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Abstract

Although Label Distribution Learning (LDL) has
witnessed extensive classification applications, it
faces the challenge of objective mismatch – the
objective of LDL mismatches that of classifica-
tion, which has seldom been noticed in existing
studies. Our goal is to solve the objective mis-
match and improve the classification performance
of LDL. Specifically, we extend the margin theory
to LDL and propose a new LDL method called
Label Distribution Learning Machine (LDLM).
First, we define the label distribution margin and
propose the Support Vector Regression Machine
(SVRM) to learn the optimal label. Second, we
propose the adaptive margin loss to learn label
description degrees. In theoretical analysis, we
develop a generalization theory for the SVRM
and analyze the generalization of LDLM. Exper-
imental results validate the better classification
performance of LDLM.

1. Introduction
Label Distribution Learning (LDL) (Geng, 2016) is a novel
learning paradigm, in which each instance is annotated with
a label distribution. Essentially, a label distribution is a
multi-dimensional vector, whose elements are called the
label description degrees indicating the relative importance
of labels. Fig.1 shows an image from the famous JAFFE
(Lyons et al., 1998) dataset with a ground-truth label “ANG”.
The mean ratings for the six expressions are re-scaled to a la-
bel distribution {0.09, 0.14, 0.10, 0.30, 0.25, 0.12}, which
models the different importance of labels. LDL directly
learns a mapping from instances to label distributions. Com-
pared with single-label learning (SLL) and multi-label learn-
ing (MLL), LDL straightly considers label ambiguity (Gao
et al., 2017) and attracts lots of attention from researchers.
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Figure 1. An image from the JAFFE dataset (Lyons et al., 1998)
with a ground-truth label “ANG”. The label distribution is obtained
by re-scaling the mean ratings, which explicitly modes the relative
importance of different emotions.

LDL has been applied to varieties of real-world classifica-
tion problems, such as emotion recognition (Li & Deng,
2019; Yang et al., 2017), multi-label learning (Zhang et al.,
2021), age estimation (Shen et al., 2017), facial beauty per-
ception (Xie et al., 2015), head-pose estimation (Geng et al.,
2020), etc. A common practice is as follows. First, in the
training phase, an LDL model is learned from the train-
ing set (with label distribution) by minimizing the distance
between the model’s outputs and the ground-truth label dis-
tribution (Geng, 2016). Second, in the test phase, for a
test instance, the label having the highest predicted label
description degree by the learned model is treated as the
predicted label (Wang & Geng, 2019a). For example, in the
application of age estimation, Shen et al. (2017) first learned
an LDL function from the facial images described by (age)
label distribution. Then, for an unknown image, simply the
age having the highest predicted label description degree is
regarded as the predicted age.

Although LDL has found wide applications, it faces the
challenge of objective mismatch (Gao et al., 2018; Wang
& Geng, 2019a). The objective of LDL is to learn the whole
label distribution (e.g., {0.09, 0.14, 0.10, 0.30, 0.25, 0.12}
in Fig. 1), while the goal of classification is to learn the
optimal label (e.g., “ANG” in Fig. 1). One may not expect
good classification performance even if the label distribution
is well learned. To see that, we present an example in Fig. 2,
where the red and the blue bars represent the ground-truth
and the learned label distributions, respectively. For Fig.
2(a), the L1-norm loss of the learned LDL function equals
0.22, and the predicted label y2 is different from the optimal
label y1. In contrast, for Fig. 2(b), the L1-norm loss of
the learned LDL function equals 0.3 while the prediction
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(a) `1 = 0.22, `0/1 = 1
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(b) `1 = 0.3, `0/1 = 0

Figure 2. Illustration of objective mismatch. The red and blue bars
are the ground-truth the learned label distributions, respectively.
Fig. 2(a) has a lower L1-norm loss than Fig. 2(b), while Fig. 2(b)
has a lower 0/1 loss than Fig. 2(a). Note that Fig. 2(a) is superior
to Fig. 2(b) in terms of LDL and inferior to Fig. 2(b) in terms of
classification, which justifies the objective mismatch.

incurs no loss. To summarize, although Fig. 2(a) has a
smaller loss for LDL, Fig.2(b) has a smaller classification
loss, which justifies the objective mismatch. The reason lies
in that LDL may ignore the optimal label for learning the
whole label distribution. The objective mismatch may lead
to performance deterioration of LDL (Gao et al., 2018).

To alleviate the objective mismatch and improve the clas-
sification performance of LDL, we extend the margin
theory (Cortes & Vapnik, 1995) to LDL and propose a
novel method named Label Distribution Learning Machine
(LDLM). Specifically, we define the label distribution mar-
gin that directly connects classification with LDL. Inspired
by the theory (Theorem 1 and Corollary 1), we propose the
Support Vector Regression Machine (SVRM) to learn the
optimal label. Besides, to sufficiently exploit the supervi-
sion information of label distribution, we define the adaptive
margin loss to learn label description degrees. In the theo-
retical analysis, we develop a generalization theory for the
SVRM and analyze the generalization of LDLM. Finally,
experimental results validate the better classification perfor-
mance of LDLM. Our main contributions are summarized
as follows:

1. We define the label distribution margin, which directly
connects LDL with classification (Theorems 1 and 2).

2. We extend margin theory to LDL and design a new
LDL method called LDLM that uses SVRM and adap-
tive margin loss to learn label distribution.

3. We develop a generalization theory for SVRM. Be-
sides, we prove the better generalization of LDLM.

The rest of the paper is organized as follows. First, Section
2 briefly reviews some related work. Second, Section 3
presents the LDLM in detail. Third, Section 4 analyzes the
generalization. Fourth, Section 5 reports the experimental
results. Finally, Section 6 concludes.

2. Related Work
This work is related to two branches of research, including
label distribution learning and margin theory, which are
briefly discussed as follows.

Geng et al. (2013) first proposed LDL for age estimation.
They used label distribution to model the smoothness of
aging process and proposed two algorithms IIS-LLD and
CPNN to learn the age label distribution. For a test image,
the age label having the highest predicted description de-
gree is regarded as the predicted age. Geng & Hou (2015)
employed label distribution to cover all rating information
from users in pre-release rating on movies and put forward
LDL-SVR to learn from such rating distribution. Shen et al.
(2017) used differentiable decision trees to learn label dis-
tribution and designed LDLFs. Compared with existing
parametric LDL methods, LDLFs can model any form of
label distributions and can be combined with representation
learning (Shen et al., 2017). Considering the ambiguity of
acne severity counting and grade, Wu et al. (2019) adopted
two label distributions to model the number of lesions and
the acne severity of a face image. They designed a multi-
task model to learn the label distributions. Although these
works apply LDL to classification tasks, none of them have
ever noticed the challenge of objective mismatch.

Gao et al. (2018) first observed the objective mismatch (they
called it inconsistency) in age estimation – the training ob-
jective is to learn the age label distribution (measured by
KL-divergence), while the test goal is to predict the ground-
truth age (measured by MAE). To solve the objective mis-
match, they jointly learned the age label distribution and
the ground-truth age (Gao et al., 2018). Nevertheless, the
approach is only suitable for real-valued label space. Wang
& Geng (2019a) put forward LDL4C that is a specialized
LDL algorithm for classification. LDL4C solves the objec-
tive mismatch by re-weighing w.r.t. information entropy.
However, LDL4C is a heuristic method and has no theory
guarantees. Compared with Gao et al. (2018) and Wang &
Geng (2019a), our work proposes a general LDL method
and has a strong theoretical foundation.

Margin theory was first introduced by Vapnik (1995), which
maximizes the margin of data and directly leads to Support
Vector Machine (SVM) (Cortes & Vapnik, 1995). Later,
Vapnik (1995) extended margin to regression problem and
proposed Support Vector Regression (SVR) that fits an ε-
insensitive tube of data. Most importantly, margin theory
is a statistical tool that has been applied to analyze the
generalization of algorithms, such as boosting (Gao & Zhou,
2013), multi-class classification (Kuznetsov et al., 2014),
optimal margin distribution machine (Zhang & Zhou, 2020),
etc. Our work extends margin theory to LDL. We define
a new margin, i.e., label distribution margin that connects
LDL with classification, and design a new method LDLM.
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3. The LDLM Approach
This section elaborates on the proposed method. First, we
introduce the notations. Second, we propose the SVRM.
Third, we introduce the adaptive margin loss. Fourth, we
explain the optimization method.

3.1. Notations

Let X ∈ Rq be the input space and Y = {y1, , y2, · · · , ym}
be the label space. Let D be the (unknown) underly-
ing distribution over X . In LDL, each x is annotated
with a label distribution D = {dy1x , dy2x , · · · , dymx }, where
d
yj
x is called the label description degree and satisfies∑m
j=1 d

yj
x = 1 and dyjx ≥ 0 (Geng, 2016). Let xi and

Di be the ith training instance and label distribution and
S = {(x1, D1), · · · , (xn, Dn)} be a training set. More-
over, let [n] take the identity of the set {1, 2, · · · , n}, sign(·)
be the sign function, and I(·) be the indicator function.

For each x ∈ X , let yx be the optimal label that has the
highest label description degree, which is defined by

yx = arg max
ȳ∈Y

dȳx. (1)

Let d̂ be a learned LDL function and D̂ = {d̂y1x , · · · , d̂ymx }
be the predicted label distribution of x. Define the predicted
label of x by

ŷx = arg max
ȳ∈Y

d̂ȳx, (2)

which has the highest predicted label description degree.

3.2. Support Vector Regression Machine (SVRM)

Our goal is to learn the optimal label. To start, we define
the Label Distribution Margin (LDM).

Definition 1. For each x, the label distribution margin is
defined by

αx = max
ȳ∈Y

dȳx − max
ȳ∈Y\{yx}

dȳx,

which is the difference between the highest and the second
highest label description degrees

Theorem 1. For each x ∈ X , if the predicted label distri-
bution satisfies the following inequality∑

j

|dyjx − d̂yjx | ≤ αx,

the predicted label satisfies ŷx = yx.

Theorem 1 says that for each instance, if the L1-norm loss
of a learned LDL function is less than or equal to the LDM,
the predicted label is guaranteed to equal the optimal la-
bel. Indeed, LDM indicates the hardness of label distri-
bution. For an instance with large (small) LDM, the mis-
classification threshold is high (low) (e.g., Fig. 2(b) has a

higher mis-classification threshold than that of Fig. 2(a)).
To put it differently, it’s less likely to mis-classify an in-
stance with large LDM, and vice versa. Inspired by that, we
can first modify the label distribution of each instance to
maximize LDM and then learn the modified label distribu-
tion. For each xi, we define the single-label distribution
L = {ly1x , ly2x , · · · , lymx }, where lyjx equals 1 if yj = yx
and 0 otherwise. Note that L has the largest LDM and the
highest mis-classification threshold as well.

Corollary 1. For each x ∈ X , and any ρ ≤ 1, if the
predicted label distribution satisfies the following inequality∑

j

|d̂yjx − lyjx | ≤ ρ,

the predicted label satisfies ŷx = yx.

According to the above corollary, similar to Support Vector
Regression (SVR) (Smola & Schölkopf, 2004), we define
the ρ-insensitive loss for any 0 < ρ < 1 by the following

|ξ|ρ =

{
0 if |ξ| ≤ ρ
(|ξ| − ρ)/(1− ρ) otherwise, (3)

where |ξ| =
∑
j |d̂

yj
x − lyjx |. It is a surrogate loss for 0/1

loss because |ξ|ρ is larger than or equal to 0 if |ξ| ≤ 1 and
is larger than 1 otherwise.

Since our goal is to learn the optimal label, it is encouraged
to have the largest predicted label description degree. To
achieve that, we use large margin (Cortes & Vapnik, 1995).
Specifically, we encourage the label description degree of
the optimal label to be larger than those of other labels by a
margin ρ. Adding together the ρ-insensitive loss and large
margin, we formulate the learning problem as

min
W ,ξ,ζ

λ1

2
‖W ‖2F +

n∑
i=1

ξi
1− ρ

+ λ2

∑
i,j

ζi,j
ρ

s.t. ‖W> · xi − Li‖1 − ρ ≤ ξi, ξi ≥ 0,

wyxi
· xi −wj · xi ≥ ρ− ζi,j , ζi,j ≥ 0,

for i = 1, · · · , n and j : yj 6= yxi ,

(4)

where W = [w1, · · · ,wm] is the model parameter, wyxi

is the column of W corresponding to yxi
, λ1 is a regular-

ization parameter, λ2 is a balancing parameter, and ξi and
ζi,j are slack variables.

Eq. (4) jointly optimizes the ρ-insensitive loss and margin
loss (Mohri et al., 2018), which can be regarded as a combi-
nation of SVR and SVM. Thereby, we call it Support Vector
Regression Machine (SVRM). Fig. 3 compares SVM, SVR,
and SVRM in the case of binary classification. Fig. 3(a)
shows that for SVM, the points outside the marginal hyper-
planes are correctly classified. Fig. 3(b) shows that for SVR,
the points inside the marginal hyper-planes are classified
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correctly according to Corollary 1. Fig. 3(c) shows that for
SVRM, only the points lying between the marginal hyper-
planes are support vectors, and other points are correctly
classified by SVR or SVM. Thereby, compared with SVM
and SVR, SVRM has fewer support vectors, which implies
better generalization. Since SVRM learns single-label dis-
tribution, it can be applied to any SLL problems.

3.3. LDL with Adaptive Margin Loss

As discussed in Section 1, label description degrees tell the
relative importance of labels. However, SVRM only con-
cerns the label description degree of the optimal label and
ignores those of other labels, which loses lots of supervised
information. Indeed, the label description degrees of other
labels are also important to the performance of LDL. To
see that, for the example of Fig. 1, the label “DIS” has the
sub-optimal label description degree, which is inferior to
“ANG” but superior to other labels. The label description
degrees of other labels can guide an LDL model to select
the sub-optimal label (e.g., “DIS” for Fig. 1) as the pre-
dicted label when it fails to predict the optimal one, which
improves the generalization.

Formally speaking, for each x, we define the sub-optimal
label by

y′x = arg maxȳ∈Y\{yx} d
ȳ
x, (5)

which has the second highest label description degree. Next,
we define the second label distribution margin.

Definition 2. For each x, the second label distribution
margin is defined by

βx = max
ȳ∈Y\{yx}

dȳx − max
ȳ∈Y\{yx,y′x}

dȳx, (6)

which is the difference between the second highest and the
third highest label description degrees.

Theorem 2. For each x ∈ X , if the predicted label distri-
bution satisfies the following inequality∑

j:yj 6=yx

|dyjx − d̂yjx | ≤ βx, (7)

the predicted label satisfies ŷx = yx or ŷx = y′x.

The theorem says that, for each instance, if the L1-norm
loss (w.r.t. all labels except the optimal one) of a learned
LDL function is less than or equal to the second LDM,
the predicted label equals either the optimal label or the
sub-optimal one. Next, we define the βx-insensitive loss by

`βx(ξ) =

{
0 if ξ ≤ βx
ξ − βx otherwise, (8)

where ξ =
∑
j:yj 6=yx |d

yj
x − d̂yjx |. Since the βx-insensitive

loss adapts to the second LDM of x, we call it Adaptive

Margin Loss. Next, adding the adaptive margin loss to
model (4), the problem can be further cast as

min
W ,ξ,ζ,φ

λ1

2
‖W ‖+

n∑
i=1

ξi
1− ρ

+ λ2

∑
i,j

ζi,j
ρ

+ λ3

n∑
i=1

φi

s.t. ‖W> · xi − Li‖1 − ρ ≤ ξi, ξi ≥ 0,

wyxi
· xi −wj · xi ≥ ρ− ζi,j , ζi,j ≥ 0,∑

j:yj 6=yxi

|wj · xi − d
yj
xi | − βxi ≤ φi, φi ≥ 0,

for i = 1, · · · , n
(9)

where λ3 is a balancing parameter, andφi is a slack variable.

The first and the second constraints of Eq. (9) encourage
our model to choose the optimal label as the predicted label.
Meanwhile, the third constraint of Eq. (9) encourages our
model to choose as the predicted label the sub-optimal label
even if it fails to predict the optimal one. As a result, our
model can sufficiently exploit the supervision information
of label distribution.

3.4. Optimization Method

Eq. (9) is difficult to solve due to a larger number of con-
straints. Notably, there are 2n+(m−1)n constraints, which
may overwhelm the memory limit for large datasets. In-
spired by the Pegasos method (Shalev-Shwartz et al., 2011),
which uses Stochastic Gradient Descent (SGD) to solve
SVM efficiently, we apply SGD to optimize problem (9) as
well. The details of the algorithm are presented in Algo-
rithm 1, where line 10 calculates the sub-gradient, and line
11 updates the parameters using the sub-gradient.

Algorithm 1 SGD for solving LDLM
1: Input: training set S, parameters λ1, λ2, λ3, and ρ,

batch size θ, learning rate η, and maximum iteration T
2: Output: model parameterW
3: InitializeW 0 = 0;
4: for t = 1 to T do
5: Generate a batch At ⊆ [n], where |At| = θ;
6: Āt = {i ∈ At :

∑
j |wj · xi − l

yj
xi | > ρ};

7: Ât = {i ∈ At :
∑
j:yj 6=yxi

|wj · xi − d
yj
xi | > βxi

};
8: for j = 1 to m do
9: A′t = {i ∈ At : wyxi

· xi −wj · xi < ρ};
10: 5wj

= λ1wj + 1/1−ρ
∑
i∈Āi

sign(wj · xi −
l
yj
xi)xi+λ2/ρ

∑
i∈A′

t
xi+λ3

∑
i∈Ât

sign(wj ·xi−
d
yj
xi)xi;

11: wt
j = wt−1

j − η · 5wj
;

12: end for
13: end for
14: Return: W t
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Figure 3. Comparison among SVM, SVR, and SVRM in the case of binary classification, where the solid lines and the dotted lines are
the separating hyper-planes and the marginal hyper-planes, respectively. Fig. 3(a) shows SVM, where the points inside the marginal
hyper-planes are support vectors. Fig. 3(b) illustrates SVR, which fits a ρ-insensitive zone. According to Corollary 1, the points inside the
ρ-insensitive zone are guaranteed to be correctly classified. Fig. 3(c) demonstrates SVRM, which is a combination of SVM and SVR.
Only the points between the marginal hyper-planes are not guaranteed to be correctly classified (i.e., support vectors). Compared with
SVM and SVR, SVRM has fewer support vectors and better generalization.

4. Theoretical Analysis
4.1. Generalization Analysis of SVRM

For each x, yx is regarded as the ground-truth label.
For a real-value function f , define the risk R(f) =
Ex∼D[I(ŷx 6= yx)], the empirical ρ-insensitive loss
R̂ρ(f) = 1

n

∑n
i=1 |‖f(xi) − Li‖1|ρ, and the empiri-

cal margin loss R̃ρ(f) = 1
n

∑
i,j max{ρ − f(xi, yxi

) +
f(x, yj), 0}/ρ. For simplicity, assume supx ‖x‖2 ≤ r.

Theorem 3. Let F = {x 7→ W> · x : ‖wj‖2 ≤ Λ} be
the hypothesis space. Fix 1 > ρ > 0. For any δ > 0, with
probability at least 1− δ, the bounds hold for all f ∈ F ,

R(f) ≤ R̂ρ(f) +
2
√

2rΛm

(1− ρ)
√
n

+

√
log 1/δ

2n
,

R(f) ≤ min

{
R̂ρ(f) +

2
√

2rΛm

(1− ρ)
√
n
,

R̃ρ(f) +
4rΛm

ρ
√
n

}
+

√
log 2/δ

2n
.

The first bound upper bounds the risk of SVR (with the
ρ-insensitive loss) by the sum of three terms, where the first
one is the empirical loss, the second one is a complexity
term (Bartlett & Mendelson, 2002), and the last one is a
by-product, which can be ignored. We extend the margin
theory and support the use of SVR for classification. The
second bound upper bounds the risk of SVRM by the sum
of two terms, where the first one is credited to the combina-
tion of SVM and SVR, and the second one can be ignored.
Theorem 3 establishes O(m/

√
n) bounds, which admits a

linear dependence on the number of classes.

For SVM, the complexity term is determined by 1/ρ (Mohri
et al., 2018). For SVR (with the ρ-insensitive loss), the

complexity term depends on 1/1−ρ. SVRM seeks a trade-
off between SVM and SVR – a larger (smaller) value of ρ
increases (decreases) the complexity of SVR but decreases
(increases) that of SVM. For example, as shown in Fig 5, a
larger value of ρ increases the number of support vectors of
SVM and decreases that of SVR.

4.2. Generalization Analysis of LDLM

Suppose that the label distribution function is the conditional
probability distribution function, i.e., dyjx = P(y = yj | x),
where y is the random label variable (w.r.t. the conditional
probability distribution). Let L∗1 be the Bayes error (De-
vroye et al., 2013), i.e., L∗1 = P(yx 6= y).

Theorem 4 (Wang & Geng (2019b)). Let d̂ be a learned
LDL function. Then, the following bound holds

P(ŷx 6= y)− L∗1 ≤ Ex∼D

[∑
ȳ

|d̂ȳx − dȳx|

]
.

Theorem 4 says that the error of a learned LDL function
would approach the Bayes error if it is close to the ground-
truth LDL function in L1-norm loss.

Define N = {x ∈ X | d̂yxx − d̂ylx < ρ, ∃l : yl 6= yx} (e.g.,
the zone inside the marginal hyper-planes in Fig. 3(a)), and
M = {x ∈ X |

∑
j |d̂

yj
x − lyjxi | > ρ} (e.g., the zone outside

the marginal hyper-planes in Fig. 3(b)). Note that ŷx = yx
if x /∈ N or x /∈ M. Let DN∩M be the distribution over
N ∩M (e.g., the zone between the marginal hyperplanes
in Fig. 3(c)). A tighter bound can be proved.
Theorem 5. Let d̂ be a learned LDL function. Let N and
M be defined above. Then, the following bound holds

P(ŷx 6= y)− L∗1 ≤ Ex∼DN∩M

[∑
ȳ

|d̂ȳx − dȳx|

]
.
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Theorem 5 says that the error of our model would approach
the Bayes error if the L1-norm loss of the instances in N ∩
M approaches 0. That is, the error is only determined by
the set N ∩M. Our bound is tighter than Theorem 4.

For a learned LDL function d̂, define the empirical loss by
R̂β(d̂) = 1

n

∑n
i=1 `β(

∑
ȳ 6=yxi

|d̂ȳxi
− dȳxi

|) + β for β > 0

(βx is fixed to β for the convenience of analysis). Define
L∗2 = P(y′x 6= y). We can prove the next theorem.

Theorem 6. Let F be the hypothesis space defined in The-
orem 3. Fix 1 > ρ > 0 and β ≥ 0 such that β ≤ βx for all
x ∈ X . Then, for any δ > 0, with probability at least 1− δ,
the following bound holds for all f ∈ F

P(ŷx 6= y) ≤ min

{
L∗

1 + R̂ρ(f) +
2
√

2rΛm

(1− ρ)
√
n
,

L∗
2 + R̂β(f) +

2
√

2mΛr√
n

}
+

√
log 2/δ

2n
.

Theorem 6 bounds the error of LDLM by the sum of two
terms. The first term is due to that LDLM learns both the
optimal label and the label description degrees of other la-
bels. The second term is a by-product, which can be ignored.
The bound shows the importance of both the optimal label
and the label description degrees of other labels for the
generalization of LDLM.

5. Experiments
5.1. Methodology

Experimental Datasets The experiments are conducted
on 17 real-world datasets, characteristics of which are sum-
marized in Table 1. In detail, the first 15 datasets are col-
lected by Geng (2016), where the first ten (from Alpha to
Spoem) are from the clustering analysis of genome-wide
expression in Yeast Saccharomyces cerevisiae (Eisen et al.,
1998), the Scene is a multi-label image dataset whose label
distributions are transformed from rankings (Geng & Luo,
2014), the Gene is obtained from the research on the relation
between gene and diseases (Yu et al., 2012), the Movie is
collected from user ratings on movies (Geng & Hou, 2015),
and the SJAFFE and SBU 3DFE are collected from JAFFE
(Lyons et al., 1998) and BU 3DFE (Yin et al., 2006), respec-
tively. The M2B (Nguyen et al., 2012) and SCUT-FBP (Xie
et al., 2015) are about facial beauty perception, which are
pre-processed as (Ren & Geng, 2017).

Evaluation Metrics Since we aim at improving the clas-
sification performance of LDL, the suggested LDL metrics
by Geng (2016) are not used. Two metrics are adopted. The
first one is 0/1 loss, i.e., `0/1(yx, ŷ) = I(ŷ 6= yx) (yx is
regarded as the ground-truth label), which indicates the clas-
sification performance of the comparing approaches. The

Table 1. Characteristics of the experimental datasets.

ID Dataset #Examples #Features #Labels

1 Alpha 2,465 24 18
2 Cdc 2,465 24 15
3 Cold 2,465 24 4
4 Diau 2,465 24 7
5 Dtt 2,465 24 4
6 Elu 2,465 24 14
7 Heat 2,465 24 6
8 Spo 2,465 24 6
9 Spo5 2,465 24 3

10 Spoem 2,465 24 2
11 Scene 2,000 294 9
12 Gene 17,892 36 68
13 Movie 7,755 1,869 5
14 SJAFFE 213 243 6
15 SBU 3DFE 2,500 243 6
16 M2B 1,240 250 5
17 SCUT-FBP 1,500 300 5

second one is the error probability (Wang & Geng, 2019a)

`ep(y, ŷ) = P(y 6= ŷ | x) = 1− P(y = ŷ | x) = 1− dŷx,

where the third equation is by the assumption that label
distribution function is the conditional probability function,
i.e., P(y = ŷ | x) = dŷx. Error probability indicates the
generalization ability of the comparing methods.

Baselines We compare LDLM with two SLL methods
(SVR and SVM) and five LDL methods (SA-BFGS, LDL-
SVR, EDL-LRL, LDLFs, and LDL4C), which are as follows

• SVR (Sanchez-Fernandez et al., 2004) and SVM
(Chang & Lin, 2011): SVR learns the single-label
distribution, and SVM learns the optimal label.

• SA-BFGS (Geng, 2016): It applies the maximum en-
tropy model to learn label distribution, where KL-
divergence is used as the loss function.

• LDL-SVR (Geng & Hou, 2015): It adds a sigmoid
transformation to the output of an SVR model to fit
label distribution.

• EDL-LRL1 (Jia et al., 2019): It exploits local label cor-
relation by capturing low-rank structure locally when
learning label distribution.

• LDLFs2 (Shen et al., 2017): It uses the differentiable
decision trees to learn label distribution, which is an
ensemble method.

1Code: https://github.com/NJUST-IDAM/EDL-LRL.
2Code: https://github.com/shenwei1231/caffe-LDLForests
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• LDL4C (Wang & Geng, 2019a): It’s a specialized
LDL algorithm for classification, where the objective
mismatch is alleviated using the weighting method.

The parameters of the methods are set as follows. For SVR,
SVM, and LDL-SVR, the linear kernel is applied andC = 1.
For SVR and LDL-SVR, ε = 0.1. For SVM, the one-vs-one
strategy is used. For EDL-LRL and LDLFs, the default
parameters are used. For LDL4C, we tune the parame-
ters as suggested by Wang & Geng (2019a). For LDLM,
λ1 = 0.001, λ2 and λ3 are tuned from the candidate set
{10−3, · · · , 1}, and ρ = 0.01. We tune the parameters of
each method by ten-fold cross-validation. Moreover, we
implement LDLM in Python and carry out the experiments
on a Linux server with a 2.70GHz CPU and 62GB memory.

5.2. Results and Discussion

Results of LDLM We run each method with the best pa-
rameters for 10 times random partitions (90% training and
10% testing). Tables 2 and 3 tabulate the experimental
results (mean±std.%) on the 17 datasets3 in terms of 0/1
loss and error probability, where the best performance is
highlighted in boldface for each dataset. Since LDLFs over-
fits on SJAFFE, the results of LDLFs on SJAFFE is not
available. Furthermore, we conduct pairwise t-test at a sig-
nificance of 0.05 and use •/◦ to indicate whether LDLM
is statistically superior/inferior to the comparing methods.
From Tables 2 and 3, we can make four observations:

1. LDLM ranks the first in 76.5% cases in terms of 0/1
loss and 58.9% cases in terms of error probability. Be-
sides, LDLM is significantly superior to the comparing
methods in 65.5% and 54% cases in terms of 0/1 loss
and error probability, respectively.

2. LDLM outperforms SVM and SVR by a large margin
in terms of both 0/1 loss and error probability because
LDLM combines SVM and SVR. Besides, it considers
label description degrees of all labels while only the
optimal label is learned in SVR and SVM.

3. Compared with SA-BFGS, LDL-SVR, EDL-LRL, and
LDLFs, LDLM has statistically better performance in
terms of 0/1 loss and comparable performance in terms
of error probability. For one thing, LDLM alleviates
the objective mismatch by ρ-insensitive loss and large
margin. For another, LDLM uses the adaptive margin
loss to preserve generalization.

4. LDLM achieves comparable performance with LDL4C
with the win/tie/lose counts of 4/13/0 and 1/16/0 in
terms of 0/1 loss and error probability, respectively.

3Each dataset is denoted by its first three letters. Besides, Spo5
and Spoem are denote by Spo5 and Spoe to distinguish from Spo.
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Figure 4. Performance comparison between SVR and SVR-ρ in
terms of 0/1 loss. Note that SVR-ρ has better performance than
SVR, which validates the effectiveness of the ρ-insensitive loss.

LDLM has better mean performance than LDL4C with
the top-1 times of 13 vs. 2 and 10 vs. 5 in terms of
0/1 loss and error probability, respectively. Besides,
LDLM has theory guarantees but LDL4C is heuristic.

Our method achieves better classification performance and
competitive generalization ability at the same time.

Classification Results of SVR with ρ-Insensitive Loss
We denote SVR with ρ-insensitive loss by SVR-ρ (by setting
λ2 = 0 and λ3 = 0 of LDLM). Corollary 1 and Theorem 3
well support SVR-ρ for classification. To further show that,
we run SVR and SVR-ρ on the experimental datasets (the
optimal label is regarded as the ground-truth label) for 10
times random data partitions (90% training and 10% testing).
Fig. 4 shows the comparison results in terms of 0/1 loss.
From Fig. 4, we see that SVR-ρ has much better classifica-
tion performance than SVR, which shows the advantage of
ρ-insensitive loss for classification.

Classification Results of SVRM To show the effective-
ness of SVRM, we compare it with SVR and SVM since it
can be viewed as a combination of SVM and SVR. We run
the three methods with ω of the training data (ω changing
from 10% to 90%) and repeat for 10 times random partitions
(90% training and 10% testing). Due to limited space, we
only present the comparison results on Movie, SBU 3DFE,
SCUT-FBP, and M2B in Fig. 5. As shown in Fig. 5, SVRM
converges fast and has better classification performance than
SVM and SVR, which suggests that SVRM is a competitive
method. The reason lies in that SVRM is a combination of
SVM and SVR, which has fewer support vectors (as shown
in Fig. 3) and better performance.

Ablation Study LDLM learns the label description de-
grees of all labels to preserve generalization. Here, we
conduct an ablation study to show the usefulness of that.
Notice that SVR-ρ is different from LDLM ( λ2 = 0) in that
the latter considers the label description degrees of all labels
except the optimal one. So, we compare LDLM against
SVR-ρ in terms of error probability.
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Table 2. Experimental results (mean±std.%) in terms of 0/1 loss.

SVR SVM SA-BFGS LDL-SVR EDL-LRL LDLFs LDL4C LDLM

Alp 80.97±2.46• 78.74±2.91 89.74±2.47• 90.83±2.02• 89.70±2.37• 88.03±2.77• 78.70±2.34 78.34±3.66
Cdc 83.94±2.27• 82.47±2.25 82.56±2.20 82.43±1.99 82.60±2.14 82.31±1.92 81.78±2.20 81.62±2.87
Dia 67.95±1.79• 68.07±1.89• 69.66±3.88• 70.83±3.75• 69.90±3.96• 69.90±3.17• 66.45±1.73• 65.27±1.09
Elu 84.30±1.61• 81.01±3.19 90.39±1.86• 90.87±1.81• 90.43±1.82• 89.29±2.22• 80.28±1.35 80.32±2.55
Hea 69.25±3.13• 67.88±4.04 70.14±2.88• 70.55±2.13• 70.02±2.88• 68.03±2.07 67.54±3.21 66.66±2.76
Col 58.30±2.57 57.93±3.70 58.05±3.60 58.01±3.57 58.09±3.55 56.63±3.43 57.53±3.00 56.71±2.61
Dtt 64.91±3.03• 65.48±3.86• 63.24±2.37 63.25±2.05 63.45±2.26 62.31±3.10 62.68±2.72 62.43±2.75
Spo 55.50±3.65• 54.77±3.32 55.66±3.53• 56.23±3.38• 55.70±3.57• 57.77±3.76• 54.73±1.89 54.69±3.29

Spo5 55.62±3.13• 54.85±2.82• 57.08±2.90• 60.77±3.77• 56.84±2.81• 53.59±2.23 53.43±3.05• 52.82±2.04
Spoe 42.27±3.10• 49.86±4.57• 43.57±2.64• 46.33±3.11• 43.49±2.62• 42.84±2.68• 40.08±2.23 39.51±2.18
Sce 69.50±4.20• 41.90±3.50 61.80±3.59• 71.90±2.79• 62.10±3.27• 73.50±6.66• 41.95±2.37 41.35±3.53
Gen 93.23±0.38• 95.71±0.43• 95.67±0.53• 98.31±0.22• 96.03±0.48• 96.16±0.74• 92.75±0.80 92.52±0.41
Mov 68.26±9.12• 57.52±2.78• 45.97±1.47• 41.88±1.44 47.72±2.07• 44.33±1.76• 40.86±1.56 41.10±1.94
SJA 74.70±6.86• 74.70±6.86• 51.23±10.5• 80.65±8.24• 80.65±8.24• N/A 39.39±9.80 38.96±10.5
SBU 71.84±3.24• 68.72±3.50• 55.88±2.56 65.68±3.55• 66.12±2.79• 63.48±3.51• 56.92±2.77• 54.92±3.29
M2B 58.55±5.25• 52.10±4.02• 53.87±5.55• 50.40±4.29 50.81±3.71• 48.71±2.11• 48.06±3.02• 46.61±3.74
SCU 55.00±3.53• 62.87±4.76• 69.80±3.32• 46.80±3.30 61.33±4.49• 46.40±2.82 46.53±2.27 45.80±2.97

top-1 0 0 0 0 0 2 2 13
w./t./l. 16/1/0 10/7/0 13/4/0 11/6/0 14/3/0 10/6/0 4/13/0

Table 3. Experimental results (mean±std.%) in terms of error probability.

SVR SVM SA-BFGS LDL-SVR EDL-LRL LDLFs LDL4C LDLM

Alp 94.46±0.07• 94.52±0.07• 94.28±0.04• 94.28±0.03• 94.28±0.04• 94.26±0.05 94.26±0.02 94.25±0.04
Cdc 93.03±0.05• 92.96±0.05• 92.89±0.05• 92.88±0.06 92.89±0.05 92.88±0.06 92.88±0.05 92.87±0.05
Dia 84.62±0.16• 85.01±0.26• 84.30±0.17 84.31±0.14 84.30±0.16 84.28±0.13 84.28±0.10 84.27±0.13
Elu 92.88±0.10• 92.92±0.13• 92.62±0.06 92.61±0.05 92.62±0.06 92.62±0.05 92.60±0.05 92.60±0.04
Hea 82.63±0.20• 82.56±0.29• 82.43±0.20• 82.43±0.19• 82.43±0.20• 82.30±0.14 82.33±0.18 82.29±0.19
Col 73.10±0.26 72.97±0.35 73.01±0.32• 72.98±0.33 73.01±0.31• 72.93±0.33 72.96±0.31 72.96±0.33
Dtt 74.28±0.23• 74.40±0.30• 74.19±0.19• 74.20±0.20• 74.19±0.19• 74.12±0.13 74.12±0.21 74.09±0.21
Spo 81.06±0.43 81.01±0.43 81.07±0.42 81.08±0.41 81.08±0.41 81.23±0.43• 81.00±0.41 81.00±0.43
Spo5 65.53±0.62• 65.50±0.48• 65.43±0.49• 66.31±0.71• 65.40±0.48• 64.68±0.48 65.26±0.58 64.97±0.67
Spoe 47.47±0.69• 48.69±0.77• 47.06±0.54 48.32±0.86• 47.04±0.55 47.19±0.53• 47.00±0.62 46.90±0.67
Sce 80.06±2.48• 65.48±2.83 66.80±2.56• 66.43±2.44• 65.85±2.31 76.44±3.78• 64.50±1.58 65.05±2.42
Gen 98.26±0.06• 98.39±0.06 98.20±0.04 98.24±0.02 98.21±0.04 98.20±0.04 98.16±0.06 98.21±0.06
Mov 75.58±4.42• 71.59±0.66• 68.47±0.20• 67.65±0.27 68.86±0.46• 68.10±0.29• 67.43±0.30 67.58±0.33
SJA 83.64±2.18• 83.64±2.18• 76.89±1.25• 81.88±1.13• 81.88±1.13• N/A 75.73±2.04 75.74±1.28
SBU 82.11±0.43• 81.17±0.55• 76.77±0.57 80.06±0.53• 79.91±0.50• 79.33±0.67• 77.34±0.54 76.92±0.63
M2B 61.30±3.48• 56.86±2.25• 57.68±4.05• 55.15±2.77 55.28±2.71• 54.36±2.14 53.58±2.40 53.54±1.86
SCU 60.20±1.81• 64.80±3.99• 71.63±2.06• 54.35±1.13• 65.05±2.87• 54.13±1.10 54.14±1.41• 54.02±1.15

top-1 0 0 1 0 0 2 5 10
w./t./l. 15/2/0 13/4/0 11/6/0 9/8/0 10/7/0 5/11/0 1/16/0

Table 4. Performance comparison between LDLM (λ2 = 0) and SVR-ρ in terms of error probability. We summarize the results of the
Wilcoxon signed-rank test for LDLM against SVR-ρ in the last column.

Diau Elu SJAFFE Scene SBU 3DFE M2B LDLM vs. SVR-ρ

SVR-ρ 84.68±0.14% 92.85±0.12% 79.60±2.50% 66.96±2.59% 79.53±1.42% 54.36±2.14% win[9.8e-4]
LDLM 84.27±0.13% 92.60±0.04% 76.61±2.03% 65.83±1.92% 77.64±0.42% 54.00±2.15%
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Figure 5. Performance comparison for SVRM against SVM and SVR in terms of 0/1 loss on Movie, SBU 3DFE, SCUT-FBP, and M2B
with ω training data, where ω changes from 0.1 to 0.9.
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Figure 6. Sensitivity of ρ on SBU 3DFE, Movie, M2B, and Scene
in terms of 0/1 loss and error probability.

Due to limited space, we report part of the results in Table
4. To show whether learning the label description degrees
can significantly improve the generalization, we conduct
the Wilcoxon signed-rank test (Demšar, 2006) for LDLM
against SVR-ρ, which is summarized in the last column of
Table 4. At a significance of 0.05, LDLM is statistically
superior to SVR-ρ, which validates the effectiveness of
learning the label description degrees of all labels. Besides,
it also validates the advantage of label distribution compared
with single-label.

Parameter Sensitivity Analysis LDLM has a key pa-
rameter, i.e., the margin ρ. To show the sensitivity of
ρ, we run LDLM with ρ selecting from the candidate set
{10−4, · · · , 10−1}. Fig. 6 show the sensitivity of ρ in terms
of 0/1 loss and error probability on SBU 3DFE, Movie,
M2B, and Scene. According to Fig. 6, LDLM with ρ = 0.01
has better performance.

6. Conclusion
This paper proposes a new LDL method named LDLM to
address the objective mismatch of LDL in classification.
We first define the label distribution margin and propose
SVRM to learn the optimal label. Moreover, we propose the
adaptive margin loss to learn the label description degrees of

other labels. Theoretical analysis shows the generalization
of SVRM and the better generalization of LDLM. Exper-
imental results show that SVRM is a competitive method,
and LDLM has better classification performance than the
comparing methods.

However, there are still some limitations of our method,
such as SVRM is a linear model and LDLM only applies
to SLL problems. In the future, we will explore 1) how to
apply kernel trick to SVRM, and 2) how to extend LDLM
to MLL problems.
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