Explainable Automated Graph Representation Learning with Hyperparameter Importance

Supplementary File

Proof

Lemma 1 If the number of covariates p_{1} and p_{2} is fixed, then there exists a sample weight $\gamma \succeq 0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{L}_{\text {Deco }}=0 \tag{1}
\end{equation*}
$$

with probability 1. In particular, a solution γ to $E q(1)$ is $\gamma_{i}^{\star}=\frac{\Pi_{j=1}^{p} \hat{f}\left(\mathbf{X}_{i, j}\right)}{\hat{f}\left(\mathbf{X}_{i, 1}, \cdots, \mathbf{X}_{i, p}\right)}$, where $\hat{f}\left(x_{\cdot, j}\right)$ and $\hat{f}\left(x_{\cdot, 1}, \cdots, x_{\cdot, p}\right)$ are the Kernel density estimators. ${ }^{1}$

Proof 1 From [1], if $h_{j} \rightarrow 0$ for $j=1, \cdots, p$ and $n h_{1} \cdots h_{p} \rightarrow \infty$,

$$
\hat{f}\left(x_{i, j}\right)=f\left(x_{i, j}\right)+o_{p}(1)
$$

and

$$
\hat{f}\left(x_{i}\right)=f\left(x_{i}\right)+o_{p}(1)
$$

Note that for any j,

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, j} \gamma_{i} & =\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, j} \frac{\Pi_{j=1}^{p} f\left(\mathbf{X}_{i, j}\right)}{f\left(\mathbf{X}_{i, 1}, \cdots, \mathbf{X}_{i, p}\right)}+o_{p}(1) \\
& =\mathbb{E}\left[\mathbf{X}_{i, j} \frac{\Pi_{j=1}^{p} f\left(\mathbf{X}_{i, j}\right)}{f\left(\mathbf{X}_{i, 1}, \cdots, \mathbf{X}_{i, p}\right)}\right]+o_{p}(1) \\
& =\int \cdots \int \mathbf{X}_{i, j} \Pi_{l=1}^{p} f\left(\mathbf{X}_{i, l}\right) d \mathbf{X}_{i, 1} \cdots d \mathbf{X}_{i, p}+o_{p}(1) \\
& =\int \mathbf{X}_{i, j} f\left(x_{i, j}\right) d \mathbf{X}_{i, j}+o_{p}(1)
\end{aligned}
$$

Similarly, for any j and $k, j \neq k$

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, j} \mathbf{X}_{i, k} \gamma_{i} & =\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, j} \mathbf{X}_{i, k} \frac{\Pi_{j=1}^{p} f\left(\mathbf{X}_{i, j}\right)}{f\left(\mathbf{X}_{i, 1}, \cdots, \mathbf{X}_{i, p}\right)}+o_{p}(1) \\
& =\mathbb{E}\left[\mathbf{X}_{i, j} \mathbf{X}_{i, k} \frac{\Pi_{j=1}^{p} f\left(\mathbf{X}_{i, j}\right)}{f\left(\mathbf{X}_{i, 1}, \cdots, \mathbf{X}_{i, p}\right)}\right]+o_{p}(1) \\
& =\iint \mathbf{X}_{i, j} \mathbf{X}_{i, k} f\left(x_{i, j}\right) f\left(x_{i, k}\right) d \mathbf{X}_{i, j} d \mathbf{X}_{i, k} \\
& =\int \mathbf{X}_{i, j} f\left(x_{i, j}\right) d \mathbf{X}_{i, j} \cdot \int \mathbf{X}_{i, k} f\left(x_{i, k}\right) d \mathbf{X}_{i, k}
\end{aligned}
$$

[^0]Thus, for any $j \neq k$, we have

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, j} \mathbf{X}_{i, k} \gamma_{i}-\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, j} \gamma_{i}\right)\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, k} \gamma_{i}\right)\right)^{2}=0 .
$$

Hence, for any $\mathbf{A}_{, j} \neq \mathbf{X}_{, k}$, we have

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{A}_{i, j} \mathbf{X}_{i, k} \gamma_{i}-\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{A}_{i, j} \gamma_{i}\right)\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, k} \gamma_{i}\right)\right)^{2}=0 .
$$

Finally,

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{p_{1}}\left\|\mathbf{A}_{, j}^{T} \boldsymbol{\Sigma}_{\gamma} \mathbf{X}_{,-j} / n-\mathbf{A}_{, j}^{T} \gamma / n \cdot \mathbf{X}_{,-j}^{T} \gamma / n\right\|_{2}^{2}=0
$$

But the solution γ that satisfies $\mathrm{Eq}(1)$ in Lemma 1 is not unique. To address this problem, we propose to simultaneously minimize the variance of γ and restrict the sum of γ in our regularizer as follows:

$$
\begin{equation*}
\hat{\gamma}=\arg \min _{\gamma \in \mathcal{C}} \mathcal{L}_{\text {Deco }}+\frac{\lambda_{3}}{n} \sum_{i=1}^{n} \gamma_{i}^{2}+\lambda_{4}\left(\frac{1}{n} \sum_{i=1}^{n} \gamma_{i}-1\right)^{2}, \tag{2}
\end{equation*}
$$

where $\mathcal{C}=\left\{\gamma:\left|\gamma_{i}\right| \leq c\right\}$ for some constant c.
Then, we have following theorem on our hyperparameter decorrelation regularizer in Eq (2).

Theorem 1 The solution $\hat{\gamma}$ defined in Eq(2) is unique if $\lambda_{3} n \gg p^{2}+\lambda_{4}$, $p^{2} \gg \max \left(\lambda_{3}, \lambda_{4}\right)$ and $\left|\mathbf{X}_{i, j}\right| \leq c$ for some constant c.

Proof 2 For simplicity, we let $\mathcal{L}_{1}:=\frac{1}{n} \sum_{i=1}^{n} \gamma_{i}^{2}, \mathcal{L}_{2}:=\left(\frac{1}{n} \sum_{i=1}^{n} \gamma_{i}-1\right)^{2}$, and $\mathcal{J}(\gamma):=\mathcal{L}_{\text {Deco }}+\lambda_{3} \mathcal{L}_{1}+\lambda_{4} \mathcal{L}_{2}$.

First, we calculate Hessian of $\mathcal{J}(\gamma)$, denoted as \mathbf{H}, as follows:

$$
\mathbf{H}=\frac{\partial^{2} \mathcal{L}_{B}}{\partial \gamma^{2}}+\lambda_{3} \frac{\partial^{2} \mathcal{L}_{1}}{\partial \gamma^{2}}+\lambda_{4} \frac{\partial^{2} \mathcal{L}_{2}}{\partial \gamma^{2}} .
$$

With some algebra, we have

$$
\begin{aligned}
\frac{\partial^{2} \mathcal{L}_{1}}{\partial \gamma^{2}} & =\frac{1}{n} \mathbf{I} \\
\frac{\partial^{2} \mathcal{L}_{2}}{\partial \gamma^{2}} & =\frac{1}{n^{2}} \overrightarrow{\mathbf{1}}^{\mathbf{1}}
\end{aligned}
$$

where $\mathbf{I} \in \mathbb{R}^{n \times n}$ is identity matrix, and $\overrightarrow{\mathbf{1}}=[1, \cdots, 1]^{T} \in \mathbb{R}^{n \times 1}$.
For the term $\mathcal{L}_{\text {Deco }}$, when $\left|\mathbf{X}_{i, j}\right| \leq c$, for any j and k, we have

$$
\begin{aligned}
\frac{\partial^{2}}{\partial \gamma^{2}}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, j} \mathbf{X}_{i, k} \gamma_{i}\right)^{2} & =\mathcal{O}\left(\frac{1}{n^{2}}\right), \\
\frac{\partial^{2}}{\partial W^{2}}\left(\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, j} \gamma_{i}\right)\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, k} \gamma_{i}\right)\right)^{2} & =\mathcal{O}\left(\frac{1}{n^{2}}\right) .
\end{aligned}
$$

and

$$
\frac{\partial^{2}}{\partial \gamma^{2}}\left(\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, j} \mathbf{X}_{i, k} \gamma_{i}\right)\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, j} \gamma_{i}\right)\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, k} \gamma_{i}\right)\right)=\mathcal{O}\left(\frac{1}{n^{2}}\right)
$$

Then

$$
\frac{\partial^{2}}{\partial \gamma^{2}}\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, j} \mathbf{X}_{i, k} \gamma_{i}-\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, j} \gamma_{i}\right)\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, k} \gamma_{i}\right)\right)^{2}=\mathcal{O}\left(\frac{1}{n^{2}}\right)
$$

$\mathcal{L}_{\text {Deco }}$ is sum of $p(p-1)$ such terms, then

$$
\frac{\partial^{2} \mathcal{L}_{B}}{\partial \gamma^{2}}=\mathcal{O}\left(\frac{p^{2}}{n^{2}}\right)
$$

Thus,

$$
\mathbf{H}=\mathcal{O}\left(\frac{p^{2}}{n^{2}}\right)+\frac{\lambda_{3}}{n} \mathbf{I}+\frac{\lambda_{4}}{n^{2}} \overrightarrow{\mathbf{1}}^{T}=\frac{\lambda_{3}}{n} \mathbf{I}+\mathcal{O}\left(\frac{p^{2}+\lambda_{4}}{n^{2}}\right) .
$$

Therefore, \mathbf{H} is an almost diagonal matrix when $\frac{\lambda_{3}}{n} \gg \frac{p^{2}+\lambda_{4}}{n^{2}}$, equivalent to $\lambda_{3} n \gg p^{2}+\lambda_{4}$. From the relative Weyl theorem [2], H is positive definite. Then the loss function $\mathcal{J}(\gamma)$ in $E q(2)$ is convex on \mathcal{C}, and has a unique optimal solution $\hat{\gamma}$.

We further want $\mathcal{L}_{\text {Deco }}$ to dominate the regularization terms $\lambda_{3} \mathcal{L}_{1}$ and $\lambda_{4} \mathcal{L}_{2}$. On $\mathcal{C}, \mathcal{L}_{1}=\mathcal{O}(1)$ and $\mathcal{L}_{2}=\mathcal{O}(1)$. Moreover,

$$
\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, j} \mathbf{X}_{i, k} \gamma_{i}-\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, j} \gamma_{i}\right)\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i, k} \gamma_{i}\right)\right)^{2}=\mathcal{O}(1)
$$

and then

$$
\mathcal{L}_{\text {Deco }}=\mathcal{O}\left(p^{2}\right)
$$

As long as $p^{2} \gg \max \left(\lambda_{3}, \lambda_{4}\right), \mathcal{L}_{\text {Deco }}$ dominates the regularization terms \mathcal{L}_{1} and \mathcal{L}_{2}.

References

[1] Bruce E Hansen. Lecture notes on nonparametrics. Lecture notes, 2009.
[2] Yuji Nakatsukasa. Absolute and relative weyl theorems for generalized eigenvalue problems. Linear Algebra and its Applications, 432(1):242-248, 2010.

[^0]: ${ }^{1}$ In detail, $\hat{f}\left(x_{i, j}\right)=\frac{1}{n h_{j}} \sum_{i=1}^{n} k\left(\frac{\mathbf{X}_{i, j}-x_{i, j}}{h_{j}}\right)$, where $k(u)$ is a kernel function and h_{j} is the bandwidth parameter for covariate \mathbf{X}_{j}; and $\hat{f}\left(x_{i}\right)=\frac{1}{n|H|} \sum_{i=1}^{n} K\left(H^{-1}\left(\mathbf{X}_{i}-x_{i}\right)\right)$, where $K(u)$ is a multivariate kernel function, $H=\operatorname{diag}\left(h_{1}, \cdots, h_{p}\right)$ and $|H|=h_{1} \cdots h_{p}$.

