior, and the Bayesian regret is the
expected regret taken over the prior distribution

BayesRRT = Eµ? [E[RRT |µ?]] (3)

BayesFRT = Eµ? [E[FRT |µ?]] . (4)

In the following two theorems we provide bounds on both
the Bayesian reward regret and the Bayesian fairness regret
of the FairX-TS algorithm.

Theorem 3.3.1 (FairX-TS Fairness Regret). Under Condi-
tion 3.1.2 and 3.1.3, suppose the mean reward µ?a of each
arm a is independently sampled from standard normal dis-
tribution N (0, 1), and ∀t, a rt,a ∼ N (µ?a, 1), the Bayesian
fairness regret of the FairX-TS algorithm at any round T is
BayesFRT = Õ

(
L
√
KT/γ

)
.

Theorem 3.3.2 (FairX-TS Reward Regret). Suppose the
mean reward µ?a of each arm a is independently sam-
pled from standard normal distribution N (0, 1), and ∀t, a
rt,a ∼ N (µ?a, 1), the Bayesian fairness regret of the FairX-

TS algorithm at any round T is BayesRRT = Õ
(√

KT
)

.

Note that these regret bounds are on the same order as the
fairness and reward regret of the FairX-UCB algorithm.
However, FairX-TS relies on sampling from the posterior
and thus avoids the non-convex optimization problem that
makes the use of FairX-UCB more challenging.

4. Stochastic Linear Bandits in the FairX
Setting

In this section, we extend the two algorithms introduced
in the MAB setting to the more general stochastic linear
bandits setting where the learner is provided with contextual
information for making decisions. We discuss how the two
algorithms can be adapted to this setting to achieve both
sub-linear fairness and reward regret.

4.1. FairX Setting for Stochastic Linear Bandits

In stochastic linear bandits, each arm a at round t comes
with a context vector xt,a ∈ Rd. A stochastic linear bandits
instance v = (Px : x ∈ Rd) is a collection of reward
distributions for each context vector. The key assumption of
stochastic linear bandits is that there exists a true parameter
µ? such that, regardless of the interaction history Ht, the

mean reward of arm a at round t is the product between
the context vector and the true parameter Er∼Pxt,a [r|Ht] =
µ? · xt,a for all t, a. The noise sequence

ηt = rt,at − µ? · xt,at

is thus a martingale difference sequence, since

E[ηt|Ht] = Ea∼πt [Er∼Pxt,a [r|Ht]− µ? · xt,a] = 0.

At each round t, the learner is given a set of context vectors
Dt ⊂ Rd representing the arms, and it has to choose a
policy πt over these K arms based on the interaction history
Ht = (D1, π1, a1, r1,a1 , . . . ,Dt−1, πt−1, at−1, rt−1,at−1

).
We focus on problems where the number of available arms
is finite ∀t : |Dt| = K, but where K could be large.

Again, we want to ensure that the policy provides each arm
with an amount of exposure proportional to its merit

π?t (a)

f(µ? · xt,a)
=

π?t (a′)

f(µ? · xt,a′)
∀t, xt,a, xt,a′ ∈ Dt,

where f is the merit function that maps the mean reward
of the arm to a positive merit value. Since the set of arms
changes over time, the optimal fair policy π?t at round t is
time-dependent

π?t (a) =
f(µ? · xt,a)∑
a′ f(µ? · xt,a′)

∀t, a.

Analogous to the MAB setting, we define the reward regret
as the expected reward difference between the optimal fair
policy and the deployed policy

RRT =

T∑
t=1

∑
a

π?t (a)µ?·xt,a−
T∑
t=1

∑
a

πt(a)µ?·xt,a, (5)

and fairness regret as the cumulative `1 distance between
the optimal fair policy and the deployed policy

FRT =

T∑
t=1

∑
a

|π?t (a)− πt(a)|. (6)

The lower bounds on the fairness regret derived in Theo-
rem 3.1.4 and Theorem 3.1.5 in the MAB setting also apply
to the stochastic linear bandit setting, since we can easily
convert a MAB instance into a stochastic linear bandits
instance by constructing K K-dimensional basis vectors,
each representing one arm. Thus we again employ Condi-
tion 3.1.2 and 3.1.3 to design algorithms that have fairness
regret with sub-linear dependence on the horizon T .

4.2. FairX-LinUCB Algorithm

Similar to the FairX-UCB algorithm, the FairX-LinUCB
algorithm constructs a confidence region CRt of the true
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Algorithm 3 FairX-LinUCB Algorithm
1: input: βt, f , λ
2: initialization: Σ1 = λId, b1 = 0d
3: for t = 1 to∞ do
4: Observe contexts Dt = (xt,1, xt,2, . . . , xt,K)
5: µ̂t = Σ−1

t bt {The ridge regression solution}
6: CRt = (µ : ‖µ− µ̂t‖Σt ≤

√
βt)

7: µt = arg maxµ∈CRt

∑
a

f(µ·xt,a)∑
a′ f(µ·xt,a′ )

µ · xt,a
8: Construct policy πt(a) =

f(µt·xt,a)∑
a′ f(µt·xt,a′ )

9: Sample arm at ∼ πt
10: Observe reward rt,at
11: Σt+1 = Σt + xt,atx

>
t,at

12: bt+1 = bt + xt,atrt,at
13: end for

parameter µ? at each round t. The center of the confidence
region µ̂t is the solution of a ridge regression over the exist-
ing data, which can be updated incrementally. The radius
of the confidence ball βt is an input to the algorithm. The
algorithm proceeds by repeatedly selecting a parameter µt
that is optimistic about the expected reward within the con-
fidence region, subject to the constraint that we construct
a fair policy from the parameter. We prove the following
upper bounds on the fairness regret and reward regret of the
FairX-LinUCB algorithm.

Theorem 4.2.1 (FairX-LinUCB Fairness Regret). Under
Condition 3.1.2 and 3.1.3, suppose ∀t, a ‖xt,a‖2 ≤ 1, ηt
is 1 sub-Gaussian, ‖µ?‖2 ≤ 1, set λ = 1, with proper
choice of βt, the fairness regret at any round T > 0 is
FRT = Õ

(
Ld
√
T/γ

)
with high probability.

Theorem 4.2.2 (FairX-LinUCB Reward Regret). Suppose
∀t, a ‖xt,a‖2 ≤ 1, ηt is 1 sub-Gaussian, ‖µ?‖2 ≤ 1, set
λ = 1, with proper choice of βt, the reward regret at any
round T > 0 is RRT = Õ

(
d
√
T
)

with high probability.

Both fairness and reward regret have square root dependence
on the horizon T and a linear dependence on the feature
dimension d, and the fairness regret depends on the absolute
constants L and γ. Note that the reward regret is not tight
in terms of d and there exist algorithms (Chu et al., 2011;
Lattimore & Szepesvári, 2020) that achieve reward regret
Õ(
√
dT ). However these algorithms are based on the idea

of arm elimination and thus will likely not achieve low
fairness regret. Also LinUCB is a much more practical
option than the ones based on arm elimination (Chu et al.,
2011).

The optimization Step 7 in Algorithm 3, where we need to
find an optimistic parameter µt that maximizes the estimated
expected reward within the confidence region CRt subject
to the fairness constraint, is again a non-convex constrained
optimization problem. We use projected gradient descent to

Algorithm 4 FairX-LinTS Algorithm
1: input: f , V1

2: for t = 1 to∞ do
3: Observe contexts Dt = (xt,1, xt,2, . . . , xt,K)
4: Sample parameter from posterior µt ∼ Vt
5: Construct policy πt(a) =

f(µt,a·xt,a)∑
a′ f(µt,a′ ·xt,a)

6: Sample arm at ∼ πt
7: Observe reward rt,at
8: Update posterior Vt+1 = Update(V1,Ht+1)
9: end for

find approximate solutions in our empirical evaluation.

4.3. FairX-LinTS Algorithm

To avoid the difficult optimization problem of FairX-
LinUCB, we again explore the use of Thompson sampling.
Algorithm 4 shows our proposed FairX-LinTS. At each
round t, the algorithm samples a parameter µt from the pos-
terior distribution Vt of the true parameter µ? and derives a
fair policy πt from the sampled parameter. Then the algo-
rithm deploys the policy and observes the feedback for the
selected arm. Finally, the algorithm updates the posterior
distribution of the true parameter given the observed data.
Note that sampling from the posterior is efficient for a vari-
ety of models (e.g. normal distribution), as opposed to the
non-convex optimization problem in FairX-LinUCB.

Appropriately extending our definition of Bayesian reward
regret and fairness regret

BayesRRT = Eµ? [E[RRT |µ?]] (7)

BayesFRT = Eµ? [E[FRT |µ?]] , (8)

we can prove the following regret bounds for the FairX-
LinTS algorithm.

Theorem 4.3.1 (FairX-LinTS Fairness Regret). Under Con-
dition 3.1.2 and 3.1.3, suppose each dimension of the
true parameter µ? is independently sampled from stan-
dard normal distribution N (0, 1), ∀t, a ‖xt,a‖2 ≤ 1, ηt
is sampled from standard normal distribution N (0, 1), the
Bayesian fairness regret of the FairX-LinTS algorithm is
BayesFR = Õ

(
L
√
dT/γ

)
.

Theorem 4.3.2 (FairX-LinTS Reward Regret). Suppose
each dimension of the true parameter µ? is independently
sampled from standard normal distribution N (0, 1), ∀t, a
‖xt,a‖2 ≤ 1, ηt is sampled from standard normal distribu-
tionN (0, 1), the Bayesian reward regret of the FairX-LinTS

algorithm is BayesRR = Õ
(
d
√
T
)

.

Similar to the FairX-TS algorithm in the MAB setting, the
Bayesian fairness regret of FairX-LinTS assumes a normal
prior. Note that the Bayesian fairness regret of FairX-LinTS
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differs by order of
√
d from the non-Bayesian fairness regret

of the FairX-LinUCB algorithm. The Bayesian setting and
the normal prior assumption enable us to explicitly bound
the total variation distance between our policy and the op-
timal fair policy, which allows us to avoid going through
the UCB-based analysis of the LinUCB algorithms as in the
conventional way of proving Bayesian regret bound (Russo
& Van Roy, 2014).

5. Experiments
While the theoretical analysis provides worst case guaran-
tees for the algorithms, we now evaluate empirically how
the algorithms perform on a range of tasks. We perform
this evaluation both on synthetic and real-world data. The
synthetic data allows us to control properties of the learn-
ing problem for internal validity, and the real-world data
provides a data-point for external validity of the analysis.

5.1. Experiment Setup

For the experiments where we control the properties of
the synthetic data, we derive bandit problems from the
multi-label datasets yeast (Horton & Nakai, 1996) and me-
diamill (Snoek et al., 2006). The yeast dataset consists of
2, 417 examples. Each example has 103 features and be-
longs to one or multiple of the 14 classes. We randomly
split the dataset into two sets, 20% as the validation set to
tune hyper-parameters and 80% as the test set to test the
performance of different algorithms. For space reasons,
the details and the results of the mediamill dataset are in
Appendix B. To simulate the bandit environment, we treat
classes as arms and their labels (0 or 1) as rewards. For
each round t, the bandit environment randomly samples an
example from the dataset. Then the bandit algorithm selects
an arm (class), and its reward (class label) is revealed to the
algorithm. To construct context vectors for the arms, we
generate 50-dimensional random Fourier features (Rahimi
et al., 2007) from the outer product between the features of
the example and the one-hot representation of the arms.

For the experiments on real-world data, we use data from
the Yahoo! Today Module (Li et al., 2010), which contains
user click logs from a news-article recommender system that
was fielded for 10 days. Each day logged around 4.6 million
events from a bandit that selected articles uniformly at ran-
dom, which allows the use of the replay methodology (Li
et al., 2010) for unbiased offline evaluation of new bandit
algorithms. We use the data from the first day for hyper-
parameter selection and report the results on the data from
the second day. The results using all the data are presented
in Appendix B. Each article and each user is represented by
a 6-dimensional feature vector respectively. Following (Li
et al., 2010), we use the outer product between the user
features and the article features as the context vector.

To calculate the fairness and reward regret, we determine
the optimal fair policy as follows. For MAB experiments,
we use the empirical mean reward of each arm as the mean
parameter for each arm. For linear bandit experiments, we
fit a linear least square model that maps the context vector
of each arm to its reward. Note that the linearity assumption
does not necessarily hold for any of the datasets, and that
rewards are known to change over time for the Yahoo! data.
This realism adds a robustness component to the evaluation.

We also add straightforward FairX-variants of the ε-greedy
algorithms to the empirical analysis, which we call FairX-
EG and FairX-LinEG. The algorithms are identical to their
conventional ε-greedy counterparts, except that they con-
struct their policies according to πt(a) =

f(µ̂t,a)∑
a′ f(µ̂t,a′ )

or

πt(a) =
f(µ̂t·xt,a)∑
a′ f(µ̂t·xt,a) where µ̂t is the estimated parameter

at round t. While ε-greedy has weaker guarantees already
in the conventional bandit setting, it is well known that it
often performs well empirically and we thus add it as a
reference for the more sophisticated algorithms.In addition
to the FairX algorithms, we also include the fairness re-
gret of conventional UCB, TS, LinUCB, and LinTS bandit
algorithms.

We use merit functions of the form f(µ) = exp(cµ), since
the choice of the constant c provides a straightforward way
to explore how the algorithms perform for steeper vs. flatter
merit functions. In particular, the choice of c varies the
value of L/γ. For both FairX-UCB and FairX-LinUCB,
we use projected gradient descent to solve the non-convex
optimization problem each round. We set the learning rate
to be 0.01 and the number of steps to be 10. For FairX-
LinUCB, we use a fixed βt = β for all rounds.

In general, we use grid search to tune hyper-parameters to
minimize fairness regret on the validation set and report
the performance on the test set. We grid search w0 for
FairX-UCB and UCB; prior variance and reward variance
for FairX-TS, TS, FairX-LinTS and LinTS; λ and β for
FairX-LinUCB and LinUCB; ε for FairX-EG; ε and the
regularization parameter of the ridge regression for FairX-
LinEG. We run each experiment 10 times and report the
mean and the standard deviation.

5.2. How unfair are conventional bandit algorithms?

We first verify that conventional bandit algorithms indeed
violate merit-based fairness of exposure, and that our FairX
algorithms specifically designed to ensure fairness do in-
deed perform better. Figure 1 shows the average exposure
that each arm received across rounds under the conventional
UCB and TS algorithms for a typical run, and it compares
this to the exposure allocation under the FairX-UCB and
FairX-TS algorithm. The plots show the average exposure
after 2,000 (left) and 2,000,000 (right) rounds, and it also
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Figure 1. The average exposure distribution of different algorithms on the yeast dataset in the MAB setting after 2, 000 rounds (left) and
2, 000, 000 rounds (right). (c = 4)

includes the optimally fair exposure allocation. Already af-
ter 2,000 rounds, the conventional algorithms under-expose
many of the arms. After 2,000,000 rounds, they focus virtu-
ally all exposure on arm 11, even though arm 12 has only
slightly lower merit. Both FairX-UCB and FairX-TS track
the optimal exposure allocation substantially better, and they
converge to the optimally fair solution. This verifies that
FairX algorithms like FairX-UCB and FairX-TS are indeed
necessary to enforce merit-based fairness of exposure. The
following sections further show that conventional bandit
algorithms consistently suffer from much larger fairness re-
gret compared to FairX algorithms across different datasets
and merit functions in both MAB and linear bandits setting.

5.3. How do the FairX algorithms compare in the MAB
setting?

Figure 2. Fairness regret and reward regret of different MAB algo-
rithms on the yeast dataset. (c = 10)

Figure 2 compares the performance of the bandit algorithms
on the yeast dataset. The fairness regret converges roughly
at the rate predicted by the bounds for FairX-UCB and
FairX-TS, and FairX-EG shows a similar behavior as well.
In terms of reward regret, all FairX algorithms perform
substantially better than their worst-case bounds suggest.
Note that FairX-UCB does particularly well in terms of
reward regret, but also note that part of this is due to vi-
olating fairness more than FairX-TS. Specifically, in the
FairX setting, an unfair policy can get better reward than the

optimal fair policy, making a negative reward regret possi-
ble. While FairX-EG wins neither on fairness regret nor on
reward regret, it nevertheless does surprisingly well given
the simplicity of the exploration scheme. We conjecture that
FairX-EG benefits from the implicit exploration that results
from the stochasticity of the fair policies. Results for other
merit functions are given in Appendix B, and we find that
the algorithms perform more similarly the flatter the merit
function.

5.4. How do the FairX algorithms compare in the
linear bandits setting?

Figure 3. Fairness regret and reward regret of different linear bandit
algorithms on the yeast dataset. (c = 3)

We show the fairness regret and the reward regret of the
bandit algorithms on the yeast dataset in Figure 3. Results
for other merit functions are in Appendix B. Similar to the
MAB setting, there is no clear winner between the three
FairX algorithms. Again we see some trade-offs between
reward regret and fairness regret, but all three FairX algo-
rithms show a qualitatively similar behavior. One difference
is that the fairness regret no longer seems to converge. This
can be explained with the misspecification of the linear
model, as the estimated “optimal” policy that we use in our
computation of regret may differ from the policy learned
by the algorithms due to selection biases. Nevertheless, we
conclude that the fairness achieved by the FairX algorithms
is still highly preferable to that of the conventional bandit
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Figure 4. Experiment results on the Yahoo! dataset for both the MAB and the linear bandits setting (c = 10 for both settings).

algorithms.

5.5. How do the FairX algorithms compare on the
real-world data?

To validate the algorithms on a real-world application, Fig-
ure 4 provides fairness and reward regret on the Yahoo!
dataset for both the MAB and the linear bandits setting.
Again, all three types of FairX algorithms perform compara-
bly and have reward regret that converges quickly. Note that
even the MAB setting now includes some misspecification
of the model, since the reward distribution changes over
time. This explains the behavior of the fairness regret. How-
ever, all FairX algorithms perform robustly in both settings,
even though the real data does not exactly match the model
assumptions.

6. Conclusions
We introduced a new bandit setting that formalizes merit-
based fairness of exposure for both the stochastic MAB and
the linear bandits setting. In particular, we define fairness re-
gret and reward regret with respect to the optimal fair policy
that fulfills the merit-based fairness of exposure, develop
UCB and Thompson sampling algorithms for both settings,
and prove bounds on their fairness and reward regret. An
empirical evaluation shows that these algorithms provide
substantially better fairness of exposure to the items, and
that they are effective across a range of settings.
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A. Proofs of the Theorems
A.1. Proof of Theorem 3.1.1

Proof. First, the optimal fair policy satisfies the merit-based fairness of exposure constraints, since for any two arms
a, a′ ∈ [K],

π?(a)

f(µ?a)
=
π?(a′)

f(µ?a′)
=

1∑
a f(µ?a)

.

Second, we show that the solution is unique. The merit-based fairness of exposure constraints on π? correspond to K − 1
linearly independent equations of π?. With an additional linear equation

∑
a π

?(a) = 1 that is linearly independent of the
other K − 1 ones, we have K linearly independent equations on K unknowns in π?. Thus the solution to these equations is
unique.

�

A.2. Proof of Theorem 3.1.4

Proof. We prove the theorem by constructing two MAB instances and a 1-Lipschitz merit function. We show the sum of the
expected fairness regrets of the two MAB instances are linear in T for any bandit algorithm under the merit function. Thus
any bandit algorithm will have expected fairness regret linear in T for at least one of the two MAB instances.

Let us consider two MAB instances v1 = (P 1
1 , P

1
2 ) and v2 = (P 2

1 , P
2
2 ) where each instance has two arms, and each arm

has reward distributions being Gaussian distributions with variance fixed to be 1/2. The first instance’s mean µ1 = (θ, 2θ),
i.e. P 1

1 = N (θ, 1/2), P 1
2 = N (2θ, 1/2) and the second instance’s mean is µ2 = (2θ, 2θ), i.e. P 2

1 = N (2θ, 1/2),
P 2

2 = N (2θ, 1/2), where θ > 0 is a positive constant. The merit function f is an identify function, i.e. f(·) = ·.
This means that the optimal fair policy for the first instance is π?,1 = [1/3, 2/3], while the optimal fair policy for
the second instance is π?,2 = [1/2, 1/2]. Let us consider any bandit algorithm A which at every round t, produces
a policy πt (may be in a randomized way), based on the history Ht =

(
π1, a1, r1,a1 , . . . , πt−1, at−1, rt−1,at−1

)
, i.e.

πt ∼ A
(
·|π1, a1, r1,a1 , . . . , πt−1, at−1, rt−1,at−1

)
, at ∼ πt, rt ∼ Pat .

Let us denote an outcome trajectory as τ = (π1, a1, r1,a1 , . . . , πT , aT , rT,aT ). Denote P1 as the distribution of τ of A
interacting with the first MAB instance v1, while P2 as the distribution of τ of A interacting with the second MAB instance
v2. The KL divergence between P1 and P2 can be upper bounded as follows:

KL
(
P1,P2

)
= Eτ∼P1

[
ln

P1(τ)

P2(τ)

]
= Eτ∼P1

[
T∑
t=1

ln
P 1
at(rat)

P 2
at(rat)

]
=

T∑
t=1

Eπt∼A1Eat∼πtKL
(
P 1
at , P

2
at

)
=

T∑
t=1

Eπt∼A1

[
πt(1)KL

(
P 1

1 , P
2
1

)]
=

T∑
t=1

Eπt∼A1

[
πt(1)θ2

]
≤

T∑
t=1

Eπt∼A1θ2 = Tθ2,

where πt ∼ A1 means that πt is sampled from the process of A interacting with the first MAB instance. Namely, when
θ → 0, it would be hard to distinguish between P1 and P2.

For any sequence of policies π1, . . . , πT , we can lower bound the fairness regret for each instance as follows. For the
fairness regret FR1

T of instance v1, we have:

E
[

1

T
FR1

T

]
= E

[
1

T

T∑
t=1

(|πt(1)− 1/3|+ |πt(2)− 2/3|)

]

≥ E

[∣∣∣∣∣ 1

T

T∑
t=1

πt(1)− 1/3

∣∣∣∣∣+

∣∣∣∣∣ 1

T

T∑
t=1

πt(2)− 2/3

∣∣∣∣∣
]

= 2E

[∣∣∣∣∣ 1

T

T∑
t=1

πt(1)− 1/3

∣∣∣∣∣
]
.

Similarly, for the fairness regret FR2
T of instance v2, we have:

E
[

1

T
FR2

T

]
≥ 2E

[∣∣∣∣∣ 1

T

T∑
t=1

π1(t)− 1/2

∣∣∣∣∣
]
.
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Thus we have:

E
[
FR1

T /T
]

+ E
[
FR2

T /T
]
≥ 1

6
P1

(
1

T

T∑
t=1

πt(1) >
5

12

)
+

1

6
P2

(
1

T

T∑
t=1

πt(1) ≤ 5

12

)

≥ 1

12
exp

(
−KL

(
P1,P2

))
≥ 1

12
exp

(
−θ2T

)
where the second inequality applies the Bretagnolle-Huber inequality (Bretagnolle & Huber, 1979).

Set θ = 1/
√
T , we prove that:

E
[
FR1

T /T
]

+ E
[
FR2

T /T
]
≥ 0.03,

which implies that at least one instance suffers linear expected fairness regret.

This concludes the proof.

�

A.3. Proof of Theorem 3.1.5

Proof. Similar to the proof of Theorem 3.1.4, we construct two MAB instances and a merit function with minimum merit 1.
We show the sum of the expected fairness regrets of the two MAB instances are linear in T for any bandit algorithm under
this merit function. Thus any bandit algorithm will have expected fairness regret linear in T for at least one of the two MAB
instances.

Let us consider two MAB instances v1 = (P 1
1 , P

1
2 ) and v2 = (P 2

1 , P
2
2 ) where each instance has two arms, and each arm has

reward distributions being Gaussian distributions with variance fixed to be 1/2. The first instance’s mean µ1 = (θ, 0), i.e.
P 1

1 = N (θ, 1/2), P 1
2 = N (0, 1/2) and the second instance’s mean is µ2 = (0, 0), i.e. P 2

1 = N (0, 1/2), P 2
2 = N (0, 1/2),

where θ > 0 is a positive constant to be set later. The merit function f with minimum merit 1 is a piece-wise linear function

f(µ) =

{
1 µ ≤ 0

Lµ+ 1 µ > 0

where L > 0 is a positive constant to be set later. This means that the optimal fair policy for the first instance is
π?,1 = [(Lθ + 1)/(Lθ + 2), 1/(Lθ + 2)], while the optimal fair policy for the second instance is π?,2 = [1/2, 1/2]. Let us
consider any algorithm A which at every round t, produces a policy πt (may be in a randomized way), based on the history
Ht =

(
π1, a1, r1,a1 , . . . , πt−1, at−1, rt−1,at−1

)
, i.e. πt ∼ A

(
·|π1, a1, r1,a1 , . . . , πt−1, at−1, rt−1,at−1

)
, at ∼ πt, rt ∼

Pat .

Let us denote an outcome trajectory as τ = (π1, a1, r1,a1 , . . . , πT , aT , rT,aT ). Denote P1 as the distribution of τ of A
interacting with the first MAB instance v1, while P2 as the distribution of τ of A interacting with the second MAB instance
v2. The KL divergence between P1 and P2 can be upper bounded as follows:

KL
(
P1,P2

)
= Eτ∼P1

[
ln

P1(τ)

P2(τ)

]
= Eτ∼P1

[
T∑
t=1

ln
P 1
at(rat)

P 2
at(rat)

]
=

T∑
t=1

Eπt∼A1Eat∼πtKL
(
P 1
at , P

2
at

)
=

T∑
t=1

Eπt∼A1

[
πt(1)KL

(
P 1

1 , P
2
1

)]
=

T∑
t=1

Eπt∼A1

[
πt(1)θ2

]
≤

T∑
t=1

Eπt∼A1θ2 = Tθ2,

where πt ∼ A1 means that πt is sampled from the process of A interacting with the first MAB instance.

For any sequence of policies π1, . . . , πT , we can lower bound the fairness regret for each instance as follows. For the
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fairness regret FR1
T of instance v1, we have:

E
[

1

T
FR1

T

]
=

1

T

T∑
t=1

(|πt(1)− (Lθ + 1)/(Lθ + 2)|+ |πt(2)− 1/(Lθ + 2)|)

≥

∣∣∣∣∣ 1

T

T∑
t=1

πt(1)− (Lθ + 1)/(Lθ + 2)

∣∣∣∣∣+

∣∣∣∣∣ 1

T

T∑
t=1

πt(2)− 1/(Lθ + 2)

∣∣∣∣∣
= 2

∣∣∣∣∣ 1

T

T∑
t=1

πt(1)− (Lθ + 1)/(Lθ + 2)

∣∣∣∣∣ .
Similarly, for the fairness regret FR2

T of instance v2, we have:

E
[

1

T
FR2

T

]
≥ 2

∣∣∣∣∣ 1

T

T∑
t=1

π1(t)− 1/2

∣∣∣∣∣ .
Thus we have:

E
[
FR1

T /T
]

+ E
[
FR2

T /T
]
≥ Lθ

2Lθ + 4
P1

(
1

T

T∑
t=1

πt(1) ≤ 3Lθ + 4

4Lθ + 8

)
+

Lθ

2Lθ + 4
P2

(
1

T

T∑
t=1

πt(1) >
3Lθ + 4

4Lθ + 8

)

≥ Lθ

4Lθ + 8
exp

(
−KL

(
P1,P2

))
≥ Lθ

4Lθ + 8
exp

(
−θ2T

)
where the second inequality applies the Bretagnolle-Huber inequality (Bretagnolle & Huber, 1979).

Set θ = 1/
√
T and L =

√
T , we prove that:

E
[
FR1

T /T
]

+ E
[
FR2

T /T
]
≥ 0.03,

which implies that at least one instance suffers linear expected fairness regret.

This concludes the proof.

�

A.4. Proof of Theorem 3.2.2

Lemma A.4.1. For any δ ∈ (0, 1), with probability at least 1− δ/2, ∀ t > K, a ∈ [K], µ? ∈ CRt.

Proof. For any t > K and a ∈ [K], apply Hoeffding’s inequality, we have with probability at least 1− δ/(2KT ),

|µ̂t,a − µ?a| ≤
√

2 ln(4KT/δ)/Nt,a.

Apply union bound to ∀ t > K, a ∈ [K], we conclude the proof. �

Lemma A.4.2. For any δ ∈ (0, 1), with probability at least 1− δ/2,∣∣∣∣∣
T∑

t=K+1

Ea∼πt
√

1/Nt,a −
T∑

t=K+1

√
1/Nt,at

∣∣∣∣∣ ≤√2T ln(4/δ).

Proof. The sequence √
1/Nt,at − Ea∼πt

√
1/Nt,a

is a martingale difference sequence, and ∀t > K∣∣∣∣√1/Nt,at − Ea∼πt
√

1/Nt,a

∣∣∣∣ ≤ 1.
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We can apply the Azuma-Hoeffding’s inequality to get with probability at least 1− δ/2,

∣∣∣∣∣
T∑

t=K+1

Ea∼πt
√

1/Nt,a −
T∑

t=K+1

√
1/Nt,at

∣∣∣∣∣ ≤√2T ln(4/δ).

This concludes the proof.

�

Proof. ( Theorem 3.2.2)

The reward regret can be upper bounded as follows:

RRT =

T∑
t=1

∑
a

(π?(a)− πt(a))µ?a

≤ 2K +

T∑
t=K+1

∑
a

πt(a)µt,a − πt(a)µ?a

= 2K +

T∑
t=K+1

∑
a

πt(a)(µt,a − µ̂t,a + µ̂t,a − µ?a)

≤ 2K +

T∑
t=K+1

∑
a

πt(a)2

√
2 ln(4TK/δ)

Nt,a

= 2K + 2
√

2 ln(4TK/δ)

T∑
t=K+1

Ea∼πt
√

1/Nt,a

≤ 2K + 2
√

2 ln(4TK/δ)

(√
2T ln(4/δ) +

T∑
t=K+1

√
1/Nt,at

)
≤ 2K + 2

√
2 ln(4TK/δ)

(√
2T ln(4/δ) + 2

√
TK

)
.

The first inequality comes from Line 7 in Algorithm 1. The second inequality comes from Lemma A.4.1. The third
inequality comes from Lemma A.4.2 and The last inequality applies the AM-GM inequality. Thus when T > K, with
probability at least 1− δ,

RRT = Õ
(√

TK
)
.

This concludes the proof.

�
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A.5. Proof of Theorem 3.2.1

Proof. For any δ ∈ (0, 1), with probability at least 1− δ, the events in Lemma A.4.1 and Lemma A.4.2 hold and at each
round t > K,

K∑
a=1

|πt(a)− π?(a)|

=

K∑
a=1

∣∣∣∣∣ f(µt,a)∑K
a′=1 f(µt,a)

− f(µ?a)∑K
a′=1 f(µ?a′)

∣∣∣∣∣
=

K∑
a=1

∣∣∣f(µt,a)
∑K
a′=1 f(µ?a′)− f(µ?a)

∑K
a′=1 f(µt,a′)

∣∣∣∑K
a′=1 f(µt,a)

∑K
a′=1 f(µ?a′)

=

K∑
a=1

∣∣∣f(µt,a)
∑K
a′=1 f(µ?a′)− f(µ?a)

∑K
a′=1 f(µ?a′) + f(µ?a)

∑K
a′=1 f(µ?a′)− f(µ?a)

∑K
a′=1 f(µt,a′)

∣∣∣∑K
a′=1 f(µt,a)

∑K
a′=1 f(µ?a′)

≤
∑K
a=1 |f(µt,a)− f(µ?a)|

∑K
a′=1 f(µ?a′) +

∑K
a=1 f(µ?a)

∑K
a′=1 |f(µ?a′)− f(µt,a)|∑K

a′=1 f(µt,a)
∑K
a′=1 f(µ?a′)

=
2
∑K
a=1 |f(µt,a)− f(µ?a)|∑K

a′=1 f(µt,a)

=
2
∑K
a=1

f(µt,a)
f(µt,a) |f(µt,a)− f(µ?a)|∑K

a′=1 f(µ̂t,a)

≤
K∑
a=1

4Lπt(a)

γ

√
2 ln(4TK/δ)/Nt,at

=
4L
√

2 ln(4TK/δ)

γ
Ea∼πt

[
1/
√
Nt,at

]
.

The second inequality comes from lemma A.4.1. And by lemma A.4.2,

T∑
t=K+1

K∑
a=1

|πt(a)− π?(a)| ≤
4L
√

2 ln(4TK/δ)

γ

T∑
t=K+1

Ea∼πt
[
1/
√
Nt,at

]

≤
4L
√

2 ln(4TK/δ)

γ

(√
2T ln(4/δ) +

T∑
t=K+1

√
1/Nt,at

)

≤
4L
√

2 ln(4TK/δ)

γ

(√
2T ln(4/δ) + 2

√
TK

)
.

So when T > K, with probability at least 1− δ, the fairness regret

FRT ≤ 2K +
4L
√

2 ln(4TK/δ)

γ

(√
2T ln(4/δ) + 2

√
TK

)
= Õ

(
L
√
TK/γ

)
,

which concludes the proof.

�

A.6. Proof of Theorem 4.2.1

Proposition A.6.1. (Confidence) For δ ∈ (0, 1), assume ‖µ?‖2 ≤W , set βt =
(
W +

√
d ln(1 + t/d) + 2 ln(π2t2/3δ)

)2

with probability at least 1− δ/2, ∀t, µ? ∈ CRt.
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Section A.6.1 is devoted to establishing this confidence analysis.

Proposition A.6.2. Let

frt =
∑
a

|π?t (a)− πt(a)| (9)

denote the instantaneous fairness regret acquired by the algorithm at round t. For the FairX-LinUCB algorithm, if µ? ∈ CRt
for all t ≤ T , then with probability at least 1− δ/2

T∑
t=1

frt ≤
4L
√
βT

γ

√
2Td ln(1 +

T

d
) +

4L
√
βT

γ

√
2T ln(4/δ). (10)

Lemma A.6.3 (Lemma 7 in (Dani et al., 2008) ). For the FairX-LinUCB algorithm, if µ ∈ CRt, then for any x ∈ Rd

|(µ− µ̂t) · x| ≤
√
βtx>Σ−1

t x.

Define

wt,a :=
√
x>t,aΣ−1

t xt,a

which we interpret as the “normalized width” at time t for action a.

Lemma A.6.4. For the FairX-LinUCB algorithm, with probability 1− δ/2,

∣∣∣∣∣
T∑
t=1

wt,at −
T∑
t=1

Ea∼πtwt,a

∣∣∣∣∣ ≤√2T ln(4/δ).

Proof. The sequence

wt,at − Ea∼πtwt,a

is a martingale difference sequence and ∀t

wt,a = ‖xt,at‖Σ−1
t
≤
√
λmax(Σ−1

t )‖xt,at‖2 ≤ 1,

where λmax(·) denotes the largest eigenvalue of a matrix. Using Azuma-Hoeffding’s inequality, with probability at least
1− δ/2 ∣∣∣∣∣

T∑
t=1

wt,at −
T∑
t=1

Ea∼πtwt,a

∣∣∣∣∣ ≤√2T ln(4/δ).

�

Lemma A.6.5. For the FairX-LinUCB algorithm , if ∀t, µ? ∈ CRt, then with probability at least 1− δ/2

T∑
t=1

frt ≤
4L
√
βt

γ

T∑
t=1

wt,at +
4L
√
βt

γ

√
2T ln(4/δ)
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Proof.

frt

=
∑
a

∣∣∣∣ f(µ? · xt,a)∑
a′ f(µ? · xt,a′)

− f(µt · xt,a)∑
a′ f(µt · xt,a′)

∣∣∣∣
=
∑
a

∣∣∣∣f(µ? · xt,a)
∑
a′ f(µt · xt,a′)− f(µt · xt,a)

∑
a′ f(µ? · xt,a′)∑

a′ f(µ? · xt,a′)
∑
a′ f(µt · xt,a′)

∣∣∣∣
=
∑
a

∣∣∣∣f(µ? · xt,a)
∑
a′ f(µt · xt,a′)− f(µ? · xt,a)

∑
a′ f(µ? · xt,a′) + f(µ? · xt,a)

∑
a′ f(µ? · xt,a′)− f(µt · xt,a)

∑
a′ f(µ? · xt,a′)∑

a′ f(µ? · xt,a′)
∑
a′ f(µt · xt,a′)

∣∣∣∣
≤
∑
a

|f(µ? · xt,a)
∑
a′ f(µt · xt,a′)− f(µ? · xt,a)

∑
a′ f(µ? · xt,a′)|+ |f(µ? · xt,a)

∑
a′ f(µ? · xt,a′)− f(µt · xt,a)

∑
a′ f(µ? · xt,a′)|∑

a′ f(µ? · xt,a′)
∑
a′ f(µt · xt,a′)

≤
2
∑
a |f(µ? · xt,a)− f(µt · xt,a)|∑

a′ f(µt · xt,a′)

=2
∑
a

πt(a)

f(µt · xt,a)
|f(µ? · xt,a)− f(µ̂t · xt,a) + f(µ̂t · xt,a)− f(µt · xt,a)|

≤2L

γ
Ea∼πt

[
‖µ? − µ̂t‖Σt‖xt,a‖Σ−1

t
+ ‖µt − µ̂t‖Σt‖xt,a‖Σ−1

t

]
≤4L

√
βt

γ
Ea∼πtwt,a.

So by lemma A.6.4 and that βt is increasing,

T∑
t=1

frt ≤
4L
√
βT

γ

T∑
t=1

wt,at +
4L
√
βT

γ

√
2T ln(4/δ).

�

Lemma A.6.6 (Lemma 10 in (Dani et al., 2008)). We have ∀ t

det Σt =

t−1∏
τ=1

(1 + w2
t,at).

Lemma A.6.7. ∀t, det Σt+1 ≤ (1 + t/d)d.

Proof.

Trace Σt+1 = Trace

(
I +

t∑
τ=1

xτ,aτx
>
τ,aτ

)

= d+

t=1∑
τ=1

Trace
(
xt,atx

>
t,at

)
= d+

t∑
τ=1

‖xt,at‖22

≤ d+ t.

(11)

Now, recall that Trace Σt equals the sum of the eigenvalues of Σt. On the other hand, det(Σt) equals the product of the
eigenvalues. Since Σt is positive definite, its eigenvalues are all positive. Subject to these constraints, by AM-GM inequality,
det(Σt) is maximized when all the eigenvalues are equal; the desired bound follows. �



Fairness of Exposure in Stochastic Bandits

Lemma A.6.8. We have for all t,
t∑

τ=1

w2
t,at ≤ 2d ln (1 + t/d) .

Proof. Using the fact that for 0 ≤ y ≤ 1, ln(1 + y) ≥ y/2, we have

t∑
τ=1

w2
t,a ≤ 2

t∑
τ=1

ln(1 + w2
t,at)

= 2 ln(det(Σt+1))

≤ 2d ln(1 + t/d)

by the previous two lemmas. �

Proof. ( Proof of Proposition A.6.2)

T∑
t=1

frt ≤
4L
√
βT

γ

T∑
t=1

wt,at +
4L
√
βT

γ

√
2T ln(4/δ)

≤ 4L
√
βT

γ

√√√√T

T∑
t=1

w2
t,at +

4L
√
βT

γ

√
2T ln(4/δ)

≤ 4L
√
βT

γ

√
2Td ln(1 +

T

d
) +

4L
√
βT

γ

√
2T ln(4/δ).

�

Proof. (Proof of theorem 4.2.1)

By Proposition A.6.1 and Proposition A.6.2, with probability at least 1− δ,

FRT =

T∑
t=1

frt ≤
4L
√
βT

γ

√
2Td ln(1 +

t

d
) +

4L
√
βT

γ

√
2T ln(4/δ) = Õ

(
Ld
√
T/γ

)
.

�

A.6.1. CONFIDENCE ANALYSIS

In this section, we prove Proposition A.6.1, which states that with high probability, the true parameter µ? lies in the
confidence Region CRt for all t.

Proof. (Proof of Proposition A.6.1)

Since rτ,aτ = µ? · xτ,aτ + ητ , we have

µ̂t − µ? = Σ−1
t

t−1∑
τ=1

rτ,aτxτ,aτ − µ? = Σ−1
t µ? + Σ−1

t

t−1∑
τ=1

ητxτ,aτ

For any 0 < δt < 1, using self-normalized bound for vector-valued martingales (Abbasi-Yadkori et al., 2011) and
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Lemma A.6.7, we have with probability at least 1− δt,√
(µ̂t − µ?)>Σt(µ̂t − µ?) = ‖Σ1/2

t (µ̂t − µ?)‖2

≤ ‖Σ−1/2
t µ?‖2 + ‖Σ−1/2

t

t−1∑
τ=1

ητxτ,aτ ‖2

≤ ‖µ?‖2 +
√

ln(det(Σt) det(Σ1)−1/δ2
t )

≤W +
√
d ln(1 + t/d) + 2 ln(1/δt).

Let δt = 3δ/π2

t2 ,

P(∀t µ? ∈ CRt) ≥ 1−
∞∑
t=1

(δ/t2)(3/π2) = 1− δ

2
.

�

A.7. Proof of Theorem 4.2.2

Proof. With probability at least 1− δ, the events in Proposition A.6.1 and Lemma A.6.4 hold and

RRT

=

T∑
t=1

µ? · Ea∼π?t [xt,a]− µ? · Ea∼πt [xt,a]

≤
T∑
t=1

µt · Ea∼πt [xt,a]− µ? · Ea∼πt [xt,a]

=

T∑
t=1

(µt − µ̂t) · Ea∼πt [xt,a] + (µ̂t − µ?) · Ea∼πt [xt,a]

≤
T∑
t=1

Ea∼πt [2
√
βtwt,a]

≤2
√
βT

T∑
t=1

Ea∼πt [wt,a]

≤2
√
βT

(
T∑
t=1

wt,at + 2
√

2T ln(4/δ)

)

≤2
√
βT

(√
2Td ln(1 +

T

d
) + 2

√
2T ln(4/δ)

)
=Õ

(
d
√
T
)
.

The first inequality comes from the algorithm. The second inequality comes from Lemma A.6.3. The third inequality comes
from the fact that βt is increasing. The fourth inequality comes from lemma A.6.4. And the last inequality comes from
Lemma A.6.8.

�

A.8. Proof of Theorem 4.3.1

Proof. Denote the posterior distribution of µ? conditioned onHt as p(µ?|Ht) and the corresponding conditional expectation
as E[·|Ht]. In stochastic linear bandits, the posterior distribution is a Gaussian distribution: p(·|Ht) := N

(
µ̂t,Σ

−1
t

)
. We

notice that our µt and µ? are identically distributed from p(·|Ht).
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First, We can follow the same step we had above in the proof of fairness regret of FairX-LinUCB to upper bound the
instantaneous fairness regret as follows (conditioned on historyHt):

E[frt] ≤
2

γ
EHt [Eµt,µ? [Ea∼πt |f(µt · xt,a)− f(µ? · xt,a)| | Ht]] ≤

2L

γ
EHt [Eµt,µ? [Ea∼πt |µt · xt,a − µ? · xt,a| | Ht]]

Note that πt is fully determined by µt and is independent of µ? givenHt. In the following, We use πµt to denote πt to stress
the dependence of πt on µt. Hence, taking expectation with respect to the randomness of µt and µ? :

Eµt,µ?
[∑

a

πµt(a) |(µt − µ?) · xt,a|
∣∣∣∣Ht
]

= Eµt

[∑
a

πµt(a)Eµ? [|(µt − µ?) · xt,a| | Ht, µt]
∣∣∣∣Ht
]

Note that for any xt,a, conditioned on µt, we have:

(µt − µ?) · xt,a ∼ N
(
µt · xt,a − µ̂t · xt,a, x>t,aΣ−1

t xt,a
)
,

which means that:

Eµ? [|(µt − µ?) · xt,a| | Ht, µt] ≤
√

Eµ?
[
|(µt − µ?) · xt,a|2 | Ht, µt

]
=
√
x>t,aΣ−1

t xt,a + ((µt − µ̂t) · xt,a)
2

≤
√
x>t,aΣ−1

t xt,a + |(µt − µ̂t) · xt,a|

Denote the random variable zt,a := (µt − µ̂t) · xt,a/
√
x>t,aΣ−1

t xt,a. Given Ht, zt,a is a random variable and is only
dependent on µt. Note that zt,a ∼ N (0, 1). Thus by the CDF of normal distribution, we have with probability at least
1− δ′:

|(µt − µ̂t) · xt,a| ≤
√

2 ln(1/δ′)
√
x>t,aΣ−1

t xt,a.

Allow union bound over all a and all T , we get with probability at least 1− δ′:

∀t ∈ [T ], xt,a ∈ Dt : |(µt − µ̂t) · xt,a| ≤
√

2 ln(KT/δ′)
√
x>t,aΣ−1

t xt,a.

Denote the above inequality at episode t as event Et (note that Et only depends on the random variable µt). We have

Eµt

[∑
a

πµt(a)Eµ? [|(µt − µ?) · xt,a| | Ht, µt]
∣∣∣∣Ht
]

=Eµt

[
1{Et}

∑
a

πµt(a)Eµ? [|(µt − µ?) · xt,a| | Ht, µt]
∣∣∣∣Ht
]

+ Eµt

[
1{Et}

∑
a

πµt(a)Eµ? [|(µt − µ?) · xt,a| | Ht, µt]
∣∣∣∣Ht
]

≤Eµt
[
Ea∼πµt

(
(1 +

√
2 ln(KT/δ′))

√
x>t,aΣ−1

t xt,a

) ∣∣∣∣Ht]+ Eµt

[
1{Et}

∑
a

πµt(a)Eµ? [|(µt − µ?) · xt,a| | Ht, µt]
∣∣∣∣Ht
]

︸ ︷︷ ︸
term b

.

Below we bound term b above. First note that:

Eµ?
[
|(µt − µ?) · xt,a|2|Ht, µt

]
≤ 2((µt − µ̂t) · xt,a)2 + 2Eµ?

[
((µ? − µ̂t) · xt,a)2|Ht, µt

]
= 2((µt − µ̂t) · xt,a)2 + 2x>t,aΣ−1

t xt,a ≤ 2((µt − µ̂t) · xt,a)2 + 2,

where the first inequality uses the fact that (a + b)2 ≤ 2a2 + 2b2, the first equality uses the fact that (µ? − µ̂t) · xt,a ∼
N (0, x>t,aΣ−1

t xt,a), and in the last inequality we use ‖xt,a‖2 ≤ 1 and det(Σ−1
t ) ≤ 1.
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For term b above, we now can upper bound it as:

term b ≤ Eµt

1{Et}√∑
a

πµt(a)2

√∑
a

Eµ?
[
((µt − µ?) · xt,a)

2 | Ht, µt
]∣∣∣∣Ht


≤ Eµt

1{Et}√∑
a

Eµ?
[
((µt − µ?) · xt,a)

2 | Ht, µt
]∣∣∣∣Ht


≤ 2Eµt

1{Et}√∑
a

((µt − µ̂t) · xt,a)2 +K

∣∣∣∣Ht


≤ 2Eµt

1{Et}√∑
a

((µt − µ̂t) · xt,a)2

∣∣∣∣Ht
+ 2Eµt

[
1{Et}

√
K
]
.

Note that we can further upper bound the first term on the RHS of the above inequality as follows:

Eµt

1{Et}√∑
a

((µt − µ̂t) · xt,a)2

∣∣∣∣Ht
 ≤√Eµt

[
1{µt ∈ Et} | Ht

]√√√√Eµt

[∑
a

((µt − µ̂t) · xt,a)2

∣∣∣∣Ht
]
,

where we use the inequality that E[uv] ≤
√

E[u2]
√
E[v2]. Also note that:

Eµt

[∑
a

((µt − µ̂t) · xt,a)2

∣∣∣∣Ht
]

=
∑
a

x>t,aΣ−1
t xt,a ≤ K,

since (µt − µ̂t) · xt,a ∼ N
(
0, x>t,aΣ−1

t xt,a
)
. Hence, we have:

Eµt

1{Et}√∑
a

((µt − µ̂t) · xt,a)2

∣∣∣∣Ht
 ≤√Eµt

[
1{µt ∈ Et} | Ht

]√
K.

This implies that for term b, we have:

term b ≤ 2
√
Eµt

[
1{µt ∈ Et} | Ht

]√
K + 2Eµt

[
1{Et}

√
K
]

= 2

(√
P(Et | Ht) + P(Et | Ht)

)√
K.

Sum over T episodes, we have:

E

[
T∑
t=1

Eµt

[∑
a

πµt(a)Eµ? [|(µt − µ?) · xt,a| | Ht, µt]
∣∣∣∣Ht
]]

≤4L

γ

T∑
t=1

EHt
[
Eµt

[
Ea∼πµt

(
(1 +

√
2 ln(KT/δ′))

√
x>t,aΣ−1

t xt,a

) ∣∣∣∣Ht]+

(√
P(Et | Ht) + P(Et | Ht)

)√
K

]

=
4L

γ
(1 +

√
2 ln(KT/δ′))E

[
T∑
t=1

Ea∼πµt
√
x>t,aΣ−1

t xt,a

]
+

4L

γ

√
K

(
T∑
t=1

EHt
[√

P(Et | Ht) + P(Et | Ht)
])

.

For
∑T
t=1 EHt

[√
P(Et | Ht) + P(Et | Ht)

]
, we have:

T∑
t=1

EHt
[√

P(Et | Ht) + P(Et | Ht)
]

=

T∑
t=1

EHt
√
P(Et | Ht) +

T∑
t=1

P(Et) ≤
T∑
t=1

EHt
√

P(Et | Ht) + δ′

≤
√
T

√√√√ T∑
t=1

EHtP(Et | Ht) + δ′ ≤
√
Tδ′ + δ′.
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Hence, we have:

E

[
T∑
t=1

Eµt

[∑
a

πµt(a)Eµ? [|(µt − µ?) · xt,a| | Ht, µt]
∣∣∣∣Ht
]]

≤ 4L

γ
(1 +

√
2 ln(KT/δ′))E

[
T∑
t=1

Ea∼πµt
√
x>t,aΣ−1

t xt,a

]
+

4L

γ

√
K
(√

Tδ′ + δ′
)
.

From Lemma A.6.4, we have for any δ ∈ (0, 1),

E

[
T∑
t=1

Ea∼πµt
√
x>t,aΣ−1

t xt,a

]
≤δT +

√
2T ln(4/δ) +

T∑
t=1

wt,at

≤δT +
√

2T ln(4/δ) +

√
2Td ln(1 +

T

d
).

Let δ = 1/T , we have

E

[
T∑
t=1

Ea∼πµt
√
x>t,aΣ−1

t xt,a

]
≤ 1 +

√
2T ln(4T ) +

√
2Td ln(1 +

T

d
).

Hence, we have:

E

[
T∑
t=1

Eµt

[∑
a

πµt(a)Eµ? [|(µt − µ?) · xt,a| | Ht, µt]
∣∣∣∣Ht
]]

≤ 4L

γ
(1 +

√
2 ln(KT/δ′))

(√
2Td ln(1 +

T

d
) +

√
2T ln(4T ) + 1

)
+

4L

γ

√
K(
√
Tδ′ + δ′).

Set δ′ = 1/(KT ), we have:

E

[
T∑
t=1

Eµt

[∑
a

πµt(a)Eµ? [|(µt − µ?) · xt,a| | Ht, µt]
∣∣∣∣Ht
]]

= Õ(L
√
Td/γ).

�

A.8.1. PROOF OF THEOREM 4.3.2

Lemma A.8.1 (Adapted from Proposition 1 from (Russo & Van Roy, 2014)). For any UCB sequence (Ut : t ∈ N), the
Bayesian reward regret of FairX-LinTS can be decomposed as follows:

BayesRRT = E
T∑
t=1

[Ea∼πt [Ut,a − µ? · xt,a]] + E
T∑
t=1

[
Ea∼π?t [µ? · xt,a − Ut,a]

]
.

Proof. Note that at any round t, conditioned on historyHt, the optimal fair policy π?t and the deployed policy πt selected
by posterior sampling are identically distributed. In addition, Ut is deterministic and fully determined by the history Ht.
Hence E [Ea∼πt [Ut,a] | Ht] = E

[
Ea∼π?t [Ut,a] | Ht

]
. Therefore

E[Ea∼π?t [µ? · xt,a]− Ea∼πt [µ? · xt,a]]

=EHt [E[Ea∼π?t [µ? · xt,a]− Ea∼πt [µ? · xt,a]|Ht]]
=EHt [E[Ea∼π?t [µ? · xt,a]− Ea∼π?t Ut,a + Ea∼πtUt,a − Ea∼πt [µ? · xt,a]|Ht]]
=E[Ea∼πt [Ut,a − µ? · xt,a]] + E[Ea∼π? [µ? · xt,a − Ut,a]].

Summing over T steps concludes the proof. �
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Indeed, the above lemma holds for any Ut that is fully determined by the historyHt which does not have to be a valid upper
bound.

Proof. (proof of Theorem 4.3.2)

Since Lemma A.8.1 holds for any confidence sequences, we construct confidence sequences from the confidence analysis
of the FairX-LinUCB algorithm in Proposition A.6.1 for this proof. The upper bounds of an arm a across rounds are
constructed as Ut,a := maxµ∈CRt µ · xt,a and the lower bounds are constructed as Bt,a := minµ∈CRt µ · xt,a.

We bound the reward regret under different conditions on the following three events. The first event is that the norm of the
true parameter µ? sampled from the prior normal distribution is not too large. We denote the event that ‖µ?‖2 ≤W as E1.
Since each dimension of µ? is independently sampled from the standard normal distribution, P(E1) ≤ 2d exp(−W 2/2d).
The second event is that for all rounds, the true parameter is within the confidence region of the FairX-LinUCB algorithm,
which is the event in Proposition A.6.1. We denote the event ∀t, µ? ∈ CRt as E2. By proposition A.6.1, we know that
P(E2) ≤ δ/2. The third event is the event in Lemma A.6.4. We denote

∣∣∣∑T
t=1 wt,at −

∑T
t=1 Ea∼πtwt,a

∣∣∣ ≤√2T ln(4/δ)

as E3 and P(E3) ≤ δ/2.

By Lemma A.8.1, we have that

BayesRRT

=E

[
T∑
t=1

∑
a

(π?t (a)− πt(a))µ? · xt,a

]

=E

[
1{E2 and E3}

T∑
t=1

∑
a

(π?t (a)− πt(a))µ? · xt,a

]
+ E

[
1{E2 or E3}

T∑
t=1

∑
a

(π?t (a)− πt(a))µ? · xt,a

]
︸ ︷︷ ︸

term c

=E

[
1{E2 and E3}

T∑
t=1

Ea∼πt [Ut,a − µ? · xt,a]

]
+ E

[
1{E2 and E3}

T∑
t=1

Ea∼π? [µ? · xt,a − Ut,a]

]
+ term c

≤E

[
1{E2 and E3}

T∑
t=1

Ea∼πt [Ut,a − µ? · xt,a]

]
+ term c

=E

[
1{E1 and E2 and E3}

T∑
t=1

Ea∼πt [Ut,a − µ? · xt,a]

]
︸ ︷︷ ︸

term a

+E

[
1{E1 and E2 and E3}

T∑
t=1

Ea∼πt [Ut,a − µ? · xt,a]

]
︸ ︷︷ ︸

term b

+ term c.

The inequality holds because under E2, µ? · xt,a ≤ Ut,a. We now bound the three terms as follows.

term a = E

[
1{E1 and E2 and E3}

T∑
t=1

Ea∼πt [Ut,a − µ? · xt,a]

]

≤ E

[
1{E1 and E2 and E3}

T∑
t=1

Ea∼πt [Ut,a −Bt,a]

]

≤ 2
(
W +

√
d ln(1 + T/d) + 2 ln(T 2π2/3δ)

)(√
2Td ln(1 +

T

d
) + 2

√
2T ln(4/δ)

)
.

The first inequality holds because under E2, Bt,a is a lower bound of µ?xt,a. The derivation of the second inequality is the
same as the proof of the reward regret of the FairX-LinUCB algorithm.

To bound term c, we upper bound on the expected instantaneous reward regret under the event E1 and the event E1
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respectively. Under event E1, we have that at each round t, the expected instantaneous reward regret

E

[
1{E1}

∑
a

(π?t (a)− πt(a))µ? · xt,a

]
≤ E

[
1{‖µ?‖2 ≤W}

∑
a

|π?t (a)− πt(a)| |µ? · xt,a|

]

≤ E

[
1{‖µ?‖2 ≤W}

∑
a

|π?t (a)− πt(a)| ‖µ?‖2 · ‖xt,a‖2

]
≤ 2W.

Under event E1, we have that at each round t, the instantaneous reward regret

E

[
1{E1}

∑
a

(π?t (a)− πt(a))µ? · xt,a

]
≤ E

[
1{‖µ?‖2 > W}

∑
a

|π?t (a)− πt(a)| ‖µ?‖2 · ‖xt,a‖2

]
≤ 2E [1{‖µ?‖2 > W}‖µ?‖2]

= 2Eµ?∼N (0,I) [1{‖µ?‖2 > W}‖µ?‖2]

≤ 2
√
Eµ?∼N (0,I)1{‖µ?‖2 ≥W}

√
Eµ?∼N (0,I)‖µ?‖22

≤ 2
√

2d exp (−W 2/2d)

√√√√√Eµ?∼N (0,I)

∑
i,j

µ?iµ
?
j


≤ 2
√

2d exp (−W 2/2d)
√
d

= 2d
√

2 exp (−W 2/2d).

Here the third inequality uses E[ab] ≤
√

E[a2]
√
E[b2]. Thus

term c = E

[
1{E2 or E3}

T∑
t=1

∑
a

(π?t (a)− πt(a))µ? · xt,a

]
≤ δT (2d

√
2 exp (−W 2/2d) + 2W ),

since no matter E1 or E1, the expected instantaneous reward regret is less than the sum of the two situations.

For term b, denote µUt,a the parameter that achieves the upper confidence bound Ut,a in the confidence region CRt.

term b = E

[
1{E1 and E2 and E3}

T∑
t=1

Ea∼πt [Ut,a − µ? · xt,a]

]

= E

[
1{E1 and E2 and E3}

T∑
t=1

Ea∼πt [µUt,a · xt,a − µ? · xt,a]

]

= E

[
1{E1 and E2 and E3}

T∑
t=1

Ea∼πt [µUt,a · xt,a − µ̂t · xt,a + µ̂t · xt,a − µ? · xt,a]

]

≤ E

[
1{E1 and E2 and E3}

T∑
t=1

Ea∼πt
[
‖µUt,a − µ̂t‖Σt · ‖xt,a‖Σ−1

t
+ ‖µ̂t − µ?‖Σt · ‖xt,a‖Σ−1

t

]]
≤ 2TEµ?∼N (0,I)

[
1{E1 and E2 and E3}(

√
d ln(1 + T/d) + 2 ln(T 2π2/3δ) + ‖µ?‖2)

]
≤ 4Td exp(−W 2/2d)

√
d ln(1 + T/d) + 2 ln(T 2π2/3δ) + 2Td

√
2 exp(−W 2/2d).
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The second inequality holds because ‖xt,a‖Σ−1 ≤ 1 and by the results of the confidence analysis in Section A.6.1. The last
inequality comes from the analysis of term c.

So

BayesRRT ≤2
(
W +

√
d ln(1 + T/d) + 2 ln(T 2π2/3δ)

)(√
2Td ln(1 +

T

d
) + 2

√
2T ln(4/δ)

)
+ 4Td exp(−W 2/2d)

√
d ln(1 + T/d) + 2 ln(T 2π2/3δ) + 2Td

√
2 exp(−W 2/2d)

+ δT (2d
√

2 exp (−W 2/2d) + 2W )

Let W =
√

2d ln(Td) and δ = 1/T , we have that

BayesRRT = Õ
(
d
√
T
)

�

A.9. Proof of Theorem 3.3.1

Proof. We can convert a stochastic MAB instance into a stochastic linear bandit instance by constructing K K-dimensional
basis vectors, each representing an arm. Then the upper bounds derived for linear bandits also hold for MAB. The
Õ
(
L
√
KT/γ

)
fairness regret upper bound follows. �

A.10. Proof of Theorem 3.3.2

Proof. We can use the confidence sequence in the FairX-UCB algorithm and apply Lemma A.8.1 to get the Õ
(√

KT
)

reward regret upper bound similarly as in the proof of Theorem 4.3.2. �

B. Additional Experiments
In this section, we present additional experiment results to illustrate the effectiveness of different algorithms across datasets
and merit functions.

B.1. Additional Experiment Setup

We conducted experiments on simulation data from the mediamill dataset (Snoek et al., 2006) in addtion to the yeast dataset.
The mediamill dataset consists of 43, 907 examples. Each example has 120 features and belongs to one or multiple of
the 101 classes. Similar to preparing the yeast dataset, we randomly split the dataset into two sets, 20% as the validation
set to tune hyper-parameters and 80% as the test set to test the performance of different algorithms. All the details of the
experiments are the same as the experiments on the yeast dataset as introduced in Section 5.1.

The ranges of the hyper-parameters we searched for each bandit algorithm on the two simulation datasets are as follows. For
FairX-UCB and UCB, we grid searchw0 ∈ [1e−5, 2e−5, 5e−5, 1e−4, 2e−4, 5e−4, 1e−3, 2e−3, 5e−3, 1e−2, 2e−2, 5e−
2, 1e−1]. For FairX-TSand TS, we grid search the normal prior standard deviation in [1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1]
and reward standard deviation in [1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1]. For FairX-EG, we grid search ε ∈ [0, 1e−4, 1e−
3, 1e− 2]. For FairX-LinUCB and LinUCB, we grid search β ∈ [0.01, 0.1, 1.0, 10.0] and λ ∈ [1, 1e1, 1e2, 1e3, 1e4, 1e5].
For FairX-LinTS and LinTS, we grid search prior standard deviation in [1e− 6, 1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1] and
reward standard deviation in [”1e− 6”, ”1e− 5”, ”1e− 4”, ”1e− 3”, ”1e− 2”, ”1e− 1”]. For FairX-EG, we grid search
ε ∈ [0, 1e− 4, 1e− 3, 1e− 2] and the regularization parameter of the ridge regression in [1e1, 1e2, 1e3, 1e4, 1e5].

For the experiments on the Yahoo! dataset, in addition to the results where we select hyper-paramters on the logs in the first
day and test the performance on the second day, we here present the results where we select hyper-parameters on the first 5
days and test the performance on the rest 5 days. The whole Yahoo! dataset contains 45, 811, 883 events and 1, 633, 488
clicks on 271 articles.

The ranges of the hyper-parameters we searched for each bandit algorithm on the Yahoo! dataset are as follows. For
FairX-UCB and UCB, we grid search w0 ∈ [1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1]. For FairX-TS and TS, we grid search



Fairness of Exposure in Stochastic Bandits

the normal prior standard deviation in [0.01, 0.1] and reward standard deviation in [1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1].
For FairX-EG, we grid search ε ∈ [0, 1e− 3, 1e− 2]. For FairX-LinUCB and LinUCB, we grid search β ∈ [1, 10, 100] and
λ ∈ [1e−6, 1e−4, 1e−2, 1]. For FairX-LinTS and LinTS, we grid search prior standard deviation in [1e−4, 1e−3, 1e−2]
and reward standard deviation in [1e− 4, 1e− 3, 1e− 2]. For FairX-LinEG, we grid search ε ∈ [0, 1e− 4, 1e− 3] and the
regularization parameter of the ridge regression in [1e− 6, 1e− 4, 1e− 2, 1].

(a) c = 6 (b) c = 8 (c) c = 10 (d) c = 12

Figure 5. Experiment results on the yeast dataset with varying merit function parameter c for different MAB algorithms.

(a) c = 6 (b) c = 8 (c) c = 10 (d) c = 12

Figure 6. Experiment results on the mediamill dataset with varying merit function parameter c for different MAB algorithms.

B.2. Additional Experiment Results

We show the experiment results with varying merit function parameter c in the FairX MAB setting and FairX linear bandits
setting on the yeast and mediamill datasets in Figure 5, Figure 6, Figure 7, and Figure 8. All the FairX algorithms can
effectively control merit-based fairness of exposure while achieving low reward regret. As the merit function becomes
steeper, the variance of the runs and the difference between algorithms become larger.

The experiment results on the Yahoo! dataset are shown in Figure 9. Though the regrets occasionally jump a bit (which
might be due to the change of candidate articles or user interests), all the FairX algorithms can robustly control merit-based
fairness of exposure while maintaining low reward regret.
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(a) c = 1 (b) c = 2 (c) c = 3

Figure 7. Experiment results on the yeast dataset with varying merit function parameter c for different linear bandit algorithms.

(a) c = 1 (b) c = 2 (c) c = 3

Figure 8. Experiment results on the mediamill dataset with varying merit function parameter c for different linear bandit algorithms.

B.3. Experiment for Linear Bandits with a Well-Specified Linear Model

As discussed in the main paper, the fairness regret of FairX linear bandit algorithms do not seem to converge because
the linearity assumption does not necessarily hold for any of the datasets. In this section, we will create a dataset with a
well-specified linear model and see how these bandit algorithms perform on this data. We perform the experiments on the
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Figure 9. Experiment results on the Yahoo! dataset (select hyper-parameters on data from the first 5 days and report the performance on
the data from the last 5 days) for both MAB and linear bandits setting. (c = 10 for both settings)

Figure 10. Experiment results on the yeast dataset with a well-specified linear model for linear bandit algorithms. (c = 2)

yeast dataset. To remove model misspecification, we do not use the class labels as rewards, but instead inpute the linear
least-squares solution on the full-information data as rewards (plus Gaussian noise N (0, 0, 1)). The results are shown in
Figure 10. We can see that the fairness regret of the FairX algorithms converge better and follow the

√
T bound predicted by

the theoretical analysis in the absence of model mis-specification.


