Label Distribution Learning Machine - Supplementary Material

Before proving Theorems 1 and 2, we first introduce the following lemma proved in (Wang \& Geng, 2019).
Lemma 1. Let $c 1, c 2, c 3$ and c_{4} be real values satisfying $c_{1}>c_{2}$ and $c_{3}>c_{4}$. Then, $c_{1}-c_{2}<\left|c_{1}-c_{4}\right|+\left|c_{2}-c 3\right|$.

A. Proof of Theorem 1

Theorem 1. For each $\boldsymbol{x} \in \mathcal{X}$, if the predicted label distribution satisfies the following inequality

$$
\sum_{j}\left|d_{\boldsymbol{x}}^{y_{j}}-\hat{d}_{\boldsymbol{x}}^{y_{j}}\right| \leq \alpha_{\boldsymbol{x}}
$$

the predicted label satisfies $\hat{y}_{\boldsymbol{x}}=y_{\boldsymbol{x}}$.
Proof. We prove by contradiction. Suppose for the sake of contradiction that $\hat{y}_{\boldsymbol{x}} \neq y_{\boldsymbol{x}}$. Without loss of generality, let $y_{\boldsymbol{x}}=y_{j}$ and $\hat{y}_{\boldsymbol{x}}=y_{i}$ for $i \neq j$. Recall the definition of $y_{\boldsymbol{x}}=\arg \max _{\bar{y}} d_{\boldsymbol{x}}^{\bar{y}}$ and $\hat{y}_{\boldsymbol{x}}=\arg \max _{\bar{y}} \hat{d}_{\boldsymbol{x}}^{\bar{y}}$. Then, we have $d_{\boldsymbol{x}}^{y_{j}}>d_{\boldsymbol{x}}^{y_{i}}$ and $\hat{d}_{\boldsymbol{x}}^{y_{i}}>\hat{d}_{\boldsymbol{x}}^{y_{j}}$. By Lemma 1,

$$
\begin{equation*}
d_{\boldsymbol{x}}^{y_{j}}-d_{\boldsymbol{x}}^{y_{i}}<\left|d_{\boldsymbol{x}}^{y_{j}}-\hat{d}_{\boldsymbol{x}}^{y_{j}}\right|+\left|d_{\boldsymbol{x}}^{y_{i}}-\hat{d}_{\boldsymbol{x}}^{y_{i}}\right| . \tag{1}
\end{equation*}
$$

Further, observe that $\alpha_{\boldsymbol{x}} \leq d_{\boldsymbol{x}}^{y_{j}}-d_{\boldsymbol{x}}^{y_{i}}$ and $\left|d_{\boldsymbol{x}}^{y_{j}}-\hat{d}_{\boldsymbol{x}}^{y_{j}}\right|+$ $\left|d_{\boldsymbol{x}}^{y_{i}}-\hat{d}_{\boldsymbol{x}}^{y_{i}}\right| \leq \sum_{l}\left|d_{\boldsymbol{x}}^{y_{l}}-\hat{d}_{\boldsymbol{x}}^{y_{l}}\right|$, which yields

$$
\alpha_{\boldsymbol{x}}<\sum_{l}\left|d_{\boldsymbol{x}}^{y_{l}}-\hat{d}_{\boldsymbol{x}}^{y_{l}}\right|
$$

The above equation contradicts. Thereby, we must have $y_{\boldsymbol{x}}=\hat{y}_{\boldsymbol{x}}$, which completes the proof.

B. Proof of Theorem 2

Theorem 2. For each $\boldsymbol{x} \in \mathcal{X}$, if the predicted label distribution satisfies the following inequality

$$
\begin{equation*}
\sum_{j: y_{j} \neq y_{\boldsymbol{x}}}\left|d_{\boldsymbol{x}}^{y_{j}}-\hat{d}_{\boldsymbol{x}}^{y_{j}}\right| \leq \beta_{\boldsymbol{x}} \tag{2}
\end{equation*}
$$

the predicted label satisfies $\hat{y}_{\boldsymbol{x}}=y_{\boldsymbol{x}}$ or $\hat{y}_{\boldsymbol{x}}=y_{\boldsymbol{x}}^{\prime}$.
Proof. The theorem holds if $\hat{y}_{\boldsymbol{x}}=y_{\boldsymbol{x}}$. Next, we will prove that $\hat{y}_{\boldsymbol{x}}=y_{\boldsymbol{x}}^{\prime}$ if $\hat{y}_{\boldsymbol{x}} \neq y_{\boldsymbol{x}}$.
We prove by contradiction. Suppose for the sake of contradiction that $\hat{y}_{\boldsymbol{x}} \neq y_{\boldsymbol{x}}^{\prime}$. Without loss of generality, let
$\hat{y}_{\boldsymbol{x}}=y_{i} \neq y_{\boldsymbol{x}}$ and $y_{\boldsymbol{x}}^{\prime}=y_{j}$. If $y_{i} \neq y_{j}$. By the definition of $\hat{y}_{\boldsymbol{x}}$, we have $\hat{d}_{\boldsymbol{x}}^{y_{i}}>\hat{d}_{\boldsymbol{x}}^{y_{j}}$. Recall $y_{\boldsymbol{x}}^{\prime}=\arg \max _{\bar{y} \neq y_{\boldsymbol{x}}} d_{\boldsymbol{x}}^{\bar{y}}$. Then, we have $d_{\boldsymbol{x}}^{y_{j}}>d_{\boldsymbol{x}}^{y_{i}}$ because $y_{i} \neq y_{\boldsymbol{x}}$. By Lemma 1,

$$
\begin{equation*}
d_{\boldsymbol{x}}^{y_{j}}-d_{\boldsymbol{x}}^{y_{i}}<\left|d_{\boldsymbol{x}}^{y_{j}}-\hat{d}_{\boldsymbol{x}}^{y_{j}}\right|+\left|d_{\boldsymbol{x}}^{y_{i}}-\hat{d}_{\boldsymbol{x}}^{y_{i}}\right| \tag{3}
\end{equation*}
$$

If $y_{i}=y_{j}$, the above inequality still holds. Notice that $y_{j} \neq y_{\boldsymbol{x}}$ and $y_{i} \neq y_{\boldsymbol{x}}$, which leads to $\beta_{\boldsymbol{x}} \leq d_{\boldsymbol{x}}^{y_{j}}-d_{\boldsymbol{x}}^{y_{i}}$ and $\left|d_{\boldsymbol{x}}^{y_{j}}-\hat{d}_{\boldsymbol{x}}^{y_{j}}\right|+\left|d_{\boldsymbol{x}}^{y_{i}}-\hat{d}_{\boldsymbol{x}}^{y_{i}}\right| \leq \sum_{l: y_{l} \neq y_{\boldsymbol{x}}}\left|d_{\boldsymbol{x}}^{y_{l}}-\hat{d}_{\boldsymbol{x}}^{y_{l}}\right|$. Thereby,

$$
\beta_{\boldsymbol{x}}<\sum_{l: y_{l} \neq y_{\boldsymbol{x}}}\left|d_{\boldsymbol{x}}^{y_{l}}-\hat{d}_{\boldsymbol{x}}^{y_{l}}\right|
$$

which contradicts. Hence, we must $\hat{y}_{\boldsymbol{x}}=y_{\boldsymbol{x}}^{\prime}$, which completes the proof.

C. Proof of Theorem 3

Theorem 3. Let $\mathcal{F}=\left\{\boldsymbol{x} \mapsto \boldsymbol{W}^{\top} \cdot \boldsymbol{x}:\left\|\boldsymbol{w}_{j}\right\|_{2} \leq \Lambda\right\}$ be the hypothesis space. Fix $1>\rho>0$. For any $\delta>0$, with probability at least $1-\delta$, the bounds hold for all $f \in \mathcal{F}$,

$$
\begin{gathered}
R(f) \leq \hat{R}_{\rho}(f)+\frac{2 \sqrt{2} r \Lambda m}{(1-\rho) \sqrt{n}}+\sqrt{\frac{\log 1 / \delta}{2 n}} \\
R(f) \leq \min \left\{\hat{R}_{\rho}(f)+\frac{2 \sqrt{2} r \Lambda m}{(1-\rho) \sqrt{n}}\right. \\
\left.\tilde{R}_{\rho}(f)+\frac{4 r \Lambda m}{\rho \sqrt{n}}\right\}+\sqrt{\frac{\log 2 / \delta}{2 n}}
\end{gathered}
$$

Before presenting the proof, we introduce the following definition.
Definition. For any $\rho<1$, define the ρ-margin loss Φ_{ρ}

$$
\Phi_{\rho}(x)= \begin{cases}0 & \text { if } x \leq \rho \\ \frac{x-\rho}{1-\rho} & \text { if } \rho<x \leq 1 \\ 1 & \text { otherwise }\end{cases}
$$

Fig. 1 shows the ρ-insensitive loss and the ρ-margin loss. It's trivial hat Φ_{ρ} satisfies $1 /(1-\rho)$-Lipschitzness.

Proof. Recall $L=\left\{l_{\boldsymbol{x}}^{y_{1}}, \cdots, l_{\boldsymbol{x}}^{y_{m}}\right\}$, where $l_{\boldsymbol{x}}^{y_{j}}$ equals 1 if $y_{j}=y_{\boldsymbol{x}}$ and 0 otherwise. Let $\mathcal{H}=\left\{z=\left(\boldsymbol{x}, y_{\boldsymbol{x}}\right) \mapsto\right.$ $\left.\sum_{j}\left|f_{j}(\boldsymbol{x})-l_{\boldsymbol{x}}^{y_{j}}\right|: f \in \mathcal{F}\right\}$. Consider the family of functions taking values in $[0,1]$

$$
\tilde{\mathcal{H}}=\left\{\Phi_{\rho} \circ h: h \in \mathcal{H}\right\}
$$

Figure 1. Illustration of the ρ-insensitive loss and ρ-margin loss.

Applying a standard Rademacher bound (Mohri et al., 2018) to $\tilde{\mathcal{H}}$, for any $\delta>0$, with probability at least $1-\delta$, the following bound holds for all $g \in \tilde{\mathcal{H}}$,

$$
\mathbb{E}[g(z)] \leq \frac{1}{n} \sum_{i=1}^{n} g\left(z_{i}\right)+2 \mathcal{R}_{n}(\tilde{\mathcal{H}})+\sqrt{\frac{\log 1 / \delta}{2 n}}
$$

and the following bound holds for all $f \in \mathcal{F}$
$\mathbb{E}\left[\Phi_{\rho}\left(\|f(\boldsymbol{x})-L\|_{1}\right)\right] \leq \hat{R}_{\rho}(f)+2 \mathcal{R}_{n}\left(\Phi_{\rho} \circ \mathcal{H}\right)+\sqrt{\frac{\log 1 / \delta}{2 n}}$.
By Corollary $1, \mathbb{E}\left[\Phi_{\rho}\left(\|f(\boldsymbol{x})-L\|_{1}\right)\right] \geq \mathbb{I}\left(\hat{y}_{\boldsymbol{x}} \neq y_{\boldsymbol{x}}\right)=0$ if $\|f(\boldsymbol{x})-L\|_{1} \leq 1$. Moreover, $\mathbb{E}\left[\Phi_{\rho}\left(\|f(\boldsymbol{x})-L\|_{1}\right)\right]=1$ if $\|f(\boldsymbol{x})-L\|_{1} \geq 1$. Hence, $R(f) \leq \mathbb{E}\left[\Phi_{\rho}\left(\|f(\boldsymbol{x})-L\|_{1}\right)\right]$, which leads to

$$
R(f) \leq \hat{R}_{\rho}(f)+2 \mathcal{R}_{n}\left(\Phi_{\rho} \circ \mathcal{H}\right)+\sqrt{\frac{\log 1 / \delta}{2 n}}
$$

By the $1 /(1-\rho)$-Lipschitzness of Φ_{ρ}, we have

$$
\mathcal{R}_{n}\left(\Phi_{\rho} \circ \mathcal{H}\right) \leq \frac{1}{1-\rho} \mathcal{R}_{n}(\mathcal{H}) \leq \frac{\sqrt{2}}{1-\rho} \sum_{j=1}^{m} \mathcal{R}_{n}\left(\mathcal{F}_{j}\right)
$$

where the second inequality is according to (Maurer, 2016), and $\mathcal{F}_{j}=\left\{\boldsymbol{x} \mapsto \boldsymbol{w}_{j} \cdot \boldsymbol{x}:\left\|\boldsymbol{w}_{j}\right\|_{2} \leq \Lambda\right\}$. According to (Mohri et al., 2018), $\mathcal{R}_{n}\left(\mathcal{F}_{j}\right) \leq \Lambda r / \sqrt{n}$, which yields

$$
\mathcal{R}_{n}\left(\Phi_{\rho} \circ \mathcal{H}\right) \leq \frac{\sqrt{2} m \Lambda r}{(1-\rho) \sqrt{n}}
$$

Thus, we have the following bound

$$
\begin{equation*}
R(f) \leq \hat{R}_{\rho}(f)+\frac{2 \sqrt{2} m \Lambda r}{(1-\rho) \sqrt{n}}+\sqrt{\frac{\log 1 / \delta}{2 n}} \tag{4}
\end{equation*}
$$

which completes the proof for the first part.
Next, we prove the second part. The first part can be equivalently re-written as, for any $\delta>0$, with probability at least $1-\delta / 2$, the following bound holds for all $f \in \mathcal{F}$,

$$
\begin{equation*}
R(f) \leq \hat{R}_{\rho}(f)+\frac{2 \sqrt{2} m \Lambda r}{(1-\rho) \sqrt{n}}+\sqrt{\frac{\log 2 / \delta}{2 n}} \tag{5}
\end{equation*}
$$

Besides, Mohri et al. (2018) showed that for a multi-class SVM, the generalization bound is as follows: for any $\delta>0$,
with probability at least $1-\delta / 2$, the following bound holds for all $f \in \mathcal{F}$,

$$
\begin{equation*}
R(f)<\tilde{R}_{\rho}(f)+\frac{4 m \Lambda r}{\rho \sqrt{n}}+\sqrt{\frac{\log 2 / \delta}{2 n}} \tag{6}
\end{equation*}
$$

Combine Eqs. (5) and (6), which completes the proof for the second part.

D. Proof of Theorem 5

Theorem 5.. Let \hat{d} be a learned LDL function. Let \mathcal{N} and \mathcal{M} be defined above. Then, the following bound holds

$$
\mathbb{P}\left(\hat{y}_{\boldsymbol{x}} \neq y\right)-L_{1}^{*} \leq \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{\mathcal{N} \cap \mathcal{M}}}\left[\sum_{\bar{y}}\left|\hat{d}_{\boldsymbol{x}}^{\bar{y}}-d_{\boldsymbol{x}}^{\bar{y}}\right|\right] .
$$

Before proving the theorem, we introduce the following lemma.
Lemma 2. Fix an \boldsymbol{x}. Then,

$$
\mathbb{P}_{y}\left[\hat{y}_{\boldsymbol{x}} \neq y \mid \boldsymbol{x}\right]-\mathbb{P}_{y}\left[y_{\boldsymbol{x}} \neq y \mid \boldsymbol{x}\right]=d_{\boldsymbol{x}}^{y_{\boldsymbol{x}}}-d_{\boldsymbol{x}}^{\hat{y}_{\boldsymbol{x}}}
$$

Proof of Lemma 2. First, we have

$$
\mathbb{P}_{y}\left[\hat{y}_{\boldsymbol{x}} \neq y \mid \boldsymbol{x}\right]=1-\mathbb{P}_{y}\left[y=\hat{y}_{\boldsymbol{x}} \mid \boldsymbol{x}\right]=1-d_{\boldsymbol{x}}^{\hat{y}_{\boldsymbol{x}}},
$$

and

$$
\mathbb{P}_{y}\left[y_{\boldsymbol{x}} \neq y \mid \boldsymbol{x}\right]=1-\mathbb{P}_{y}\left[y=y_{\boldsymbol{x}} \mid \boldsymbol{x}\right]=1-d_{\boldsymbol{x}}^{y_{\boldsymbol{x}}}
$$

which yields

$$
\mathbb{P}_{y}\left[\hat{y}_{\boldsymbol{x}} \neq y \mid \boldsymbol{x}\right]-\mathbb{P}_{y}\left[y_{\boldsymbol{x}} \neq y \mid \boldsymbol{x}\right]=d_{\boldsymbol{x}}^{y_{\boldsymbol{x}}}-d_{\boldsymbol{x}}^{\hat{y_{\boldsymbol{x}}^{x}}}
$$

Proof of Theorem 5. First, notice that

$$
\begin{align*}
& \mathbb{P}\left(\hat{y}_{\boldsymbol{x}} \neq y\right)-L_{1}^{*} \\
& =\mathbb{E}_{y, \boldsymbol{x} \sim \mathcal{D}_{\mathcal{N} \cap \mathcal{M}}}\left[\mathbb{I}\left(\hat{y}_{\boldsymbol{x}} \neq y\right)-\mathbb{I}\left(y_{\boldsymbol{x}} \neq y\right)\right] \tag{7}\\
& +\mathbb{E}_{y, \boldsymbol{x} \sim \mathcal{D}_{\overline{\mathcal{N}} \cup \bar{M}}}\left[\mathbb{I}\left(\hat{y}_{\boldsymbol{x}} \neq y\right)-\mathbb{I}\left(y_{\boldsymbol{x}} \neq y\right)\right]
\end{align*}
$$

where $\overline{\mathcal{N}}=\mathcal{X} \backslash \mathcal{N}$ is the complementary set of \mathcal{N}. By the definitions of \mathcal{N} and \mathcal{M}, for any $\boldsymbol{x} \in \overline{\mathcal{N}} \cup \overline{\mathcal{M}}, \hat{y}_{\boldsymbol{x}}=y_{\boldsymbol{x}}$. According to Lemma 2, the second item on the right-hand side of Eq. (7) reduces to 0 . Similarly, according to Lemma 2, the first item on the right-hand side of Eq. (7) equals

$$
\mathbb{E}_{\boldsymbol{x} \sim \mathcal{N} \cap \mathcal{M}}\left[d_{\boldsymbol{x}}^{y_{\boldsymbol{x}}}-d_{\boldsymbol{x}}^{\hat{y}_{\boldsymbol{x}}}\right]
$$

If $y_{\boldsymbol{x}} \neq \hat{y}_{\boldsymbol{x}}$, according to Eq. (1), it follows that

$$
d_{\boldsymbol{x}}^{y_{\boldsymbol{x}}}-d_{\boldsymbol{x}}^{\hat{y}_{\boldsymbol{x}}} \leq \sum_{j}\left|\hat{d}_{\boldsymbol{x}}^{y_{j}}-d_{\boldsymbol{x}}^{y_{j}}\right|
$$

If $y_{\boldsymbol{x}}=\hat{y}_{\boldsymbol{x}}$, the above inequality still holds. Thereby,

$$
\begin{aligned}
\mathbb{P}\left(\hat{y}_{\boldsymbol{x}} \neq y\right)-L_{1}^{*} & \leq \mathbb{E}_{\boldsymbol{x} \sim \mathcal{N} \cap \mathcal{M}}\left[d_{\boldsymbol{x}}^{y_{\boldsymbol{x}}}-d_{\boldsymbol{x}}^{\hat{y}_{\boldsymbol{x}}}\right] \\
& \leq \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{\mathcal{N} \cap \mathcal{M}}}\left[\sum_{j}\left|\hat{d}_{\boldsymbol{x}}^{y_{j}}-d_{\boldsymbol{x}}^{y_{j}}\right|\right],
\end{aligned}
$$

which completes the proof.

E. Proof of Theorem 6

Theorem 6.. Let \mathcal{F} be the hypothesis space defined in Theorem 3. Fix $1>\rho>0$ and $\beta \geq 0$ such that $\beta \leq \beta_{\boldsymbol{x}}$ for all $\boldsymbol{x} \in \mathcal{X}$. Then, for any $\delta>0$, with probability at least $1-\delta$, the following bound holds for all $f \in \mathcal{F}$

$$
\begin{aligned}
\mathbb{P}\left(\hat{y}_{\boldsymbol{x}} \neq y\right) \leq \min \{ & L_{1}^{*}+\hat{R}_{\rho}(f)+\frac{2 \sqrt{2} r \Lambda m}{(1-\rho) \sqrt{n}}, \\
& \left.L_{2}^{*}+\hat{R}_{\beta}(f)+\frac{2 \sqrt{2} m \Lambda r}{\sqrt{n}}\right\}+\sqrt{\frac{\log ^{2} / \delta}{2 n}} .
\end{aligned}
$$

To prove Theorem 6, we first establish following lemmas.
Lemma 3. Let \mathcal{F} be the hypothesis space defined in Theorem 3. Fix $1>\rho>0$. Then, for any $\delta>0$, with probability at least $1-\delta$, the following bounds for all $f \in \mathcal{F}$

$$
\mathbb{P}\left(\hat{y}_{\boldsymbol{x}} \neq y\right)-L_{1}^{*} \leq \hat{R}_{\rho}(f)+\frac{2 \sqrt{2} r \Lambda m}{(1-\rho) \sqrt{n}}+\sqrt{\frac{\log \frac{1}{\delta}}{2 n}}
$$

Proof of Lemma 3. Fix an \boldsymbol{x}. If $\|f(\boldsymbol{x})-L\|_{1} \leq 1, \hat{y}_{\boldsymbol{x}}=y_{\boldsymbol{x}}$, which implies that $\mathbb{P}_{y}\left[\hat{y}_{\boldsymbol{x}} \neq y \mid \boldsymbol{x}\right]-\mathbb{P}_{y}\left[y_{\boldsymbol{x}} \neq y \mid \boldsymbol{x}\right]=0$. Besides, $\mathbb{P}_{y}\left[\hat{y}_{\boldsymbol{x}} \neq y \mid \boldsymbol{x}\right]-\mathbb{P}_{y}\left[y_{\boldsymbol{x}} \neq y \mid \boldsymbol{x}\right] \leq 1$. By the definition of $\Phi_{\rho}, \Phi_{\rho}\left(\|f(\boldsymbol{x})-L\|_{1}\right)$ is larger than or equal to 0 if $\|f(\boldsymbol{x})-L\|_{1} \leq 1$ and is larger than 1 otherwise. Thereby, we have

$$
\mathbb{P}_{y}\left[\hat{y}_{\boldsymbol{x}} \neq y \mid \boldsymbol{x}\right]-\mathbb{P}_{y}\left[y_{\boldsymbol{x}} \neq y \mid \boldsymbol{x}\right] \leq \Phi_{\rho}\left(\|f(\boldsymbol{x})-L\|_{1}\right)
$$

Take expectation on both sides of the above inequality,

$$
\begin{equation*}
\mathbb{P}\left(\hat{y}_{\boldsymbol{x}} \neq y\right)-L_{1}^{*} \leq \mathbb{E}\left[\Phi_{\rho}\left(\|f(\boldsymbol{x})-L\|_{1}\right)\right] \tag{8}
\end{equation*}
$$

According to proof of Theorem 3, the right-hand side of above inequality is bounded by
$\mathbb{E}\left[\Phi_{\rho}\left(\|f(\boldsymbol{x})-L\|_{1}\right)\right] \leq \hat{R}_{\rho}(f)+\frac{2 \sqrt{2} m \Lambda r}{(1-\rho) \sqrt{n}}+\sqrt{\frac{\log \frac{1}{\delta}}{2 n}}$.
Combine the above inequality and Eq. (8), which completes the proof.
Lemma 4. Let β be defined in Theorem 6. Let \hat{d} be a learned LDL function. Then, the following bound holds
$\mathbb{E}_{y, \boldsymbol{x}}\left[\mathbb{I}\left(\hat{y}_{\boldsymbol{x}} \neq y\right)\right]-L_{2}^{*} \leq \mathbb{E}\left[\ell_{\beta}\left(\sum_{j: y_{j} \neq y_{\boldsymbol{x}}}\left|\hat{d}_{\boldsymbol{x}}^{y_{j}}-d_{\boldsymbol{x}}^{y_{\boldsymbol{x}}}\right|\right)+\beta\right]$.

Proof of Lemma 4. Fix an \boldsymbol{x}. By Lemma 2, we have

$$
\mathbb{P}_{y}\left[\hat{y}_{\boldsymbol{x}} \neq y \mid \boldsymbol{x}\right]-\mathbb{P}_{y}\left[y_{\boldsymbol{x}}^{\prime} \neq y \mid \boldsymbol{x}\right]=d_{\boldsymbol{x}}^{y_{\boldsymbol{x}}^{\prime}}-d_{\boldsymbol{x}}^{\hat{y}_{\boldsymbol{x}}}
$$

If $\hat{y}_{\boldsymbol{x}} \neq y_{\boldsymbol{x}}$, by Eq. (3), it follows that

$$
d_{\boldsymbol{x}}^{y_{\boldsymbol{x}}^{\prime}}-d_{\boldsymbol{x}}^{\hat{y}_{\boldsymbol{x}}} \leq \sum_{j: y_{j} \neq y_{\boldsymbol{x}}}\left|\hat{d}_{\boldsymbol{x}}^{y_{j}}-d_{\boldsymbol{x}}^{y_{j}}\right|
$$

If $\hat{y}_{\boldsymbol{x}}=y_{\boldsymbol{x}}$, the above inequality still holds. Thereby,

$$
\mathbb{P}_{y}\left[\hat{y}_{\boldsymbol{x}} \neq y \boldsymbol{x}\right]-\mathbb{P}_{y}\left[y_{\boldsymbol{x}}^{\prime} \neq y \mid \boldsymbol{x}\right] \leq \sum_{j: y_{j} \neq y_{\boldsymbol{x}}}\left|\hat{d}_{\boldsymbol{x}}^{y_{j}}-d_{\boldsymbol{x}}^{y_{j}}\right|
$$

Recall the definition of ℓ_{β}, we have
$\mathbb{P}_{y}\left[\hat{y}_{\boldsymbol{x}} \neq y \mid \boldsymbol{x}\right]-\mathbb{P}_{y}\left[y_{\boldsymbol{x}}^{\prime} \neq y \mid \boldsymbol{x}\right] \leq \ell_{\beta}\left(\sum_{j: y_{j} \neq y_{\boldsymbol{x}}}\left|\hat{d}_{\boldsymbol{x}}^{y_{j}}-d_{\boldsymbol{x}}^{y_{j}}\right|\right)+\beta$.
Taking expectation on both sides of the above equation, we completes the proof.

Lemma 5. Let \mathcal{F} be the hypothesis space defined in Theorem 3. Fix $\beta>0$ as Theorem 6 does. Then, for any $\delta>0$, with probability at least $1-\delta$, the bounds for all $f \in \mathcal{F}$

$$
\mathbb{E}\left[\mathbb{I}\left(\hat{y}_{\boldsymbol{x}} \neq y\right)\right]-L_{2}^{*} \leq\left(\hat{R}_{\beta}(f)+\beta\right)+\frac{2 \sqrt{2} m \Lambda r}{\sqrt{n}}+\sqrt{\frac{\log \frac{1}{\delta}}{2 n}}
$$

Proof of Lemma 5. To start, define

$$
\ell_{\beta}^{\prime}(x)=\min \left\{1, \ell_{\beta}(x)+\beta\right\}
$$

According to Lemma 4, it's trivial to see that

$$
\mathbb{E}_{y, \boldsymbol{x}}\left[\mathbb{I}\left(\hat{y}_{\boldsymbol{x}} \neq y\right)\right]-L_{2}^{*} \leq \mathbb{E}\left[\ell_{\beta}^{\prime}\left(\sum_{j: y_{j} \neq y_{\boldsymbol{x}}}\left|\hat{d}_{\boldsymbol{x}}^{y_{j}}-d_{\boldsymbol{x}}^{y_{j}}\right|\right)\right]
$$

because $\mathbb{E}_{y, \boldsymbol{x}}\left[\mathbb{I}\left(\hat{y}_{\boldsymbol{x}} \neq y\right)\right]-L_{2}^{*} \leq 1$. It suffices to bound the right-hand side of the above equation.

Define $\mathcal{H}=\left\{z=(\boldsymbol{x}, D) \mapsto \sum_{j: y_{j} \neq y_{\boldsymbol{x}}}\left|f_{j}(\boldsymbol{x})-d_{\boldsymbol{x}}^{y_{j}}\right|: f \in\right.$ $\mathcal{F}\}$. Applying a standard Rademacher bound (Mohri et al., 2018) to $\ell_{\beta}^{\prime} \circ \mathcal{H}$, for any $\delta>0$, with probability at $1-\delta$, the following bound holds for all $f \in \mathcal{F}$

$$
\begin{aligned}
\mathbb{E}\left[\ell_{\beta}^{\prime}\left(\sum_{j: y_{j} \neq y_{\boldsymbol{x}}}\left|\hat{d}_{\boldsymbol{x}}^{y_{j}}-d_{\boldsymbol{x}}^{y_{j}}\right|\right)\right] & \leq \hat{R}_{\beta}(f) \\
& +2 \mathcal{R}_{n}\left(\ell_{\beta}^{\prime} \circ \mathcal{H}\right)+\sqrt{\frac{\log \frac{1}{\delta}}{2 n}}
\end{aligned}
$$

By the 1-Lipschitzness of ℓ_{β}^{\prime}, it follows that

$$
\mathcal{R}_{n}\left(\ell_{\beta}^{\prime} \circ \mathcal{H}\right) \leq \mathcal{R}_{n}(\mathcal{H})
$$

Define $\ell(D, \hat{D})=\sum_{j: y_{j} \neq y_{\boldsymbol{x}}}\left|\hat{d}_{\boldsymbol{x}}^{y_{j}}-d_{\boldsymbol{x}}^{y_{j}}\right|$. Then, \mathcal{H} can be equivalently re-written as $\ell \circ \mathcal{F}$. Notice that ℓ satisfies 1-Lipschitzness since

$$
\ell(D, \hat{D})-\ell(D, \bar{D}) \leq\|\hat{D}-\bar{D}\|_{1}
$$

Similar to the proof of Theorem 3, we have

$$
\mathcal{R}_{n}(\mathcal{H}) \leq \frac{\sqrt{2} m \Lambda r}{\sqrt{n}}
$$

which leads to
$\mathbb{E}_{y, \boldsymbol{x}}\left[\mathbb{I}\left(\hat{y}_{\boldsymbol{x}} \neq y\right)\right]-L_{2}^{*} \leq \hat{R}_{\beta}(f)+\frac{2 \sqrt{2} m \Lambda r}{\sqrt{n}}+\sqrt{\frac{\log \frac{1}{\delta}}{2 n}}$.

Proof of Theorem 6. The proof of Theorem 6 comes naturally by combining Lemmas 3 and 5 .

References

Maurer, A. A vector-contraction inequality for rademacher complexities. In Proceedings of International Conference on Algorithmic Learning Theory, pp. 3-17, 2016.
Mohri, M., Rostamizadeh, A., and Talwalkar, A. Foundations of Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA, 2 edition, 2018. ISBN 978-0-262-03940-6.

Wang, J. and Geng, X. Theoretical analysis of label distribution learning. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 5256-5263, 2019.

