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Before proving Theorems 1 and 2, we first introduce the
following lemma proved in (Wang & Geng, 2019).

Lemma 1. Let cl,c2,c3 and cy be real values satisfying
¢1 > cgand cg > cyq. Then, 1 — ca < |c1 — cq| + |ea — €3|.

A. Proof of Theorem 1

Theorem 1. For each x € X, if the predicted label distri-
bution satisfies the following inequality

Yo ldy —d¥] < as,
i

the predicted label satisfies 1 = Y.

Proof. We prove by contradiction. Suppose for the sake of
contradiction that ¢, # y,. Without loss of generality, let
Yo = Y; and g, = y; for i # j. Recall the definition of
Y = arg maxy d¥, and J, = arg maxy d¥ . Then, we have
d¥ > d¥% and d¥% > d¥ . By Lemma 1,

dy — v < |dy —d¥|+|dg —dv). ()

Further, observe that oy < d% — d¥% and |d¥ — d¥| +
4% — du| < 37, |42 — d¥|, which yields

ap <y |dY —d¥.
l

The above equation contradicts. Thereby, we must have
Yz = Y, Which completes the proof. O

B. Proof of Theorem 2

Theorem 2. For each x € X, if the predicted label distri-
bution satisfies the following inequality

S |dY —d¥| < B, )
T FYa
the predicted label satisfies o = Yz OF oo = Y-
Proof. The theorem holds if 3, = y,. Next, we will prove
that § = v, if Yz # Ya-

We prove by contradiction. Suppose for the sake of con-
tradiction that g, # y.,. Without loss of generality, let

Uz = Yi # Yo and y, = y;. If y; # y;. By the definition

of 9, we have d¥i > dy’. Recall y,, = argmaxyz,, dY.

Then, we have di’ > d¥ because y; # . By Lemma 1,
dy —d¥ < |dw —dg|+|d% — d¥|. 3)

If y; = y;, the above inequality still holds. Notice that

Y;j # Yo and y; # Yq, which leads to B, < diy — dY¥ and

i 7Y Yi i 7
|dz’ — da |+ |d% — d¥i| < 3.2, |d4 — dY|. Thereby,

Bo < Y Ay —dy|,
Ly #Yz

which contradicts. Hence, we must §, = y/,, which com-
pletes the proof. O
C. Proof of Theorem 3

Theorem 3. Let F = {z — W' -z : ||w;]l2 < A} be
the hypothesis space. Fix 1 > p > 0. For any § > 0, with
probability at least 1 — 0, the bounds hold for all f € F,
log 1/s

L leeY/
1—p)vn 2n

. N 24/2rAm
R(f) < min {Rp(f) + =N

R,(f) + 4;3;}+\/b§7%.

Before presenting the proof, we introduce the following
definition.

RU) < Ro(f) + (mmm

Definition. For any p < 1, define the p-margin loss ®,

0 ifa<p
Pp(x) =49 T2 ifp<z<l
1 otherwise.

Fig. 1 shows the p-insensitive loss and the p-margin loss.
It’s trivial hat &, satisfies 1/(1 — p)-Lipschitzness.

Proof. Recall L = {I¥*,--- 1Y}, where I3 equals 1 if
Yyj = Yo and O otherwise. Let H = {z = (z,yz) —
> |fj(z)—1%'| : f € F}. Consider the family of functions
taking values in [0, 1]

H={P,0h:hcH}
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Figure 1. Illustration of the p-insensitive loss and p-margin loss.

Applying a standard Rademacher bound (Mohri et al., 2018)
to H, for any 6 > 0, with probability at least 1 — 4, the
following bound holds for all g € H,

E[o()] < -3 gl) + 2Ra(H) + P51,

and the following bound holds for all f € F

E[®,(]|f(x) — L|j1)] < Rp(f)+2Rn(¢poH)+\/@-

where the second inequality is according to (Maurer, 2016),
and F; = {x — w; -« : ||lw;|2 < A}. According to
(Mohri et al., 2018), R,,(F;) < Ar/y/n, which yields

V2mAr
R (D, 0H) < L
A T
Thus, we have the following bound
. 2v/2mAr log 1/s
< 4

which completes the proof for the first part.

Next, we prove the second part. The first part can be equiva-
lently re-written as, for any 6 > 0, with probability at least
1 — §/2, the following bound holds for all f € F,

24/2mAr n log 2/s
(1-p)vn 2n

Besides, Mohri et al. (2018) showed that for a multi-class
SVM, the generalization bound is as follows: for any § > 0,

R(f) < R,(f) + (5)

with probability at least 1 — §/2, the following bound holds
forall f € F,

- dmAr log2/6
R R . 6
(< Bf)+ T 55 ©
Combine Egs. (5) and (6), which completes the proof for
the second part. O

D. Proof of Theorem 5

Theorem 5.. Let d be a learned LDL function. Let N and
M be defined above. Then, the following bound holds

P(ym # y) - LT < EmNDNmM [Z |CZZ - dﬂ] :
y

Before proving the theorem, we introduce the following
lemma.

Lemma 2. Fix an x. Then,

Pylin # y | @] = Pylye # y | 2] = dir — di.
Proof of Lemma 2. First, we have

Pylfe #y | 2] =1-Pyly = gs | 2] =1 - di,
and

Pylye #y @] =1-Pyly = yo | 2] =1 - d,

which yields

Pyliw #y | @] — Pylys #y | 2] = d%r — d¥.

Proof of Theorem 5. First, notice that

P(Ja #y) — L7
=Eya~Drnm (P2 # v) — LYy # y)] (7
+ Ey»ENDNUM (Je # y) — L(yz # y)],

where N = X \ \V is the complementary set of . By the
definitions of A" and M, for any £ € N UM, §p = Ya.
According to Lemma 2, the second item on the right-hand
side of Eq. (7) reduces to 0. Similarly, according to Lemma
2, the first item on the right-hand side of Eq. (7) equals

EmNNﬂM [d%m - d%ﬂ] .
If Yy # o, according to Eq. (1), it follows that

dye —dr <> |y —d|.
J
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If y. = 9., the above inequality still holds. Thereby,

P # y) — L} < Epononm [dee — di]

S EwNDNmM Z |dAg‘:] - d%]| )
J

which completes the proof. O

E. Proof of Theorem 6

Theorem 6.. Let F be the hypothesis space defined in The-
orem 3. Fix1 > p > 0and 8 > 0 such that § < By for all
x € X. Then, for any § > 0, with probability at least 1 — 6,
the following bound holds for all f € F

P(gz #y) < min{p; LR (f) + %’

L+ Rs(f) + 2‘[\2/”%/“”} + \/1052/5.

To prove Theorem 6, we first establish following lemmas.

Lemma 3. Let F be the hypothesis space defined in Theo-
rem 3. Fix 1 > p > 0. Then, for any § > 0, with probability
at least 1 — 0, the following bounds for all f € F

2v/2rAm n log%
(1=p)vn 2n

Proof of Lemma 3. Fixanax. If || f(x)—L||1 <1, Jx = Ya»
which implies that Py [§e # v | ] — Pylye # v | ] = 0.
Besides. P, [Jz # y | 2] — Pylye # y | @] < L. By the
definition of ®,, ®,(||f(x) — L||1) is larger than or equal
to 0 if ||f(x) — L|; < 1 and is larger than 1 otherwise.
Thereby, we have

Pylde # y | @] = Pylye # y | =] < ,([[f(x) — L1).
Take expectation on both sides of the above inequality,
P(Je #y) = L1 <E[®,([f(=) = LID]. B

According to proof of Theorem 3, the right-hand side of
above inequality is bounded by

P(js #y) — LT < Ro(f) +

~ 2v/2mAr log &
E[® - L <R 3
[@,([1f(®) = L[] < Ro(f) + T\ 2
Combine the above inequality and Eq. (8), which completes
the proof. [

Lemma 4. Let 8 be defined in Theorem 6. Let d be a
learned LDL function. Then, the following bound holds

By [[(fa #y)]-L5 <E [6s( Y |d¥ —d¥|)+
j:y]’#ym

Proof of Lemma 4. Fix an . By Lemma 2, we have

Pylie #y | @] — Pyly, # y | @] = da — di.
If J # ya, by Eq. (3), it follows that
de —die < S |dy —dY|.
7Y #Ya
If §. = ya. the above inequality still holds. Thereby,
Pylje # ya] = Pyly, #y | 2] < D |dy —d¥|.
T FYa

Recall the definition of /g, we have

Pylje # yla] — Pylys # yla) < Ls( Y |d¥ —di]) + B.

7Y # Y

Taking expectation on both sides of the above equation, we
completes the proof. [

Lemma 5. Let F be the hypothesis space defined in Theo-
rem 3. Fix 8 > 0 as Theorem 6 does. Then, for any § > 0,
with probability at least 1 — 0, the bounds for all f € F

2/ 2mAr n log %

E[I(@= #v)] = L3 < (Rs(f) + A) + == o

Proof of Lemma 5. To start, define
(;3(95) = min{1, {3(z) + B}

According to Lemma 4, it’s trivial to see that

Eyz [(§z #y)] — Ly <E E/B( Z |CZ%] _ dng ’
JY; FYa

because E,, o [I(§z # y)] — L5 < 1. It suffices to bound the
right-hand side of the above equation.

Define = {z = (z,D) = >_;., ~,. |fi(x) —dy|: f€
F}. Applying a standard Rademacher bound (Mobhri et al.,
2018) to % o H, for any § > 0, with probability at 1 — ¢,
the following bound holds for all f € F

E(( Y |d¥ —d¥|)| <Rs(f)

Y #Ya

+2R (05 0 H) +

By the 1-Lipschitzness of £, it follows that

Rn(lz o M) < Rn(H).
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Define ¢(D, D) = >y ve |d% — d¥|. Then, H can
be equivalently re-written as £ o F. Notice that ¢ satisfies
1-Lipschitzness since

(D,D)—D,D) < ||D - Dy
Similar to the proof of Theorem 3, we have

V2mAr
Rn(H) < NI

which leads to

24/2mAr N log %
N 2n
O

Ey o [0 # )] — L3 < Ro(f) +

Proof of Theorem 6. The proof of Theorem 6 comes natu-
rally by combining Lemmas 3 and 5. O
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