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Before proving Theorems 1 and 2, we first introduce the
following lemma proved in (Wang & Geng, 2019).

Lemma 1. Let c1, c2, c3 and c4 be real values satisfying
c1 > c2 and c3 > c4. Then, c1− c2 < |c1− c4|+ |c2− c3|.

A. Proof of Theorem 1
Theorem 1. For each x ∈ X , if the predicted label distri-
bution satisfies the following inequality∑

j

|dyjx − d̂yjx | ≤ αx,

the predicted label satisfies ŷx = yx.

Proof. We prove by contradiction. Suppose for the sake of
contradiction that ŷx 6= yx. Without loss of generality, let
yx = yj and ŷx = yi for i 6= j. Recall the definition of
yx = arg maxȳ d

ȳ
x and ŷx = arg maxȳ d̂

ȳ
x. Then, we have

d
yj
x > dyix and d̂yix > d̂

yj
x . By Lemma 1,

d
yj
x − dyix < |dyjx − d̂yjx |+ |dyix − d̂yix |. (1)

Further, observe that αx ≤ d
yj
x − dyix and |dyjx − d̂

yj
x | +

|dyix − d̂yix | ≤
∑
l |dylx − d̂ylx |, which yields

αx <
∑
l

|dylx − d̂ylx |.

The above equation contradicts. Thereby, we must have
yx = ŷx, which completes the proof.

B. Proof of Theorem 2
Theorem 2. For each x ∈ X , if the predicted label distri-
bution satisfies the following inequality∑

j:yj 6=yx

|dyjx − d̂yjx | ≤ βx, (2)

the predicted label satisfies ŷx = yx or ŷx = y′x.

Proof. The theorem holds if ŷx = yx. Next, we will prove
that ŷx = y′x if ŷx 6= yx.

We prove by contradiction. Suppose for the sake of con-
tradiction that ŷx 6= y′x. Without loss of generality, let

ŷx = yi 6= yx and y′x = yj . If yi 6= yj . By the definition
of ŷx, we have d̂yix > d̂

yj
x . Recall y′x = arg maxȳ 6=yx d

ȳ
x.

Then, we have dyjx > dyix because yi 6= yx. By Lemma 1,

d
yj
x − dyix < |dyjx − d̂yjx |+ |dyix − d̂yix |. (3)

If yi = yj , the above inequality still holds. Notice that
yj 6= yx and yi 6= yx, which leads to βx ≤ d

yj
x − dyix and

|dyjx − d̂yjx |+ |dyix − d̂yix | ≤
∑
l:yl 6=yx |d

yl
x − d̂ylx |. Thereby,

βx <
∑

l:yl 6=yx

|dylx − d̂ylx |,

which contradicts. Hence, we must ŷx = y′x, which com-
pletes the proof.

C. Proof of Theorem 3
Theorem 3. Let F = {x 7→ W> · x : ‖wj‖2 ≤ Λ} be
the hypothesis space. Fix 1 > ρ > 0. For any δ > 0, with
probability at least 1− δ, the bounds hold for all f ∈ F ,

R(f) ≤ R̂ρ(f) +
2
√

2rΛm

(1− ρ)
√
n

+

√
log 1/δ

2n
,

R(f) ≤ min

{
R̂ρ(f) +

2
√

2rΛm

(1− ρ)
√
n
,

R̃ρ(f) +
4rΛm

ρ
√
n

}
+

√
log 2/δ

2n
.

Before presenting the proof, we introduce the following
definition.
Definition. For any ρ < 1, define the ρ-margin loss Φρ

Φρ(x) =


0 if x ≤ ρ
x−ρ
1−ρ if ρ < x ≤ 1

1 otherwise.

Fig. 1 shows the ρ-insensitive loss and the ρ-margin loss.
It’s trivial hat Φρ satisfies 1/(1− ρ)-Lipschitzness.

Proof. Recall L = {ly1
x , · · · , lymx }, where lyjx equals 1 if

yj = yx and 0 otherwise. Let H = {z = (x, yx) 7→∑
j |fj(x)−lyjx | : f ∈ F}. Consider the family of functions

taking values in [0, 1]

H̃ = {Φρ ◦ h : h ∈ H}.
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Figure 1. Illustration of the ρ-insensitive loss and ρ-margin loss.

Applying a standard Rademacher bound (Mohri et al., 2018)
to H̃, for any δ > 0, with probability at least 1 − δ, the
following bound holds for all g ∈ H̃,

E [g(z)] ≤ 1

n

n∑
i=1

g(zi) + 2Rn(H̃) +

√
log 1/δ

2n
,

and the following bound holds for all f ∈ F

E [Φρ(‖f(x)− L‖1)] ≤ R̂ρ(f)+2Rn(Φρ◦H)+

√
log 1/δ

2n
.

By Corollary 1, E [Φρ(‖f(x)− L‖1)] ≥ I(ŷx 6= yx) = 0
if ‖f(x)− L‖1 ≤ 1. Moreover, E [Φρ(‖f(x)− L‖1)] = 1
if ‖f(x)−L‖1 ≥ 1. Hence,R(f) ≤ E [Φρ(‖f(x)− L‖1)],
which leads to

R(f) ≤ R̂ρ(f) + 2Rn(Φρ ◦ H) +

√
log 1/δ

2n
.

By the 1/(1− ρ)-Lipschitzness of Φρ, we have

Rn(Φρ ◦ H) ≤ 1

1− ρ
Rn(H) ≤

√
2

1− ρ

m∑
j=1

Rn(Fj),

where the second inequality is according to (Maurer, 2016),
and Fj = {x 7→ wj · x : ‖wj‖2 ≤ Λ}. According to
(Mohri et al., 2018),Rn(Fj) ≤ Λr/

√
n, which yields

Rn(Φρ ◦ H) ≤
√

2mΛr

(1− ρ)
√
n
.

Thus, we have the following bound

R(f) ≤ R̂ρ(f) +
2
√

2mΛr

(1− ρ)
√
n

+

√
log 1/δ

2n
, (4)

which completes the proof for the first part.

Next, we prove the second part. The first part can be equiva-
lently re-written as, for any δ > 0, with probability at least
1− δ/2, the following bound holds for all f ∈ F ,

R(f) ≤ R̂ρ(f) +
2
√

2mΛr

(1− ρ)
√
n

+

√
log 2/δ

2n
. (5)

Besides, Mohri et al. (2018) showed that for a multi-class
SVM, the generalization bound is as follows: for any δ > 0,

with probability at least 1− δ/2, the following bound holds
for all f ∈ F ,

R(f) < R̃ρ(f) +
4mΛr

ρ
√
n

+

√
log 2/δ

2n
. (6)

Combine Eqs. (5) and (6), which completes the proof for
the second part.

D. Proof of Theorem 5
Theorem 5.. Let d̂ be a learned LDL function. Let N and
M be defined above. Then, the following bound holds

P(ŷx 6= y)− L∗1 ≤ Ex∼DN∩M

[∑
ȳ

|d̂ȳx − dȳx|

]
.

Before proving the theorem, we introduce the following
lemma.

Lemma 2. Fix an x. Then,

Py[ŷx 6= y | x]− Py[yx 6= y | x] = dyxx − dŷxx .

Proof of Lemma 2. First, we have

Py[ŷx 6= y | x] = 1− Py[y = ŷx | x] = 1− dŷxx ,

and

Py[yx 6= y | x] = 1− Py[y = yx | x] = 1− dyxx ,

which yields

Py[ŷx 6= y | x]− Py[yx 6= y | x] = dyxx − dŷxx .

Proof of Theorem 5. First, notice that

P(ŷx 6= y)− L∗1
= Ey,x∼DN∩M [I(ŷx 6= y)− I(yx 6= y)]

+ Ey,x∼DN̄∪M̄ [I(ŷx 6= y)− I(yx 6= y)] ,

(7)

where N̄ = X \ N is the complementary set of N . By the
definitions of N andM, for any x ∈ N̄ ∪ M̄, ŷx = yx.
According to Lemma 2, the second item on the right-hand
side of Eq. (7) reduces to 0. Similarly, according to Lemma
2, the first item on the right-hand side of Eq. (7) equals

Ex∼N∩M
[
dyxx − dŷxx

]
.

If yx 6= ŷx, according to Eq. (1), it follows that

dyxx − dŷxx ≤
∑
j

|d̂yjx − dyjx |.
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If yx = ŷx, the above inequality still holds. Thereby,

P(ŷx 6= y)− L∗1 ≤ Ex∼N∩M
[
dyxx − dŷxx

]
≤ Ex∼DN∩M

∑
j

|d̂yjx − dyjx |

 ,
which completes the proof.

E. Proof of Theorem 6
Theorem 6.. Let F be the hypothesis space defined in The-
orem 3. Fix 1 > ρ > 0 and β ≥ 0 such that β ≤ βx for all
x ∈ X . Then, for any δ > 0, with probability at least 1− δ,
the following bound holds for all f ∈ F

P(ŷx 6= y) ≤ min

{
L∗1 + R̂ρ(f) +

2
√

2rΛm

(1− ρ)
√
n
,

L∗2 + R̂β(f) +
2
√

2mΛr√
n

}
+

√
log 2/δ

2n
.

To prove Theorem 6, we first establish following lemmas.

Lemma 3. Let F be the hypothesis space defined in Theo-
rem 3. Fix 1 > ρ > 0. Then, for any δ > 0, with probability
at least 1− δ, the following bounds for all f ∈ F

P(ŷx 6= y)− L∗1 ≤ R̂ρ(f) +
2
√

2rΛm

(1− ρ)
√
n

+

√
log 1

δ

2n
.

Proof of Lemma 3. Fix an x. If ‖f(x)−L‖1 ≤ 1, ŷx = yx,
which implies that Py[ŷx 6= y | x] − Py[yx 6= y | x] = 0.
Besides, Py[ŷx 6= y | x] − Py[yx 6= y | x] ≤ 1. By the
definition of Φρ, Φρ(‖f(x)− L‖1) is larger than or equal
to 0 if ‖f(x) − L‖1 ≤ 1 and is larger than 1 otherwise.
Thereby, we have

Py[ŷx 6= y | x]− Py[yx 6= y | x] ≤ Φρ(‖f(x)− L‖1).

Take expectation on both sides of the above inequality,

P(ŷx 6= y)− L∗1 ≤ E [Φρ(‖f(x)− L‖1)] . (8)

According to proof of Theorem 3, the right-hand side of
above inequality is bounded by

E [Φρ(‖f(x)− L‖1)] ≤ R̂ρ(f) +
2
√

2mΛr

(1− ρ)
√
n

+

√
log 1

δ

2n
.

Combine the above inequality and Eq. (8), which completes
the proof.

Lemma 4. Let β be defined in Theorem 6. Let d̂ be a
learned LDL function. Then, the following bound holds

Ey,x [I(ŷx 6= y)]−L∗2 ≤ E

`β(
∑

j:yj 6=yx

|d̂yjx − dyjx |) + β

 .

Proof of Lemma 4. Fix an x. By Lemma 2, we have

Py[ŷx 6= y | x]− Py[y′x 6= y | x] = d
y′x
x − dŷxx .

If ŷx 6= yx, by Eq. (3), it follows that

d
y′x
x − dŷxx ≤

∑
j:yj 6=yx

|d̂yjx − dyjx |.

If ŷx = yx, the above inequality still holds. Thereby,

Py[ŷx 6= yx]− Py[y′x 6= y | x] ≤
∑

j:yj 6=yx

|d̂yjx − dyjx |.

Recall the definition of `β , we have

Py[ŷx 6= y|x]− Py[y′x 6= y|x] ≤ `β(
∑

j:yj 6=yx

|d̂yjx − d
yj
x |) + β.

Taking expectation on both sides of the above equation, we
completes the proof.

Lemma 5. Let F be the hypothesis space defined in Theo-
rem 3. Fix β > 0 as Theorem 6 does. Then, for any δ > 0,
with probability at least 1− δ, the bounds for all f ∈ F

E [I(ŷx 6= y)]− L∗2 ≤ (R̂β(f) + β) +
2
√

2mΛr√
n

+

√
log 1

δ

2n
.

Proof of Lemma 5. To start, define

`′β(x) = min{1, `β(x) + β}

According to Lemma 4, it’s trivial to see that

Ey,x [I(ŷx 6= y)]− L∗2 ≤ E

`′β(
∑

j:yj 6=yx

|d̂yjx − dyjx |)

 ,
because Ey,x [I(ŷx 6= y)]−L∗2 ≤ 1. It suffices to bound the
right-hand side of the above equation.

DefineH = {z = (x, D) 7→
∑
j:yj 6=yx |fj(x)−dyjx | : f ∈

F}. Applying a standard Rademacher bound (Mohri et al.,
2018) to `′β ◦ H, for any δ > 0, with probability at 1 − δ,
the following bound holds for all f ∈ F

E

`′β(
∑

j:yj 6=yx

|d̂yjx − dyjx |)

 ≤R̂β(f)

+2Rn(`′β ◦ H) +

√
log 1

δ

2n
.

By the 1-Lipschitzness of `′β , it follows that

Rn(`′β ◦ H) ≤ Rn(H).
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Define `(D, D̂) =
∑
j:yj 6=yx |d̂

yj
x − d

yj
x |. Then, H can

be equivalently re-written as ` ◦ F . Notice that ` satisfies
1-Lipschitzness since

`(D, D̂)− `(D, D̄) ≤ ‖D̂ − D̄‖1.

Similar to the proof of Theorem 3, we have

Rn(H) ≤
√

2mΛr√
n

,

which leads to

Ey,x [I(ŷx 6= y)]− L∗2 ≤ R̂β(f) +
2
√

2mΛr√
n

+

√
log 1

δ

2n
.

Proof of Theorem 6. The proof of Theorem 6 comes natu-
rally by combining Lemmas 3 and 5.
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