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Abstract

The supplemental material contains supporting proofs for the main document.

A Proofs for Section 2

Lemma A.1. (Solution of continuous Lyapunov equation). Suppose W is stable. The solution Y of

continuous Lyapunov equation

WY + YW> +Q = 0

can be written as

Y =

∫ ∞
0

eWτQeW
>τdτ. (A.1)

Proof. The result can be found in Theorem 7.5 of [1], so we omit its proof.

In the following, given K such that A − BK is stable, we define two operators TK ,FK on symmetric

matrix X as

TK(X) :=

∫ ∞
0

e(A−BK)τXe(A−BK)>τdτ,

FK(X) := (A−BK)X +X(A−BK)>.

Then

FK ◦ TK + I = 0,

or

TK = −F−1K .

Additionally, from (4) we have

ΣK = TK(DD>).

∗Faculty of Business and Economics, The University of Hong Kong. <nickweichwang@gmail.com>
†Department of Mathematics, Princeton University. <jiequnh@princeton.edu>
‡Department of Operations Research & Financial Engineering, Princeton University. <zy6@princeton.edu>
§Department of Industrial Engineering & Management Sciences, Northwestern University. <zhaoran.wang@northwestern.edu>

1



Lemma A.2. (Perturbation of PK). Assume K,K ′ are both stable. Then

PK′ − PK =

∫ ∞
0

e(A−BK
′)>τ [E>K(K ′ −K) + (K ′ −K)>EK + (K ′ −K)>R(K ′ −K)]e(A−BK

′)τdτ. (A.2)

Moreover, this implies that PK is differentiable.

Proof. Taking the difference between two equations (7) corresponding to K ′ and K, we have

0 = (A−BK ′)>PK′ + PK′(A−BK ′)> − (A−BK ′ +B(K −K ′))>PK + PK(A−BK ′ +B(K −K ′))>

+ (K ′ −K +K)>R(K ′ −K +K)−K>RK
= (A−BK ′)>(PK′ − PK) + (PK′ − PK)(A−BK ′)> − (K ′ −K)>B>PK − PKB(K ′ −K)

+ (K ′ −K +K)>R(K ′ −K +K)−K>RK
= (A−BK ′)>(PK′ − PK) + (PK′ − PK)(A−BK ′)>

+ E>K(K ′ −K) + (K ′ −K)>EK + (K ′ −K)>R(K ′ −K).

Here EK = RK − B>PK is defined in Proposition 1. In other words, PK′ − PK is the solution of the

continuous Lyapunov equation

(A−BK ′)>Y + Y (A−BK ′) + E>K(K ′ −K) + (K ′ −K)>EK + (K ′ −K)>R(K ′ −K) = 0,

in which Y is the unknown matrix. Recalling Lemma A.1, we finish the first part of the proof.

Define vectorization operator for n×m matrix Y = (yij)i≤n,j≤m as

vec(Y ) = (y11, . . . , yn1, y12, . . . , yn2, . . . , y1m, . . . , ynm)> .

We have the fact that vec(ABC) = (C> ⊗A) vec(B). Using this, (A.2) gives us

vec(PK′ − PK) =

∫ ∞
0

vec
(
e(A−BK

′)>τ [E>K(K ′ −K) + (K ′ −K)>EK + (K ′ −K)R(K ′ −K)]e(A−BK
′)τ
)

dτ

=

∫ ∞
0

(
e(A−BK

′)>τ ⊗ e(A−BK
′)>τdτ

)
vec[E>K(K ′ −K) + (K ′ −K)>EK + (K ′ −K)R(K ′ −K)]

=

∫ ∞
0

(
e(A−BK

′)>τ ⊗ e(A−BK
′)>τdτ

)
vec[E>K′(K

′ −K) + (K ′ −K)>EK′ + U ] ,

where

U = (K ′ −K)>R(K ′ −K) + (EK − EK′)>(K ′ −K) + (K ′ −K)>(EK − EK′)
= −(K ′ −K)>R(K ′ −K) + (PK′ − PK)B(K ′ −K) + (K ′ −K)>B>(PK′ − PK)

= O(‖K ′ −K‖2F ) .

The last line uses the expression of PK′ − PK in the first part of Lemma A.2 again. Therefore, there exists

ZK′ that depend on A−BK ′ and EK′ such that vec(PK −PK′) = ZK′ vec(K −K ′) +O(‖K −K ′‖2F ), where

ZK′ will be defined as the derivative of vec(PK) at K = K ′ with respect to vec(K). Therefore, PK is indeed

differentiable and its differential dPK used in the proof of Proposition 1 below is well-defined.

Now we are ready to prove the expression of the policy gradient as follows.

Proposition A.3. (Proposition 1).

∇KJ(K) = 2(RK −B>PK)ΣK = 2EKΣK , (A.3)

where EK = RK −B>PK .
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Proof. Rewrite the Lyapunov equation (7) as φ(K,PK) = 0, where φ is a function of two independent

arguments, defined as

φ(K,PK) := (A−BK)>PK + PK(A−BK) +Q+K>RK.

Taking differential on both sides (the differentiability of PK has been shown in Lemma A.2), we have

0 = ∇Kφ(K,PK)dK +∇PK
φ(K,PK)dPK

= [(−BdK)>PK + PK(−BdK) + (dK)>RK +K>RdK] + [(A−BK)>dPK + dPK(A−BK)],

or equivalently,

(A−BK)>dPK + dPK(A−BK) + (K>R− PKB)dK + (dK)>(RK −B>PK) = 0. (A.4)

Note that (4)(A.4) have similar structures. We apply the trace operator to (4) left multiplied by dPK and

(A.4) left multiplied by ΣK , and then take the difference to obtain

tr(dPKDD
>) = tr[ΣK(K>R− PKB)dK + ΣK(dK)>(RK −B>PK)]

= tr[2ΣK(K>R− PKB)dK].

From (8), by definition, we have

tr[(∇KJ(K))>dK] = dJ(K) = tr(dPKDD
>).

Comparing the above two equations, since the matrix quantities are equal for any direction of dK, we conclude

∇KJ(K) = 2(RK −B>PK)ΣK .

Lemma A.4. (Lemma 2). The cost function is gradient dominated [3], that is

J(K)− J(K∗) ≤ ‖ΣK∗‖
σmin(R)σ2

min(DD>)
tr(∇KJ(K)>∇KJ(K)). (A.5)

In additional, we have the following lower bound for J(K)− J(K∗)

J(K)− J(K∗) ≥ σmin(DD>)

‖R‖
tr(E>KEK). (A.6)

Proof. Based on (8) and Lemma A.2, we have

J(K ′)− J(K)

= tr[(PK′ − PK)DD>]

= tr

[∫ ∞
0

e(A−BK
′)>τ [E>K(K ′ −K) + (K ′ −K)>EK + (K ′ −K)>R(K ′ −K)]e(A−BK

′)τDD>dτ

]
= tr

[∫ ∞
0

e(A−BK
′)τDD>e(A−BK

′)>τdτ [E>K(K ′ −K) + (K ′ −K)>EK + (K ′ −K)>R(K ′ −K)]

]
= tr[ΣK′ [E

>
K(K ′ −K) + (K ′ −K)>EK + (K ′ −K)>R(K ′ −K)]]

= tr[ΣK′ [(K
′ −K +R−1EK)>R(K ′ −K +R−1EK)− E>KR−1EK ]].

Here the second equality uses Lemma A.2; the fourth equality uses the fact that ΣK′ is the solution the

Lyapunov equation (A−BK ′)X +X(A−BK)> +DD> = 0 and Lemma A.1.
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To prove the upper bound (A.5), we use the fact that the quadratic term (K ′ −K +R−1EK)>R(K ′ −
K +R−1EK) above is positive semi-definite. Letting K ′ = K∗, we have

J(K)− J(K∗) = tr[ΣK∗ [E
>
KR
−1EK − (K∗ −K +R−1EK)>R(K∗ −K +R−1EK)]]

≤ tr[ΣK∗E
>
KR
−1EK ]

≤ ‖ΣK
∗‖

σmin(R)
tr(E>KEK)

≤ ‖ΣK∗‖
σmin(R)σ2

min(ΣK)
tr(∇KJ(K)>∇KJ(K))

≤ ‖ΣK∗‖
σmin(R)σ2

min(DD>)
tr(∇KJ(K)>∇KJ(K)).

The last inequality follows from the fact that ΣK � DD> � σmin(DD>) · Id.
To prove the lower bound, we choose a specific form of K ′ to make the quadratic term to be zero and use

the fact that J(K∗) ≤ J(K ′). Letting K ′ = K −R−1EK , we have

J(K)− J(K ′) = tr[ΣK′E
>
KR
−1EK ].

Then

J(K)− J(K∗) ≥ J(K)− J(K ′)

≥ tr[ΣK′E
>
KR
−1EK ]

≥ σmin(DD>)

‖R‖
tr(E>KEK).

Lemma A.5. (Perturbation analysis of ΣK) Suppose A−BK is stable and

‖K ′ −K‖ ≤ σmin(Q)σmin(DD>)

4J(K)‖B‖
,

then A−BK ′ is also stable and

‖ΣK′ − ΣK‖ ≤ 4

(
J(K)

σmin(Q)

)2 ‖B‖
σmin(DD>)

‖K ′ −K‖.

Proof. The first claim is easy to prove with Lemma 10 in [4]. The second claim is similar to Appendix C.4 in

[2]. We first claim

‖ΣK‖ ≤
J(K)

σmin(Q)
and ‖TK‖ ≤

‖ΣK‖
σmin(DD>)

, (A.7)

and it is clear to see that

‖FK′ −FK‖ ≤ 2‖B‖‖K ′ −K‖.

Then

‖TK‖‖FK′ −FK‖ ≤
2J(K)‖B‖‖K ′ −K‖
σmin(Q)σmin(DD>)

≤ 1

2
.

4



Then we have

‖ΣK′ − ΣK‖ = ‖(TK′ − TK)(DD>)‖ ≤ ‖TK‖‖FK′ −FK‖‖ΣK′‖
≤ ‖TK‖‖FK′ −FK‖(‖ΣK‖+ ‖ΣK′ − ΣK‖)

Therefore,

‖ΣK′ − ΣK‖ ≤ 2‖TK‖‖FK′ −FK‖‖ΣK‖

≤ 4

(
J(K)

σmin(Q)

)2 ‖B‖
σmin(DD>)

‖K ′ −K‖.

So it remains to show the claim in (A.7). The first claim can be seen from

J(K) = tr(ΣK(Q+K>RK)) ≥ tr(ΣK)σmin(Q) ≥ ‖ΣK‖σmin(Q) .

The second claim can be shown from the following fact. For any unit vector v ∈ Rd and unit spectral norm

matrix X,

v>TK(X)v =

∫ ∞
0

tr(Xe(A−BK)>τvv>e(A−BK)τ )dτ

≤
∫ ∞
0

tr(DD>e(A−BK)>τvv>e(A−BK)τ )dτ · ‖(DD>)−1/2X(DD>)−1/2‖

= (v>ΣKv) · ‖(DD>)−1/2X(DD>)−1/2‖ ≤ ‖ΣK‖σ−1min(DD>) .

We now complete the proof.

Lemma A.6. (Estimate of one-step GD). Suppose K ′ = K − η∇KJ(K) with

η ≤ min

{
3σmin(Q)

8J(K)‖R‖
,

1

16

(
σmin(Q)σmin(DD>)

J(K)

)2
1

‖B‖‖∇KJ(K)‖

}
,

then

J(K ′)− J(K∗) ≤
(

1− ησmin(R)σ2
min(DD>)

‖ΣK∗‖

)
(J(K)− J(K∗)).

Proof. By the proof of Lemma 2, we have

J(K)− J(K ′)

= 2 tr[ΣK′(K −K ′)>EK ]− tr[ΣK′(K −K ′)>R(K −K ′)]
= 4η tr(ΣK′ΣKE

>
KEK)− 4η2 tr(ΣKΣK′ΣKE

>
KREK)

≥ 4η tr(ΣKE
>
KEKΣK)− 4η‖ΣK′ − ΣK‖ tr(ΣKE

>
KEK)− 4η2‖ΣK′‖‖R‖ tr(ΣKE

>
KEKΣK)

≥ 4η tr(ΣKE
>
KEKΣK)− 4η

‖ΣK′ − ΣK‖
σmin(ΣK)

tr(ΣKE
>
KEKΣK)− 4η2‖ΣK′‖‖R‖ tr(ΣKE

>
KEKΣK)

= 4η

(
1− ‖ΣK

′ − ΣK‖
σmin(ΣK)

− η‖ΣK′‖‖R‖
)

tr(∇KJ(K)>∇KJ(K))

≥ 4η
σmin(R)σ2

min(DD>)

‖ΣK∗‖

(
1− ‖ΣK

′ − ΣK‖
σmin(DD>)

− η‖ΣK′‖‖R‖
)

(J(K)− J(K∗)).
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The condition on η ensures

‖K ′ −K‖ ≤ σmin(Q)σmin(DD>)

4J(K)‖B‖
,

so by Lemma A.5,

‖ΣK′ − ΣK‖
σmin(DD>)

≤ 4η

(
J(K)

σmin(Q)σmin(DD>)

)2

‖B‖‖∇KJ(K)‖ ≤ 1

4
,

with the assumed η. Then

‖ΣK′‖ ≤ ‖ΣK‖+ ‖ΣK′ − ΣK‖ ≤
J(K)

σmin(Q)
+
σmin(DD>)

4
≤ J(K)

σmin(Q)
+
‖ΣK′‖

4
,

which implies ‖ΣK′‖ ≤ 4J(K)
3σmin(Q) . Hence,

1− ‖ΣK
′ − ΣK‖

σmin(DD>)
− η‖ΣK′‖‖R‖ ≥ 1− 1

4
− η 4J(K)‖R‖

3σmin(Q)
≥ 1

4
,

with the assumed η. Now we have

J(K)− J(K ′) ≥ ησmin(R)σ2
min(DD>)

‖ΣK∗‖
(J(K)− J(K∗)),

which is equivalent to the desired conclusion.

Theorem A.7. (Theorem 3). With an appropriate constant setting of the stepsize η in the form of

η = poly

(
σmin(Q)

C(K0)
, σmin(DD>),

1

‖B‖
,

1

‖R‖

)
,

and number of iterations

N ≥ ‖ΣK∗‖
ησ2

min(DD>)σmin(R)
log

J(K0)− J(K∗)

ε
,

the iterates of gradient descent enjoys

J(KN )− J(K∗) ≤ ε.

Proof. Iterating the gradient decent for N times, from Lemma A.6, we know

J(KN )− J(K∗) ≤
(

1− ησmin(R)σ2
min(DD>)

‖ΣK∗‖

)N
(J(K0)− J(K∗)).

Therefore, if N is chosen as the above, we can make the right hand side smaller than ε.

B Proofs for Section 4

Proposition B.1. (Proposition 4). Assume A−BK is stable. The optimal intercept bK to minimize J2(K, b)

for any given K is that

bK = −(KQ−1A> +R−1B>)(AQ−1A> +BR−1B>)−1a (B.1)

Furthermore, J2(K, bK) takes the form of

J2(K, bK) = a>(AQ−1A> +BR−1B>)−1a (B.2)

which is independent of K.

6



Proof. The problem of minb J2(K, b) is equivalent to the following constrained optimization

min

(
µ

b

)>(
Q+K>RK −K>R
−RK R

)(
µ

b

)
s.t. (A−BK)µ+ (a+Bb) = 0 (B.3)

Using the Lagrangian multiplier method, we have

2M

(
µ

b

)
+Nλ = 0 , N>

(
µ

b

)
+ a = 0 ,

where

M =

(
Q+K>RK −K>R
−RK R

)
, N =

(
(A−BK)>

B>

)
.

From the first equation we get (µ>, b>)> = −M−1Nλ/2. Plugging this into the second equation, we derive

λ = −2(N>M−1N)−1a. Therefore, the optimal (µK , bK) is(
µK

bK

)
= −M−1N(N>M−1N)−1a .

And the optimal value of J2(K, b) is J2(K, bK) = a>(N>M−1N)−1a. By some simple calculation,

M−1 =

(
Q−1 −Q−1K>
−KQ−1 KQ−1K> +R−1

)
,

and N>M−1N = AQ−1A> +BR−1B>. Therefore, the final optimal(
µK

bK

)
= −

(
Q−1A>

KQ−1A> +R−1B>

)
(AQ−1A> +BR−1B>)−1a .

We have assumed M and N>M−1N are non-singular above. We now rigorously show that they are indeed

invertible. Specifically, if M is singular, ∃x = (x>1 , x
>
2 )> 6= 0 but x>Mx = 0. Since Q � 0, we have x1 = 0.

Since R � 0, we have −Kx1 + x2 = 0, thus x2 = 0. Then we get a contradiction. If N>M−1N is singular,

∃x 6= 0, but Nx = 0, which leads to (A−BK)x = 0. Given that A−BK is stable, this implies x = 0, again

we get a contradiction. The proof is now complete.

Theorem B.2. (Theorem 5). With the stepsize η in the form of

η = poly

(
σmin(Q)

C(K0)
, σmin(DD>),

1

‖B‖
,

1

‖R‖

)
,

and number of iterations

N ≥ ‖ΣK∗‖
ησ2

min(DD>)σmin(R)
log

J1(K0)− J1(K∗)

ε
,

the iterates of gradient descent enjoys J1(KN )−J1(K∗) ≤ ε. If we follow bK = −(KQ−1A>+R−1B>)(AQ−1A>+

BR−1B>)−1a, we have

J(KN , b
KN )− J(K∗, b∗) ≤ ε.

Furthermore,

‖KN −K∗‖F ≤ σ−1/2min (R)σ
−1/2
min (DD>)

√
ε, ‖bKN − b∗‖2 ≤ Cb(a)σ

−1/2
min (R)σ

−1/2
min (DD>)

√
ε , (B.4)

where Cb(a) = ‖Q−1A>(AQ−1A> +BR−1B>)−1a‖2 is a constant depending on the intercept a.
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Proof. We only need to show the bound for KN and bKN in (B.4). From the proof of Lemma 2, we showed

that for any K,K ′,

J1(K)− J1(K ′) = tr[ΣK [E>K′(K −K ′) + (K −K ′)>EK′ + (K −K ′)>R(K −K ′)]] .

Choosing K ′ = K∗, since EK∗ = 0, we get

J1(K)− J1(K∗) = tr[ΣK(K −K∗)>R(K −K∗)] ≥ σmin(R), σmin(DD>)‖KN −K∗‖2F .

Therefore, if (KN , b
KN ) makes J(KN , b

KN ) − J(K∗, b∗) = J1(K) − J1(K∗) ≤ ε, we surely obtain ‖KN −
K∗‖2F ≤ σ

−1
min(R)σ−1min(DD>)ε.

The bound for bKN is straightforward as

‖bKN − b∗‖2 ≤ ‖KN −K∗‖2‖Q−1A>(AQ−1A> +BR−1B>)−1a‖2
≤ Cb(a)‖KN −K∗‖F ≤ Cb(a) σ

−1/2
min (R)σ

−1/2
min (DD>)

√
ε .

C Proofs for Section 5

Proposition C.1. (Proposition 8). Under Assumption 7, the operator Λ(·) = Λ2(·,Λ1(·)) is L0-Lipschitz,

where L0 is given in Assumption 7. Moreover, there exists a unique Nash equilibrium pair (µ∗, π∗) of the

MFG.

Proof. Consider the linear policies πK,b(x) = −Kx + b. Define the distance metric of the linear policy as

follows

d(πK1,b1 , πK2,b2) = ‖K1 −K2‖2 + ‖b1 − b2‖2 . (C.1)

Then for the mapping Λ1(µ), as the optimal K∗ does not depend on µ, we have for any µ1, µ2 ∈ Rd+k,

d(Λ1(µ1),Λ2(µ2)) = ‖b∗1,µ − b∗2,µ‖2

≤ ‖K∗Q−1A> +R−1B>‖2
(∥∥∥(AQ−1A> +BR−1B>)−1Ā

∥∥∥
2
‖µ1,x − µ2,x‖2

+
∥∥∥(AQ−1A> +BR−1B>)−1B̄

∥∥∥
2
‖µ1,u − µ2,u‖2

)
≤ L1(‖µ1,x − µ2,x‖2 + ‖µ1,u − µ2,u‖2) = L1‖µ1 − µ2‖2 . (C.2)

For the mapping Λ2(µ, π), with the same optimal policy π ∈ Π under some µ ∈ Rd+k, for any µ1, µ2 ∈ Rd+k,

it holds that

‖Λ2(µ1, π)− Λ2(µ2, π)‖2 = ‖µnew,x(µ1)− µnew,x(µ2)‖2 + ‖µnew,u(µ1)− µnew,u(µ2)‖2
≤ ‖(A−BK∗)−1Ā‖2‖µ1,x − µ2,x‖2

+ ‖(A−BK∗)−1B̄‖2‖µ1,u − µ2,u‖2
+ ‖K∗(A−BK∗)−1Ā‖2‖µ1,x − µ2,x‖2
+ ‖K∗(A−BK∗)−1B̄‖2‖µ1,u − µ2,u‖2

≤ L2(‖µ1,x − µ2,x‖2 + ‖µ1,u − µ2,u‖2) = L2‖µ1 − µ2‖2 . (C.3)
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With the same mean-field variable µ, since any two optimal policies π1 and π2 share the same K∗, we also

have the following bound

‖Λ2(µ, π1)− Λ2(µ, π2)‖2 ≤
(
‖(A−BK∗)−1B‖2 + ‖I +K∗(A−BK∗)−1B‖2

)
‖bπ1 − bπ2‖2

= L3‖bπ1
− bπ2

‖2 . (C.4)

Therefore, combining (C.2). (C.3), (C.4), we obtain for any µ1, µ2 ∈ Rd+k,

‖Λ(µ1)− Λ(µ2)‖2 = ‖Λ2(µ1,Λ1(µ1))− Λ2(µ2,Λ1(µ2))‖2
≤ ‖Λ2(µ1,Λ1(µ1))− Λ2(µ1,Λ1(µ2))‖2 + ‖Λ2(µ1,Λ1(µ2))− Λ2(µ2,Λ1(µ2))‖2
≤ L3 d(Λ1(µ1),Λ1(µ2)) + L2‖µ1 − µ2‖2
≤ (L1L3 + L2) ‖µ1 − µ2‖2 = L0 ‖µ1 − µ2‖2 . (C.5)

So given the assumption that L0 < 1, the operator Λ(·) is a contraction. By Banach fixed-point theorem, we

conclude that Λ(·) has a unique fixed point, which gives the unique Nash equilibrium pair. This completes

the proof of the proposition.

Theorem C.2. (Theorem 9). For a sufficiently small tolerance 0 < ε < 1, we choose the number of iterations

S in Algorithm 1 such that

S ≥ log(2‖µ0 − µ∗‖2 · ε−1)

log(1/L0)
. (C.6)

For any s = 0, 1, . . . , S − 1, define

εs = min
{

2−2‖B‖−22 ‖(A−BK∗)−1‖
−2
2 , Cb(µs)

−2ε2, (C.7)

2−2s−4(L3Cb(µs) + 2CK(µ2))−2ε2, ε2
}
· σmin(R)σmin(DD>) , (C.8)

where

Cb(µs) = ‖Q−1A>(AQ−1A> +BR−1B>)−1ãµs
‖2 , (C.9)

CK(µs) =
(
‖α̃µs

‖2 + (1 + L1‖µs‖2)‖B‖2
)

·
(
‖(A−BK∗)−1‖2 + (1 + ‖K∗‖2)‖(A−BK∗)−1‖22‖B‖2

)
. (C.10)

In the s-th policy update, we choose the stepsize η as in Theorem 5 and number of iterations

Ns ≥
‖ΣK∗‖

ησ2
min(DD>)σmin(R)

log
Jµs,1(Kπs)− Jµs,1(K∗)

εs
,

such that Jµs
(Kπs+1

, bπs+1
)− Jµs

(K∗, b∗µs
) ≤ εs where K∗, b∗µs

are parameters of the optimal policy π∗µs
=

Λ1(µs) generated from mean-field state/action µs, Jµs
(Kπ, bπ) = Jµs

(π) is defined in the drifted MFG

problem (17), and Jµs,1(Kπ) is defined in (14) corresponding to Jµs(Kπ, bπ). Then it holds that

‖µS − µ∗‖2 ≤ ε, ‖KπS
−K∗‖F ≤ ε, ‖bπS

− b∗‖2 ≤ (1 + L1)ε. (C.11)

Here µ∗ is the Hash mean-field state/action, KπS
, bπS

are parameters of the final output policy πS , and

K∗, b∗ are the parameteris of the Nash policy π∗ = Λ1(µ∗).
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Proof. Define µ∗s+1 = Λ(µs) as the mean-field state/action generated by the optimal policy π∗µs
= Λ1(µs).

Then by (19) and (20), we know that µ∗s+1 = (µ∗s+1,x
>, µ∗s+1,u

>)>, and

µ∗s+1,x = −(A−BK∗)−1(Bb∗µs
+ α̃µs) ,

µ∗s+1,u = b∗µs
+K∗(A−BK∗)−1(Bb∗µs

+ α̃µs
) .

Therefore, by triangle inequality,

‖µs+1 − µ∗‖2 ≤ ‖µs+1 − µ∗s+1‖2 + ‖µ∗s+1 − µ∗‖2 = E1 + E2 . (C.12)

Next we bound E1 and E2 separately.

The bound for E2 is straighforward. From Proposition 8, we have

E2 = ‖µ∗s+1 − µ∗‖2 = ‖Λ(µs)− Λ(µ∗)‖2 ≤ L0‖µ∗s − µ∗‖2 ,

where L0 = L1L3 + L2 is defined in Assumption 7.

The bound for E1 is more involved.

E1 = ‖µs+1 − µ∗s+1‖2 = ‖µs+1,x − µ∗s+1,x‖2 + ‖µs+1,u − µ∗s+1,u‖2

≤
(
‖(A−BK∗)−1B‖2 + ‖I +K∗(A−BK∗)−1B‖2

)
‖bπs+1 − b∗µs

‖2

+ ‖Bbπs+1 + α̃µs‖2
(
‖(A−BKπs+1)−1 − (A−BK∗)−1‖2

+ ‖Kπs+1(A−BKπs+1)−1 −K∗(A−BK∗)−1‖2
)

= F1 + F2 .

From Theorem 5, we have ‖bπs+1−b∗µs
‖2 ≤ Cb(µs)σ−1/2min (R)σ

−1/2
min (DD>)

√
εs, where Cb(µs) = ‖Q−1A>(AQ−1A>+

BR−1B>)−1ãµs‖2. So

F1 ≤ L3Cb(µs)σ
−1/2
min (R)σ

−1/2
min (DD>)

√
εs . (C.13)

Recall that L3 = ‖(A − BK∗)−1B‖2 + ‖I + K∗(A − BK∗)−1B‖2 is defined in Assumption 7. Now let us

bound F2.

Firstly,

‖Bbπs+1 + α̃µs‖2 ≤ ‖Bb∗µs
+ α̃µs‖2 + ‖B‖2‖bπs+1 − b∗µs

‖2
≤ (‖α̃µs

‖2 + L1‖B‖2‖µs‖2) + ‖B‖2Cb(µs)σ−1/2min (R)σ
−1/2
min (DD>)

√
εs

≤ ‖α̃µs‖2 + (L1‖µs‖2 + 1)‖B‖2 ,

if we choose εs such that Cb(µs)σ
−1/2
min (R)σ

−1/2
min (DD>)

√
εs ≤ 1. The second inequality is due to L1-Lipschitz

of Λ1(·). Secondly,

‖(A−BKπs+1)−1 − (A−BK∗)−1‖2 ≤ ‖(A−BKπs+1)−1‖2‖(A−BK∗)−1‖2‖B(Kπs+1 −K∗)‖2 .

Therefore,

‖(A−BKπs+1
)−1 − (A−BK∗)−1‖2 ≤

‖(A−BK∗)−1‖22‖B‖2‖Kπs+1 −K∗‖2
1− ‖(A−BK∗)−1‖2‖B‖2‖Kπs+1 −K∗‖2

≤ 2‖(A−BK∗)−1‖22‖B‖2‖Kπs+1
−K∗‖2 ,
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if we choose εs such that ‖(A−BK∗)−1‖2‖B‖2‖Kπs+1
−K∗‖2 ≤ ‖(A−BK∗)−1‖2‖B‖2σ−1/2min (R)σ

−1/2
min (DD>)

√
εs ≤

1/2 where we use the bound ‖Kπs+1
−K∗‖2 ≤ σ−1/2min (R)σ

−1/2
min (DD>)

√
εs from Theorem 5. Lastly,

‖Kπs+1
(A−BKπs+1

)−1 −K∗(A−BK∗)−1‖2
≤ ‖Kπs+1

−K∗‖2‖(A−BKπs+1
)−1‖2 + ‖K∗‖2‖(A−BKπs+1

)−1 − (A−BK∗)−1‖2
≤ ‖Kπs+1

−K∗‖2‖(A−BKπs+1
)−1‖2 + 2‖K∗‖2‖(A−BK∗)−1‖22‖B‖2‖Kπs+1

−K∗‖2
≤ 2‖Kπs+1 −K∗‖2‖(A−BK∗)−1‖2 + 2‖K∗‖2‖(A−BK∗)−1‖22‖B‖2‖Kπs+1 −K∗‖2 ,

where the last inequality assumes ‖(A − BK∗)−1‖2‖B‖2‖Kπs+1
−K∗‖2 ≤ 1/2 again. Combing the above

derivations, we reach the following bound for F2

F2 ≤ 2CK(µs)‖Kπs+1
−K∗‖2 ≤ 2CK(µs)σ

−1/2
min (R)σ

−1/2
min (DD>)

√
εs , (C.14)

where

CK(µs) =
(
‖α̃µs‖2 + (1 + L1‖µs‖2)‖B‖2

)(
‖(A−BK∗)−1‖2 + (1 + ‖K∗‖2)‖(A−BK∗)−1‖22‖B‖2

)
.

Combining the bounds (C.13) and (C.14), we have

E1 ≤ (L3Cb(µs) + 2CK(µs))σ
−1/2
min (R)σ

−1/2
min (DD>)

√
εs .

Finally, we hope to choose εs such that E1 ≤ ε ·2−s−2, which will be sufficient to prove the theorem. Therefore,

we just need to set εs as follows

εs = min
{

2−2‖B‖−22 ‖(A−BK∗)−1‖
−2
2 , Cb(µs)

−2,

2−2s−4(L3Cb(µs) + 2CK(µ2))−2ε2
}
· σmin(R)σmin(DD>) .

With the bounds of E1 and E2, we have shown from (C.12) that

‖µs+1 − µ∗‖2 ≤ L0‖µs − µ∗‖2 + ε · 2−s−2 . (C.15)

Iterating over s and noting that L0 < 1, we have

‖µS − µ∗‖2 ≤ LS0 ‖µ0 − µ∗‖2 + ε/2 .

Therefore, if we choose S > log(2‖µ0 − µ∗‖2 · ε−1)/ log(1/L0), we have ‖µS − µ∗‖2 < ε.

Finally we show the bounds for KπS
and bπS

. Since K∗ does not depend on µs, for any iteration s

including the last iteration S, we directly get

‖KπS
−K∗‖F ≤ σ−1/2min (R)σ

−1/2
min (DD>)

√
εS ≤ ε , (C.16)

from Theorem 5. By the triangle inequality,

‖bπS
− b∗‖2 ≤ ‖bπS

− b∗µS
‖2 + ‖b∗µS

− b∗‖2
≤ Cb(µS)σ

−1/2
min (R)σ

−1/2
min (DD>)

√
εS + L1‖µS − µ∗‖2

≤ (1 + L1)ε , (C.17)

where the second inequality comes from Theorem 5 and the last inequality comes from the choice of εS . Thus

we now complete the proof of the theorem.
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