# Supplementary Material: Global Convergence of Policy Gradient for Linear-Quadratic Mean-Field Control/Game in Continuous Time 

Weichen Wang *, Jiequn Han ${ }^{\dagger}$, Zhuoran Yang ${ }^{\ddagger}$ and Zhaoran Wang ${ }^{\S}$


#### Abstract

The supplemental material contains supporting proofs for the main document.


## A Proofs for Section 2

Lemma A.1. (Solution of continuous Lyapunov equation). Suppose $W$ is stable. The solution $Y$ of continuous Lyapunov equation

$$
W Y+Y W^{\top}+Q=0
$$

can be written as

$$
\begin{equation*}
Y=\int_{0}^{\infty} e^{W \tau} Q e^{W^{\top} \tau} \mathrm{d} \tau \tag{A.1}
\end{equation*}
$$

Proof. The result can be found in Theorem 7.5 of [1], so we omit its proof.
In the following, given $K$ such that $A-B K$ is stable, we define two operators $\mathcal{T}_{K}, \mathcal{F}_{K}$ on symmetric matrix $X$ as

$$
\begin{aligned}
& \mathcal{T}_{K}(X):=\int_{0}^{\infty} e^{(A-B K) \tau} X e^{(A-B K)^{\top} \tau} \mathrm{d} \tau, \\
& \mathcal{F}_{K}(X):=(A-B K) X+X(A-B K)^{\top} .
\end{aligned}
$$

Then

$$
\mathcal{F}_{K} \circ \mathcal{T}_{K}+I=0,
$$

or

$$
\mathcal{T}_{K}=-\mathcal{F}_{K}^{-1}
$$

Additionally, from (4) we have

$$
\Sigma_{K}=\mathcal{T}_{K}\left(D D^{\top}\right)
$$

[^0]Lemma A.2. (Perturbation of $\left.P_{K}\right)$. Assume $K, K^{\prime}$ are both stable. Then

$$
\begin{equation*}
P_{K^{\prime}}-P_{K}=\int_{0}^{\infty} e^{\left(A-B K^{\prime}\right)^{\top} \tau}\left[E_{K}^{\top}\left(K^{\prime}-K\right)+\left(K^{\prime}-K\right)^{\top} E_{K}+\left(K^{\prime}-K\right)^{\top} R\left(K^{\prime}-K\right)\right] e^{\left(A-B K^{\prime}\right) \tau} \mathrm{d} \tau \tag{A.2}
\end{equation*}
$$

Moreover, this implies that $P_{K}$ is differentiable.
Proof. Taking the difference between two equations (7) corresponding to $K^{\prime}$ and $K$, we have

$$
\begin{aligned}
0= & \left(A-B K^{\prime}\right)^{\top} P_{K^{\prime}}+P_{K^{\prime}}\left(A-B K^{\prime}\right)^{\top}-\left(A-B K^{\prime}+B\left(K-K^{\prime}\right)\right)^{\top} P_{K}+P_{K}\left(A-B K^{\prime}+B\left(K-K^{\prime}\right)\right)^{\top} \\
& +\left(K^{\prime}-K+K\right)^{\top} R\left(K^{\prime}-K+K\right)-K^{\top} R K \\
= & \left(A-B K^{\prime}\right)^{\top}\left(P_{K^{\prime}}-P_{K}\right)+\left(P_{K^{\prime}}-P_{K}\right)\left(A-B K^{\prime}\right)^{\top}-\left(K^{\prime}-K\right)^{\top} B^{\top} P_{K}-P_{K} B\left(K^{\prime}-K\right) \\
& +\left(K^{\prime}-K+K\right)^{\top} R\left(K^{\prime}-K+K\right)-K^{\top} R K \\
= & \left(A-B K^{\prime}\right)^{\top}\left(P_{K^{\prime}}-P_{K}\right)+\left(P_{K^{\prime}}-P_{K}\right)\left(A-B K^{\prime}\right)^{\top} \\
& +E_{K}^{\top}\left(K^{\prime}-K\right)+\left(K^{\prime}-K\right)^{\top} E_{K}+\left(K^{\prime}-K\right)^{\top} R\left(K^{\prime}-K\right) .
\end{aligned}
$$

Here $E_{K}=R K-B^{\top} P_{K}$ is defined in Proposition 1. In other words, $P_{K^{\prime}}-P_{K}$ is the solution of the continuous Lyapunov equation

$$
\left(A-B K^{\prime}\right)^{\top} Y+Y\left(A-B K^{\prime}\right)+E_{K}^{\top}\left(K^{\prime}-K\right)+\left(K^{\prime}-K\right)^{\top} E_{K}+\left(K^{\prime}-K\right)^{\top} R\left(K^{\prime}-K\right)=0
$$

in which $Y$ is the unknown matrix. Recalling Lemma A.1. we finish the first part of the proof.
Define vectorization operator for $n \times m$ matrix $Y=\left(y_{i j}\right)_{i \leq n, j \leq m}$ as

$$
\operatorname{vec}(Y)=\left(y_{11}, \ldots, y_{n 1}, y_{12}, \ldots, y_{n 2}, \ldots, y_{1 m}, \ldots, y_{n m}\right)^{\top}
$$

We have the fact that $\operatorname{vec}(A B C)=\left(C^{\top} \otimes A\right) \operatorname{vec}(B)$. Using this, A.2 gives us

$$
\begin{aligned}
\operatorname{vec}\left(P_{K^{\prime}}\right. & \left.-P_{K}\right)=\int_{0}^{\infty} \operatorname{vec}\left(e^{\left(A-B K^{\prime}\right)^{\top} \tau}\left[E_{K}^{\top}\left(K^{\prime}-K\right)+\left(K^{\prime}-K\right)^{\top} E_{K}+\left(K^{\prime}-K\right) R\left(K^{\prime}-K\right)\right] e^{\left(A-B K^{\prime}\right) \tau}\right) \mathrm{d} \tau \\
& =\int_{0}^{\infty}\left(e^{\left(A-B K^{\prime}\right)^{\top} \tau} \otimes e^{\left(A-B K^{\prime}\right)^{\top} \tau} \mathrm{d} \tau\right) \operatorname{vec}\left[E_{K}^{\top}\left(K^{\prime}-K\right)+\left(K^{\prime}-K\right)^{\top} E_{K}+\left(K^{\prime}-K\right) R\left(K^{\prime}-K\right)\right] \\
& =\int_{0}^{\infty}\left(e^{\left(A-B K^{\prime}\right)^{\top} \tau} \otimes e^{\left(A-B K^{\prime}\right)^{\top} \tau} \mathrm{d} \tau\right) \operatorname{vec}\left[E_{K^{\prime}}^{\top}\left(K^{\prime}-K\right)+\left(K^{\prime}-K\right)^{\top} E_{K^{\prime}}+U\right]
\end{aligned}
$$

where

$$
\begin{aligned}
U & =\left(K^{\prime}-K\right)^{\top} R\left(K^{\prime}-K\right)+\left(E_{K}-E_{K^{\prime}}\right)^{\top}\left(K^{\prime}-K\right)+\left(K^{\prime}-K\right)^{\top}\left(E_{K}-E_{K^{\prime}}\right) \\
& =-\left(K^{\prime}-K\right)^{\top} R\left(K^{\prime}-K\right)+\left(P_{K^{\prime}}-P_{K}\right) B\left(K^{\prime}-K\right)+\left(K^{\prime}-K\right)^{\top} B^{\top}\left(P_{K^{\prime}}-P_{K}\right) \\
& =O\left(\left\|K^{\prime}-K\right\|_{F}^{2}\right)
\end{aligned}
$$

The last line uses the expression of $P_{K^{\prime}}-P_{K}$ in the first part of Lemma A.2 again. Therefore, there exists $Z_{K^{\prime}}$ that depend on $A-B K^{\prime}$ and $E_{K^{\prime}}$ such that $\operatorname{vec}\left(P_{K}-P_{K^{\prime}}\right)=Z_{K^{\prime}} \operatorname{vec}\left(K-K^{\prime}\right)+O\left(\left\|K-K^{\prime}\right\|_{F}^{2}\right)$, where $Z_{K^{\prime}}$ will be defined as the derivative of $\operatorname{vec}\left(P_{K}\right)$ at $K=K^{\prime}$ with respect to $\operatorname{vec}(K)$. Therefore, $P_{K}$ is indeed differentiable and its differential $\mathrm{d} P_{K}$ used in the proof of Proposition 1 below is well-defined.

Now we are ready to prove the expression of the policy gradient as follows.
Proposition A.3. (Proposition 1).

$$
\begin{equation*}
\nabla_{K} J(K)=2\left(R K-B^{\top} P_{K}\right) \Sigma_{K}=2 E_{K} \Sigma_{K} \tag{A.3}
\end{equation*}
$$

where $E_{K}=R K-B^{\top} P_{K}$.

Proof. Rewrite the Lyapunov equation (7) as $\phi\left(K, P_{K}\right)=0$, where $\phi$ is a function of two independent arguments, defined as

$$
\phi\left(K, P_{K}\right):=(A-B K)^{\top} P_{K}+P_{K}(A-B K)+Q+K^{\top} R K .
$$

Taking differential on both sides (the differentiability of $P_{K}$ has been shown in Lemma A.2), we have

$$
\begin{aligned}
0 & =\nabla_{K} \phi\left(K, P_{K}\right) \mathrm{d} K+\nabla_{P_{K}} \phi\left(K, P_{K}\right) \mathrm{d} P_{K} \\
& =\left[(-B \mathrm{~d} K)^{\top} P_{K}+P_{K}(-B \mathrm{~d} K)+(\mathrm{d} K)^{\top} R K+K^{\top} R \mathrm{~d} K\right]+\left[(A-B K)^{\top} \mathrm{d} P_{K}+\mathrm{d} P_{K}(A-B K)\right],
\end{aligned}
$$

or equivalently,

$$
\begin{equation*}
(A-B K)^{\top} \mathrm{d} P_{K}+\mathrm{d} P_{K}(A-B K)+\left(K^{\top} R-P_{K} B\right) \mathrm{d} K+(d K)^{\top}\left(R K-B^{\top} P_{K}\right)=0 \tag{A.4}
\end{equation*}
$$

Note that (4) A.4) have similar structures. We apply the trace operator to (4) left multiplied by $\mathrm{d} P_{K}$ and (A.4) left multiplied by $\Sigma_{K}$, and then take the difference to obtain

$$
\begin{aligned}
\operatorname{tr}\left(\mathrm{d} P_{K} D D^{\top}\right) & =\operatorname{tr}\left[\Sigma_{K}\left(K^{\top} R-P_{K} B\right) \mathrm{d} K+\Sigma_{K}(d K)^{\top}\left(R K-B^{\top} P_{K}\right)\right] \\
& =\operatorname{tr}\left[2 \Sigma_{K}\left(K^{\top} R-P_{K} B\right) \mathrm{d} K\right]
\end{aligned}
$$

From (8), by definition, we have

$$
\operatorname{tr}\left[\left(\nabla_{K} J(K)\right)^{\top} \mathrm{d} K\right]=\mathrm{d} J(K)=\operatorname{tr}\left(\mathrm{d} P_{K} D D^{\top}\right)
$$

Comparing the above two equations, since the matrix quantities are equal for any direction of $\mathrm{d} K$, we conclude $\nabla_{K} J(K)=2\left(R K-B^{\top} P_{K}\right) \Sigma_{K}$.

Lemma A.4. (Lemma 2). The cost function is gradient dominated [3], that is

$$
\begin{equation*}
J(K)-J\left(K^{*}\right) \leq \frac{\left\|\Sigma_{K^{*}}\right\|}{\sigma_{\min }(R) \sigma_{\min }^{2}\left(D D^{\top}\right)} \operatorname{tr}\left(\nabla_{K} J(K)^{\top} \nabla_{K} J(K)\right) \tag{A.5}
\end{equation*}
$$

In additional, we have the following lower bound for $J(K)-J\left(K^{*}\right)$

$$
\begin{equation*}
J(K)-J\left(K^{*}\right) \geq \frac{\sigma_{\min }\left(D D^{\top}\right)}{\|R\|} \operatorname{tr}\left(E_{K}^{\top} E_{K}\right) \tag{A.6}
\end{equation*}
$$

Proof. Based on (8) and Lemma A.2 we have

$$
\begin{aligned}
& J\left(K^{\prime}\right)-J(K) \\
= & \operatorname{tr}\left[\left(P_{K^{\prime}}-P_{K}\right) D D^{\top}\right] \\
= & \operatorname{tr}\left[\int_{0}^{\infty} e^{\left(A-B K^{\prime}\right)^{\top} \tau}\left[E_{K}^{\top}\left(K^{\prime}-K\right)+\left(K^{\prime}-K\right)^{\top} E_{K}+\left(K^{\prime}-K\right)^{\top} R\left(K^{\prime}-K\right)\right] e^{\left(A-B K^{\prime}\right) \tau} D D^{\top} \mathrm{d} \tau\right] \\
= & \operatorname{tr}\left[\int_{0}^{\infty} e^{\left(A-B K^{\prime}\right) \tau} D D^{\top} e^{\left(A-B K^{\prime}\right)^{\top} \tau} \mathrm{d} \tau\left[E_{K}^{\top}\left(K^{\prime}-K\right)+\left(K^{\prime}-K\right)^{\top} E_{K}+\left(K^{\prime}-K\right)^{\top} R\left(K^{\prime}-K\right)\right]\right] \\
= & \operatorname{tr}\left[\Sigma_{K^{\prime}}\left[E_{K}^{\top}\left(K^{\prime}-K\right)+\left(K^{\prime}-K\right)^{\top} E_{K}+\left(K^{\prime}-K\right)^{\top} R\left(K^{\prime}-K\right)\right]\right] \\
= & \operatorname{tr}\left[\Sigma_{K^{\prime}}\left[\left(K^{\prime}-K+R^{-1} E_{K}\right)^{\top} R\left(K^{\prime}-K+R^{-1} E_{K}\right)-E_{K}^{\top} R^{-1} E_{K}\right]\right] .
\end{aligned}
$$

Here the second equality uses Lemma A.2, the fourth equality uses the fact that $\Sigma_{K^{\prime}}$ is the solution the Lyapunov equation $\left(A-B K^{\prime}\right) X+X(A-B K)^{\top}+D D^{\top}=0$ and Lemma A. 1 .

To prove the upper bound A.5 , we use the fact that the quadratic term $\left(K^{\prime}-K+R^{-1} E_{K}\right)^{\top} R\left(K^{\prime}-\right.$ $K+R^{-1} E_{K}$ ) above is positive semi-definite. Letting $K^{\prime}=K^{*}$, we have

$$
\begin{aligned}
J(K)-J\left(K^{*}\right) & =\operatorname{tr}\left[\Sigma_{K^{*}}\left[E_{K}^{\top} R^{-1} E_{K}-\left(K^{*}-K+R^{-1} E_{K}\right)^{\top} R\left(K^{*}-K+R^{-1} E_{K}\right)\right]\right] \\
& \leq \operatorname{tr}\left[\Sigma_{K^{*}} E_{K}^{\top} R^{-1} E_{K}\right] \\
& \leq \frac{\left\|\Sigma_{K^{*}}\right\|}{\sigma_{\min }(R)} \operatorname{tr}\left(E_{K}^{\top} E_{K}\right) \\
& \leq \frac{\left\|\Sigma_{K^{*}}\right\|}{\sigma_{\min }(R) \sigma_{\min }^{2}\left(\Sigma_{K}\right)} \operatorname{tr}\left(\nabla_{K} J(K)^{\top} \nabla_{K} J(K)\right) \\
& \leq \frac{\left\|\Sigma_{K^{*}}\right\|}{\sigma_{\min }(R) \sigma_{\min }^{2}\left(D D^{\top}\right)} \operatorname{tr}\left(\nabla_{K} J(K)^{\top} \nabla_{K} J(K)\right)
\end{aligned}
$$

The last inequality follows from the fact that $\Sigma_{K} \succeq D D^{\top} \succeq \sigma_{\min }\left(D D^{\top}\right) \cdot I_{d}$.
To prove the lower bound, we choose a specific form of $K^{\prime}$ to make the quadratic term to be zero and use the fact that $J\left(K^{*}\right) \leq J\left(K^{\prime}\right)$. Letting $K^{\prime}=K-R^{-1} E_{K}$, we have

$$
J(K)-J\left(K^{\prime}\right)=\operatorname{tr}\left[\Sigma_{K^{\prime}} E_{K}^{\top} R^{-1} E_{K}\right]
$$

Then

$$
\begin{aligned}
J(K)-J\left(K^{*}\right) & \geq J(K)-J\left(K^{\prime}\right) \\
& \geq \operatorname{tr}\left[\Sigma_{K^{\prime}} E_{K}^{\top} R^{-1} E_{K}\right] \\
& \geq \frac{\sigma_{\min }\left(D D^{\top}\right)}{\|R\|} \operatorname{tr}\left(E_{K}^{\top} E_{K}\right)
\end{aligned}
$$

Lemma A.5. (Perturbation analysis of $\Sigma_{K}$ ) Suppose $A-B K$ is stable and

$$
\left\|K^{\prime}-K\right\| \leq \frac{\sigma_{\min }(Q) \sigma_{\min }\left(D D^{\top}\right)}{4 J(K)\|B\|}
$$

then $A-B K^{\prime}$ is also stable and

$$
\left\|\Sigma_{K^{\prime}}-\Sigma_{K}\right\| \leq 4\left(\frac{J(K)}{\sigma_{\min }(Q)}\right)^{2} \frac{\|B\|}{\sigma_{\min }\left(D D^{\top}\right)}\left\|K^{\prime}-K\right\|
$$

Proof. The first claim is easy to prove with Lemma 10 in [4]. The second claim is similar to Appendix C. 4 in [2]. We first claim

$$
\begin{equation*}
\left\|\Sigma_{K}\right\| \leq \frac{J(K)}{\sigma_{\min }(Q)} \text { and }\left\|\mathcal{T}_{K}\right\| \leq \frac{\left\|\Sigma_{K}\right\|}{\sigma_{\min }\left(D D^{\top}\right)} \tag{A.7}
\end{equation*}
$$

and it is clear to see that

$$
\left\|\mathcal{F}_{K^{\prime}}-\mathcal{F}_{K}\right\| \leq 2\|B\|\left\|K^{\prime}-K\right\| .
$$

Then

$$
\left\|\mathcal{T}_{K}\right\|\left\|\mathcal{F}_{K^{\prime}}-\mathcal{F}_{K}\right\| \leq \frac{2 J(K)\|B\|\left\|K^{\prime}-K\right\|}{\sigma_{\min }(Q) \sigma_{\min }\left(D D^{\top}\right)} \leq \frac{1}{2}
$$

Then we have

$$
\begin{aligned}
\left\|\Sigma_{K^{\prime}}-\Sigma_{K}\right\| & =\left\|\left(\mathcal{T}_{K^{\prime}}-\mathcal{T}_{K}\right)\left(D D^{\top}\right)\right\| \leq\left\|\mathcal{T}_{K}\right\|\left\|\mathcal{F}_{K^{\prime}}-\mathcal{F}_{K}\right\|\left\|\Sigma_{K^{\prime}}\right\| \\
& \leq\left\|\mathcal{T}_{K}\right\|\left\|\mathcal{F}_{K^{\prime}}-\mathcal{F}_{K}\right\|\left(\left\|\Sigma_{K}\right\|+\left\|\Sigma_{K^{\prime}}-\Sigma_{K}\right\|\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left\|\Sigma_{K^{\prime}}-\Sigma_{K}\right\| & \leq 2\left\|\mathcal{T}_{K}\right\|\left\|\mathcal{F}_{K^{\prime}}-\mathcal{F}_{K}\right\|\left\|\Sigma_{K}\right\| \\
& \leq 4\left(\frac{J(K)}{\sigma_{\min }(Q)}\right)^{2} \frac{\|B\|}{\sigma_{\min }\left(D D^{\top}\right)}\left\|K^{\prime}-K\right\|
\end{aligned}
$$

So it remains to show the claim in A.7). The first claim can be seen from

$$
J(K)=\operatorname{tr}\left(\Sigma_{K}\left(Q+K^{\top} R K\right)\right) \geq \operatorname{tr}\left(\Sigma_{K}\right) \sigma_{\min }(Q) \geq\left\|\Sigma_{K}\right\| \sigma_{\min }(Q)
$$

The second claim can be shown from the following fact. For any unit vector $v \in \mathbb{R}^{d}$ and unit spectral norm matrix $X$,

$$
\begin{aligned}
v^{\top} \mathcal{T}_{K}(X) v & =\int_{0}^{\infty} \operatorname{tr}\left(X e^{(A-B K)^{\top} \tau} v v^{\top} e^{(A-B K) \tau}\right) \mathrm{d} \tau \\
& \leq \int_{0}^{\infty} \operatorname{tr}\left(D D^{\top} e^{(A-B K)^{\top} \tau} v v^{\top} e^{(A-B K) \tau}\right) \mathrm{d} \tau \cdot\left\|\left(D D^{\top}\right)^{-1 / 2} X\left(D D^{\top}\right)^{-1 / 2}\right\| \\
& =\left(v^{\top} \Sigma_{K} v\right) \cdot\left\|\left(D D^{\top}\right)^{-1 / 2} X\left(D D^{\top}\right)^{-1 / 2}\right\| \leq\left\|\Sigma_{K}\right\| \sigma_{\min }^{-1}\left(D D^{\top}\right)
\end{aligned}
$$

We now complete the proof.
Lemma A.6. (Estimate of one-step GD). Suppose $K^{\prime}=K-\eta \nabla_{K} J(K)$ with

$$
\eta \leq \min \left\{\frac{3 \sigma_{\min }(Q)}{8 J(K)\|R\|}, \frac{1}{16}\left(\frac{\sigma_{\min }(Q) \sigma_{\min }\left(D D^{\top}\right)}{J(K)}\right)^{2} \frac{1}{\|B\|\left\|\nabla_{K} J(K)\right\|}\right\}
$$

then

$$
J\left(K^{\prime}\right)-J\left(K^{*}\right) \leq\left(1-\eta \frac{\sigma_{\min }(R) \sigma_{\min }^{2}\left(D D^{\top}\right)}{\left\|\Sigma_{K^{*}}\right\|}\right)\left(J(K)-J\left(K^{*}\right)\right)
$$

Proof. By the proof of Lemma 2, we have

$$
\begin{aligned}
& J(K)-J\left(K^{\prime}\right) \\
= & 2 \operatorname{tr}\left[\Sigma_{K^{\prime}}\left(K-K^{\prime}\right)^{\top} E_{K}\right]-\operatorname{tr}\left[\Sigma_{K^{\prime}}\left(K-K^{\prime}\right)^{\top} R\left(K-K^{\prime}\right)\right] \\
= & 4 \eta \operatorname{tr}\left(\Sigma_{K^{\prime}} \Sigma_{K} E_{K}^{\top} E_{K}\right)-4 \eta^{2} \operatorname{tr}\left(\Sigma_{K} \Sigma_{K^{\prime}} \Sigma_{K} E_{K}^{\top} R E_{K}\right) \\
\geq & 4 \eta \operatorname{tr}\left(\Sigma_{K} E_{K}^{\top} E_{K} \Sigma_{K}\right)-4 \eta\left\|\Sigma_{K^{\prime}}-\Sigma_{K}\right\| \operatorname{tr}\left(\Sigma_{K} E_{K}^{\top} E_{K}\right)-4 \eta^{2}\left\|\Sigma_{K^{\prime}}\right\|\|R\| \operatorname{tr}\left(\Sigma_{K} E_{K}^{\top} E_{K} \Sigma_{K}\right) \\
\geq & 4 \eta \operatorname{tr}\left(\Sigma_{K} E_{K}^{\top} E_{K} \Sigma_{K}\right)-4 \eta \frac{\left\|\Sigma_{K^{\prime}}-\Sigma_{K}\right\|}{\sigma_{\min }\left(\Sigma_{K}\right)} \operatorname{tr}\left(\Sigma_{K} E_{K}^{\top} E_{K} \Sigma_{K}\right)-4 \eta^{2}\left\|\Sigma_{K^{\prime}}\right\|\|R\| \operatorname{tr}\left(\Sigma_{K} E_{K}^{\top} E_{K} \Sigma_{K}\right) \\
= & 4 \eta\left(1-\frac{\left\|\Sigma_{K^{\prime}}-\Sigma_{K}\right\|}{\sigma_{\min }\left(\Sigma_{K}\right)}-\eta\left\|\Sigma_{K^{\prime}}\right\|\|R\|\right) \operatorname{tr}\left(\nabla_{K} J(K)^{\top} \nabla_{K} J(K)\right) \\
\geq & 4 \eta \frac{\sigma_{\min }(R) \sigma_{\min }^{2}\left(D D^{\top}\right)}{\left\|\Sigma_{K^{*}}\right\|}\left(1-\frac{\left\|\Sigma_{K^{\prime}}-\Sigma_{K}\right\|}{\sigma_{\min }\left(D D^{\top}\right)}-\eta\left\|\Sigma_{K^{\prime}}\right\|\|R\|\right)\left(J(K)-J\left(K^{*}\right)\right) .
\end{aligned}
$$

The condition on $\eta$ ensures

$$
\left\|K^{\prime}-K\right\| \leq \frac{\sigma_{\min }(Q) \sigma_{\min }\left(D D^{\top}\right)}{4 J(K)\|B\|}
$$

so by Lemma A. 5 .

$$
\frac{\left\|\Sigma_{K^{\prime}}-\Sigma_{K}\right\|}{\sigma_{\min }\left(D D^{\top}\right)} \leq 4 \eta\left(\frac{J(K)}{\sigma_{\min }(Q) \sigma_{\min }\left(D D^{\top}\right)}\right)^{2}\|B\|\left\|\nabla_{K} J(K)\right\| \leq \frac{1}{4}
$$

with the assumed $\eta$. Then

$$
\left\|\Sigma_{K^{\prime}}\right\| \leq\left\|\Sigma_{K}\right\|+\left\|\Sigma_{K^{\prime}}-\Sigma_{K}\right\| \leq \frac{J(K)}{\sigma_{\min }(Q)}+\frac{\sigma_{\min }\left(D D^{\top}\right)}{4} \leq \frac{J(K)}{\sigma_{\min }(Q)}+\frac{\left\|\Sigma_{K^{\prime}}\right\|}{4}
$$

which implies $\left\|\Sigma_{K^{\prime}}\right\| \leq \frac{4 J(K)}{3 \sigma_{\min }(Q)}$. Hence,

$$
1-\frac{\left\|\Sigma_{K^{\prime}}-\Sigma_{K}\right\|}{\sigma_{\min }\left(D D^{\top}\right)}-\eta\left\|\Sigma_{K^{\prime}}\right\|\|R\| \geq 1-\frac{1}{4}-\eta \frac{4 J(K)\|R\|}{3 \sigma_{\min }(Q)} \geq \frac{1}{4}
$$

with the assumed $\eta$. Now we have

$$
J(K)-J\left(K^{\prime}\right) \geq \eta \frac{\sigma_{\min }(R) \sigma_{\min }^{2}\left(D D^{\top}\right)}{\left\|\Sigma_{K^{*}}\right\|}\left(J(K)-J\left(K^{*}\right)\right)
$$

which is equivalent to the desired conclusion.
Theorem A.7. (Theorem 3). With an appropriate constant setting of the stepsize $\eta$ in the form of

$$
\eta=\operatorname{poly}\left(\frac{\sigma_{\min }(Q)}{C\left(K_{0}\right)}, \sigma_{\min }\left(D D^{\top}\right), \frac{1}{\|B\|}, \frac{1}{\|R\|}\right)
$$

and number of iterations

$$
N \geq \frac{\left\|\Sigma_{K^{*}}\right\|}{\eta \sigma_{\min }^{2}\left(D D^{\top}\right) \sigma_{\min }(R)} \log \frac{J\left(K_{0}\right)-J\left(K^{*}\right)}{\varepsilon}
$$

the iterates of gradient descent enjoys

$$
J\left(K_{N}\right)-J\left(K^{*}\right) \leq \varepsilon
$$

Proof. Iterating the gradient decent for $N$ times, from Lemma A. 6 we know

$$
J\left(K_{N}\right)-J\left(K^{*}\right) \leq\left(1-\eta \frac{\sigma_{\min }(R) \sigma_{\min }^{2}\left(D D^{\top}\right)}{\left\|\Sigma_{K^{*}}\right\|}\right)^{N}\left(J\left(K_{0}\right)-J\left(K^{*}\right)\right)
$$

Therefore, if $N$ is chosen as the above, we can make the right hand side smaller than $\varepsilon$.

## B Proofs for Section 4

Proposition B.1. (Proposition 4). Assume $A-B K$ is stable. The optimal intercept $b^{K}$ to minimize $J_{2}(K, b)$ for any given $K$ is that

$$
\begin{equation*}
b^{K}=-\left(K Q^{-1} A^{\top}+R^{-1} B^{\top}\right)\left(A Q^{-1} A^{\top}+B R^{-1} B^{\top}\right)^{-1} a \tag{B.1}
\end{equation*}
$$

Furthermore, $J_{2}\left(K, b^{K}\right)$ takes the form of

$$
\begin{equation*}
J_{2}\left(K, b^{K}\right)=a^{\top}\left(A Q^{-1} A^{\top}+B R^{-1} B^{\top}\right)^{-1} a \tag{B.2}
\end{equation*}
$$

which is independent of $K$.

Proof. The problem of $\min _{b} J_{2}(K, b)$ is equivalent to the following constrained optimization

$$
\begin{align*}
& \min \binom{\mu}{b}^{\top}\left(\begin{array}{cc}
Q+K^{\top} R K & -K^{\top} R \\
-R K & R
\end{array}\right)\binom{\mu}{b} \\
& \text { s.t. }(A-B K) \mu+(a+B b)=0 \tag{B.3}
\end{align*}
$$

Using the Lagrangian multiplier method, we have

$$
2 M\binom{\mu}{b}+N \lambda=0, \quad N^{\top}\binom{\mu}{b}+a=0
$$

where

$$
M=\left(\begin{array}{cc}
Q+K^{\top} R K & -K^{\top} R \\
-R K & R
\end{array}\right), \quad N=\binom{(A-B K)^{\top}}{B^{\top}}
$$

From the first equation we get $\left(\mu^{\top}, b^{\top}\right)^{\top}=-M^{-1} N \lambda / 2$. Plugging this into the second equation, we derive $\lambda=-2\left(N^{\top} M^{-1} N\right)^{-1} a$. Therefore, the optimal $\left(\mu^{K}, b^{K}\right)$ is

$$
\binom{\mu^{K}}{b^{K}}=-M^{-1} N\left(N^{\top} M^{-1} N\right)^{-1} a
$$

And the optimal value of $J_{2}(K, b)$ is $J_{2}\left(K, b^{K}\right)=a^{\top}\left(N^{\top} M^{-1} N\right)^{-1} a$. By some simple calculation,

$$
M^{-1}=\left(\begin{array}{cc}
Q^{-1} & -Q^{-1} K^{\top} \\
-K Q^{-1} & K Q^{-1} K^{\top}+R^{-1}
\end{array}\right)
$$

and $N^{\top} M^{-1} N=A Q^{-1} A^{\top}+B R^{-1} B^{\top}$. Therefore, the final optimal

$$
\binom{\mu^{K}}{b^{K}}=-\binom{Q^{-1} A^{\top}}{K Q^{-1} A^{\top}+R^{-1} B^{\top}}\left(A Q^{-1} A^{\top}+B R^{-1} B^{\top}\right)^{-1} a
$$

We have assumed $M$ and $N^{\top} M^{-1} N$ are non-singular above. We now rigorously show that they are indeed invertible. Specifically, if $M$ is singular, $\exists x=\left(x_{1}^{\top}, x_{2}^{\top}\right)^{\top} \neq 0$ but $x^{\top} M x=0$. Since $Q \succ 0$, we have $x_{1}=0$. Since $R \succ 0$, we have $-K x_{1}+x_{2}=0$, thus $x_{2}=0$. Then we get a contradiction. If $N^{\top} M^{-1} N$ is singular, $\exists x \neq 0$, but $N x=0$, which leads to $(A-B K) x=0$. Given that $A-B K$ is stable, this implies $x=0$, again we get a contradiction. The proof is now complete.

Theorem B.2. (Theorem 5). With the stepsize $\eta$ in the form of

$$
\eta=\operatorname{poly}\left(\frac{\sigma_{\min }(Q)}{C\left(K_{0}\right)}, \sigma_{\min }\left(D D^{\top}\right), \frac{1}{\|B\|}, \frac{1}{\|R\|}\right)
$$

and number of iterations

$$
N \geq \frac{\left\|\Sigma_{K^{*}}\right\|}{\eta \sigma_{\min }^{2}\left(D D^{\top}\right) \sigma_{\min }(R)} \log \frac{J_{1}\left(K_{0}\right)-J_{1}\left(K^{*}\right)}{\varepsilon}
$$

the iterates of gradient descent enjoys $J_{1}\left(K_{N}\right)-J_{1}\left(K^{*}\right) \leq \varepsilon$. If we follow $b^{K}=-\left(K Q^{-1} A^{\top}+R^{-1} B^{\top}\right)\left(A Q^{-1} A^{\top}+\right.$ $\left.B R^{-1} B^{\top}\right)^{-1} a$, we have

$$
J\left(K_{N}, b^{K_{N}}\right)-J\left(K^{*}, b^{*}\right) \leq \varepsilon
$$

Furthermore,

$$
\begin{equation*}
\left\|K_{N}-K^{*}\right\|_{F} \leq \sigma_{\min }^{-1 / 2}(R) \sigma_{\min }^{-1 / 2}\left(D D^{\top}\right) \sqrt{\varepsilon}, \quad\left\|b^{K_{N}}-b^{*}\right\|_{2} \leq C_{b}(a) \sigma_{\min }^{-1 / 2}(R) \sigma_{\min }^{-1 / 2}\left(D D^{\top}\right) \sqrt{\varepsilon} \tag{B.4}
\end{equation*}
$$

where $C_{b}(a)=\left\|Q^{-1} A^{\top}\left(A Q^{-1} A^{\top}+B R^{-1} B^{\top}\right)^{-1} a\right\|_{2}$ is a constant depending on the intercept $a$.

Proof. We only need to show the bound for $K_{N}$ and $b^{K_{N}}$ in (B.4). From the proof of Lemma 2, we showed that for any $K, K^{\prime}$,

$$
J_{1}(K)-J_{1}\left(K^{\prime}\right)=\operatorname{tr}\left[\Sigma_{K}\left[E_{K^{\prime}}^{\top}\left(K-K^{\prime}\right)+\left(K-K^{\prime}\right)^{\top} E_{K^{\prime}}+\left(K-K^{\prime}\right)^{\top} R\left(K-K^{\prime}\right)\right]\right]
$$

Choosing $K^{\prime}=K^{*}$, since $E_{K^{*}}=0$, we get

$$
J_{1}(K)-J_{1}\left(K^{*}\right)=\operatorname{tr}\left[\Sigma_{K}\left(K-K^{*}\right)^{\top} R\left(K-K^{*}\right)\right] \geq \sigma_{\min }(R), \sigma_{\min }\left(D D^{\top}\right)\left\|K_{N}-K^{*}\right\|_{F}^{2}
$$

Therefore, if $\left(K_{N}, b^{K_{N}}\right)$ makes $J\left(K_{N}, b^{K_{N}}\right)-J\left(K^{*}, b^{*}\right)=J_{1}(K)-J_{1}\left(K^{*}\right) \leq \varepsilon$, we surely obtain $\| K_{N}-$ $K^{*} \|_{F}^{2} \leq \sigma_{\min }^{-1}(R) \sigma_{\min }^{-1}\left(D D^{\top}\right) \varepsilon$.

The bound for $b^{K_{N}}$ is straightforward as

$$
\begin{aligned}
\left\|b^{K_{N}}-b^{*}\right\|_{2} & \leq\left\|K_{N}-K^{*}\right\|_{2}\left\|Q^{-1} A^{\top}\left(A Q^{-1} A^{\top}+B R^{-1} B^{\top}\right)^{-1} a\right\|_{2} \\
& \leq C_{b}(a)\left\|K_{N}-K^{*}\right\|_{F} \leq C_{b}(a) \sigma_{\min }^{-1 / 2}(R) \sigma_{\min }^{-1 / 2}\left(D D^{\top}\right) \sqrt{\varepsilon}
\end{aligned}
$$

## C Proofs for Section 5

Proposition C.1. (Proposition 8). Under Assumption 7, the operator $\Lambda(\cdot)=\Lambda_{2}\left(\cdot, \Lambda_{1}(\cdot)\right)$ is $L_{0}$-Lipschitz, where $L_{0}$ is given in Assumption 7. Moreover, there exists a unique Nash equilibrium pair $\left(\mu^{*}, \pi^{*}\right)$ of the MFG.

Proof. Consider the linear policies $\pi_{K, b}(x)=-K x+b$. Define the distance metric of the linear policy as follows

$$
\begin{equation*}
d\left(\pi_{K_{1}, b_{1}}, \pi_{K_{2}, b_{2}}\right)=\left\|K_{1}-K_{2}\right\|_{2}+\left\|b_{1}-b_{2}\right\|_{2} \tag{C.1}
\end{equation*}
$$

Then for the mapping $\Lambda_{1}(\mu)$, as the optimal $K^{*}$ does not depend on $\mu$, we have for any $\mu_{1}, \mu_{2} \in \mathbb{R}^{d+k}$,

$$
\begin{align*}
d\left(\Lambda_{1}\left(\mu_{1}\right), \Lambda_{2}\left(\mu_{2}\right)\right)= & \left\|b_{1, \mu}^{*}-b_{2, \mu}^{*}\right\|_{2} \\
\leq & \left\|K^{*} Q^{-1} A^{\top}+R^{-1} B^{\top}\right\|_{2}\left(\left\|\left(A Q^{-1} A^{\top}+B R^{-1} B^{\top}\right)^{-1} \bar{A}\right\|_{2}\left\|\mu_{1, x}-\mu_{2, x}\right\|_{2}\right. \\
& \left.+\left\|\left(A Q^{-1} A^{\top}+B R^{-1} B^{\top}\right)^{-1} \bar{B}\right\|_{2}\left\|\mu_{1, u}-\mu_{2, u}\right\|_{2}\right) \\
\leq & L_{1}\left(\left\|\mu_{1, x}-\mu_{2, x}\right\|_{2}+\left\|\mu_{1, u}-\mu_{2, u}\right\|_{2}\right)=L_{1}\left\|\mu_{1}-\mu_{2}\right\|_{2} . \tag{C.2}
\end{align*}
$$

For the mapping $\Lambda_{2}(\mu, \pi)$, with the same optimal policy $\pi \in \Pi$ under some $\mu \in \mathbb{R}^{d+k}$, for any $\mu_{1}, \mu_{2} \in \mathbb{R}^{d+k}$, it holds that

$$
\begin{align*}
\left\|\Lambda_{2}\left(\mu_{1}, \pi\right)-\Lambda_{2}\left(\mu_{2}, \pi\right)\right\|_{2}= & \left\|\mu_{\text {new }, x}\left(\mu_{1}\right)-\mu_{\text {new }, x}\left(\mu_{2}\right)\right\|_{2}+\left\|\mu_{\text {new }, u}\left(\mu_{1}\right)-\mu_{\text {new }, u}\left(\mu_{2}\right)\right\|_{2} \\
\leq & \left\|\left(A-B K^{*}\right)^{-1} \bar{A}\right\|_{2}\left\|\mu_{1, x}-\mu_{2, x}\right\|_{2} \\
& +\left\|\left(A-B K^{*}\right)^{-1} \bar{B}\right\|_{2}\left\|\mu_{1, u}-\mu_{2, u}\right\|_{2} \\
& +\left\|K^{*}\left(A-B K^{*}\right)^{-1} \bar{A}\right\|_{2}\left\|\mu_{1, x}-\mu_{2, x}\right\|_{2} \\
& +\left\|K^{*}\left(A-B K^{*}\right)^{-1} \bar{B}\right\|_{2}\left\|\mu_{1, u}-\mu_{2, u}\right\|_{2} \\
\leq & L_{2}\left(\left\|\mu_{1, x}-\mu_{2, x}\right\|_{2}+\left\|\mu_{1, u}-\mu_{2, u}\right\|_{2}\right)=L_{2}\left\|\mu_{1}-\mu_{2}\right\|_{2} \tag{C.3}
\end{align*}
$$

With the same mean-field variable $\mu$, since any two optimal policies $\pi_{1}$ and $\pi_{2}$ share the same $K^{*}$, we also have the following bound

$$
\begin{align*}
\left\|\Lambda_{2}\left(\mu, \pi_{1}\right)-\Lambda_{2}\left(\mu, \pi_{2}\right)\right\|_{2} & \leq\left(\left\|\left(A-B K^{*}\right)^{-1} B\right\|_{2}+\left\|I+K^{*}\left(A-B K^{*}\right)^{-1} B\right\|_{2}\right)\left\|b_{\pi_{1}}-b_{\pi_{2}}\right\|_{2} \\
& =L_{3}\left\|b_{\pi_{1}}-b_{\pi_{2}}\right\|_{2} \tag{C.4}
\end{align*}
$$

Therefore, combining (C.2). (C.3), (C.4), we obtain for any $\mu_{1}, \mu_{2} \in \mathbb{R}^{d+k}$,

$$
\begin{align*}
& \left\|\Lambda\left(\mu_{1}\right)-\Lambda\left(\mu_{2}\right)\right\|_{2}=\left\|\Lambda_{2}\left(\mu_{1}, \Lambda_{1}\left(\mu_{1}\right)\right)-\Lambda_{2}\left(\mu_{2}, \Lambda_{1}\left(\mu_{2}\right)\right)\right\|_{2} \\
& \quad \leq\left\|\Lambda_{2}\left(\mu_{1}, \Lambda_{1}\left(\mu_{1}\right)\right)-\Lambda_{2}\left(\mu_{1}, \Lambda_{1}\left(\mu_{2}\right)\right)\right\|_{2}+\left\|\Lambda_{2}\left(\mu_{1}, \Lambda_{1}\left(\mu_{2}\right)\right)-\Lambda_{2}\left(\mu_{2}, \Lambda_{1}\left(\mu_{2}\right)\right)\right\|_{2} \\
& \quad \leq L_{3} d\left(\Lambda_{1}\left(\mu_{1}\right), \Lambda_{1}\left(\mu_{2}\right)\right)+L_{2}\left\|\mu_{1}-\mu_{2}\right\|_{2} \\
& \quad \leq\left(L_{1} L_{3}+L_{2}\right)\left\|\mu_{1}-\mu_{2}\right\|_{2}=L_{0}\left\|\mu_{1}-\mu_{2}\right\|_{2} . \tag{C.5}
\end{align*}
$$

So given the assumption that $L_{0}<1$, the operator $\Lambda(\cdot)$ is a contraction. By Banach fixed-point theorem, we conclude that $\Lambda(\cdot)$ has a unique fixed point, which gives the unique Nash equilibrium pair. This completes the proof of the proposition.

Theorem C.2. (Theorem 9). For a sufficiently small tolerance $0<\varepsilon<1$, we choose the number of iterations $S$ in Algorithm 1 such that

$$
\begin{equation*}
S \geq \frac{\log \left(2\left\|\mu_{0}-\mu^{*}\right\|_{2} \cdot \varepsilon^{-1}\right)}{\log \left(1 / L_{0}\right)} \tag{C.6}
\end{equation*}
$$

For any $s=0,1, \ldots, S-1$, define

$$
\begin{align*}
\varepsilon_{s}=\min \{ & 2^{-2}\|B\|_{2}^{-2}\left\|\left(A-B K^{*}\right)^{-1}\right\|_{2}^{-2}, C_{b}\left(\mu_{s}\right)^{-2} \varepsilon^{2},  \tag{C.7}\\
& \left.2^{-2 s-4}\left(L_{3} C_{b}\left(\mu_{s}\right)+2 C_{K}\left(\mu_{2}\right)\right)^{-2} \varepsilon^{2}, \varepsilon^{2}\right\} \cdot \sigma_{\min }(R) \sigma_{\min }\left(D D^{\top}\right), \tag{C.8}
\end{align*}
$$

where

$$
\begin{align*}
C_{b}\left(\mu_{s}\right)= & \left\|Q^{-1} A^{\top}\left(A Q^{-1} A^{\top}+B R^{-1} B^{\top}\right)^{-1} \widetilde{a}_{\mu_{s}}\right\|_{2}  \tag{C.9}\\
C_{K}\left(\mu_{s}\right)= & \left(\left\|\widetilde{\alpha}_{\mu_{s}}\right\|_{2}+\left(1+L_{1}\left\|\mu_{s}\right\|_{2}\right)\|B\|_{2}\right) \\
& \cdot\left(\left\|\left(A-B K^{*}\right)^{-1}\right\|_{2}+\left(1+\left\|K^{*}\right\|_{2}\right)\left\|\left(A-B K^{*}\right)^{-1}\right\|_{2}^{2}\|B\|_{2}\right) \tag{C.10}
\end{align*}
$$

In the $s$-th policy update, we choose the stepsize $\eta$ as in Theorem 5 and number of iterations

$$
N_{s} \geq \frac{\left\|\Sigma_{K^{*}}\right\|}{\eta \sigma_{\min }^{2}\left(D D^{\top}\right) \sigma_{\min }(R)} \log \frac{J_{\mu_{s}, 1}\left(K_{\pi_{s}}\right)-J_{\mu_{s}, 1}\left(K^{*}\right)}{\varepsilon_{s}}
$$

such that $J_{\mu_{s}}\left(K_{\pi_{s+1}}, b_{\pi_{s+1}}\right)-J_{\mu_{s}}\left(K^{*}, b_{\mu_{s}}^{*}\right) \leq \varepsilon_{s}$ where $K^{*}, b_{\mu_{s}}^{*}$ are parameters of the optimal policy $\pi_{\mu_{s}}^{*}=$ $\Lambda_{1}\left(\mu_{s}\right)$ generated from mean-field state/action $\mu_{s}, J_{\mu_{s}}\left(K_{\pi}, b_{\pi}\right)=J_{\mu_{s}}(\pi)$ is defined in the drifted MFG problem (17), and $J_{\mu_{s}, 1}\left(K_{\pi}\right)$ is defined in (14) corresponding to $J_{\mu_{s}}\left(K_{\pi}, b_{\pi}\right)$. Then it holds that

$$
\begin{equation*}
\left\|\mu_{S}-\mu^{*}\right\|_{2} \leq \varepsilon, \quad\left\|K_{\pi_{S}}-K^{*}\right\|_{F} \leq \varepsilon, \quad\left\|b_{\pi_{S}}-b^{*}\right\|_{2} \leq\left(1+L_{1}\right) \varepsilon \tag{C.11}
\end{equation*}
$$

Here $\mu^{*}$ is the Hash mean-field state/action, $K_{\pi_{S}}, b_{\pi_{S}}$ are parameters of the final output policy $\pi_{S}$, and $K^{*}, b^{*}$ are the parameteris of the Nash policy $\pi^{*}=\Lambda_{1}\left(\mu^{*}\right)$.

Proof. Define $\mu_{s+1}^{*}=\Lambda\left(\mu_{s}\right)$ as the mean-field state/action generated by the optimal policy $\pi_{\mu_{s}}^{*}=\Lambda_{1}\left(\mu_{s}\right)$. Then by (19) and 20), we know that $\mu_{s+1}^{*}=\left(\mu_{s+1, x}^{*}{ }^{\top}, \mu_{s+1, u}^{*}\right)^{\top}$, and

$$
\begin{aligned}
& \mu_{s+1, x}^{*}=-\left(A-B K^{*}\right)^{-1}\left(B b_{\mu_{s}}^{*}+\widetilde{\alpha}_{\mu_{s}}\right) \\
& \mu_{s+1, u}^{*}=b_{\mu_{s}}^{*}+K^{*}\left(A-B K^{*}\right)^{-1}\left(B b_{\mu_{s}}^{*}+\widetilde{\alpha}_{\mu_{s}}\right)
\end{aligned}
$$

Therefore, by triangle inequality,

$$
\begin{equation*}
\left\|\mu_{s+1}-\mu^{*}\right\|_{2} \leq\left\|\mu_{s+1}-\mu_{s+1}^{*}\right\|_{2}+\left\|\mu_{s+1}^{*}-\mu^{*}\right\|_{2}=E_{1}+E_{2} \tag{C.12}
\end{equation*}
$$

Next we bound $E_{1}$ and $E_{2}$ separately.
The bound for $E_{2}$ is straighforward. From Proposition 8 , we have

$$
E_{2}=\left\|\mu_{s+1}^{*}-\mu^{*}\right\|_{2}=\left\|\Lambda\left(\mu_{s}\right)-\Lambda\left(\mu^{*}\right)\right\|_{2} \leq L_{0}\left\|\mu_{s}^{*}-\mu^{*}\right\|_{2}
$$

where $L_{0}=L_{1} L_{3}+L_{2}$ is defined in Assumption 7 .
The bound for $E_{1}$ is more involved.

$$
\begin{aligned}
E_{1}= & \left\|\mu_{s+1}-\mu_{s+1}^{*}\right\|_{2}=\left\|\mu_{s+1, x}-\mu_{s+1, x}^{*}\right\|_{2}+\left\|\mu_{s+1, u}-\mu_{s+1, u}^{*}\right\|_{2} \\
\leq & \left(\left\|\left(A-B K^{*}\right)^{-1} B\right\|_{2}+\left\|I+K^{*}\left(A-B K^{*}\right)^{-1} B\right\|_{2}\right)\left\|b_{\pi_{s+1}}-b_{\mu_{s}}^{*}\right\|_{2} \\
& +\left\|B b_{\pi_{s+1}}+\widetilde{\alpha}_{\mu_{s}}\right\|_{2}\left(\left\|\left(A-B K_{\pi_{s+1}}\right)^{-1}-\left(A-B K^{*}\right)^{-1}\right\|_{2}\right. \\
& \left.+\left\|K_{\pi_{s+1}}\left(A-B K_{\pi_{s+1}}\right)^{-1}-K^{*}\left(A-B K^{*}\right)^{-1}\right\|_{2}\right)=F_{1}+F_{2} .
\end{aligned}
$$

From Theorem5. we have $\left\|b_{\pi_{s+1}}-b_{\mu_{s}}^{*}\right\|_{2} \leq C_{b}\left(\mu_{s}\right) \sigma_{\min }^{-1 / 2}(R) \sigma_{\text {min }}^{-1 / 2}\left(D D^{\top}\right) \sqrt{\varepsilon_{s}}$, where $C_{b}\left(\mu_{s}\right)=\| Q^{-1} A^{\top}\left(A Q^{-1} A^{\top}+\right.$ $\left.B R^{-1} B^{\top}\right)^{-1} \widetilde{a}_{\mu_{s}} \|_{2}$. So

$$
\begin{equation*}
F_{1} \leq L_{3} C_{b}\left(\mu_{s}\right) \sigma_{\min }^{-1 / 2}(R) \sigma_{\min }^{-1 / 2}\left(D D^{\top}\right) \sqrt{\varepsilon_{s}} \tag{C.13}
\end{equation*}
$$

Recall that $L_{3}=\left\|\left(A-B K^{*}\right)^{-1} B\right\|_{2}+\left\|I+K^{*}\left(A-B K^{*}\right)^{-1} B\right\|_{2}$ is defined in Assumption 7 . Now let us bound $F_{2}$.

Firstly,

$$
\begin{aligned}
\left\|B b_{\pi_{s+1}}+\widetilde{\alpha}_{\mu_{s}}\right\|_{2} & \leq\left\|B b_{\mu_{s}}^{*}+\widetilde{\alpha}_{\mu_{s}}\right\|_{2}+\|B\|_{2}\left\|b_{\pi_{s+1}}-b_{\mu_{s}}^{*}\right\|_{2} \\
& \leq\left(\left\|\widetilde{\alpha}_{\mu_{s}}\right\|_{2}+L_{1}\|B\|_{2}\left\|\mu_{s}\right\|_{2}\right)+\|B\|_{2} C_{b}\left(\mu_{s}\right) \sigma_{\min }^{-1 / 2}(R) \sigma_{\min }^{-1 / 2}\left(D D^{\top}\right) \sqrt{\varepsilon_{s}} \\
& \leq\left\|\widetilde{\alpha}_{\mu_{s}}\right\|_{2}+\left(L_{1}\left\|\mu_{s}\right\|_{2}+1\right)\|B\|_{2}
\end{aligned}
$$

if we choose $\varepsilon_{s}$ such that $C_{b}\left(\mu_{s}\right) \sigma_{\min }^{-1 / 2}(R) \sigma_{\min }^{-1 / 2}\left(D D^{\top}\right) \sqrt{\varepsilon_{s}} \leq 1$. The second inequality is due to $L_{1}$-Lipschitz of $\Lambda_{1}(\cdot)$. Secondly,

$$
\left\|\left(A-B K_{\pi_{s+1}}\right)^{-1}-\left(A-B K^{*}\right)^{-1}\right\|_{2} \leq\left\|\left(A-B K_{\pi_{s+1}}\right)^{-1}\right\|_{2}\left\|\left(A-B K^{*}\right)^{-1}\right\|_{2}\left\|B\left(K_{\pi_{s+1}}-K^{*}\right)\right\|_{2}
$$

Therefore,

$$
\begin{aligned}
\left\|\left(A-B K_{\pi_{s+1}}\right)^{-1}-\left(A-B K^{*}\right)^{-1}\right\|_{2} & \leq \frac{\left\|\left(A-B K^{*}\right)^{-1}\right\|_{2}^{2}\|B\|_{2}\left\|K_{\pi_{s+1}}-K^{*}\right\|_{2}}{1-\left\|\left(A-B K^{*}\right)^{-1}\right\|_{2}\|B\|_{2}\left\|K_{\pi_{s+1}}-K^{*}\right\|_{2}} \\
& \leq 2\left\|\left(A-B K^{*}\right)^{-1}\right\|_{2}^{2}\|B\|_{2}\left\|K_{\pi_{s+1}}-K^{*}\right\|_{2}
\end{aligned}
$$

if we choose $\varepsilon_{s}$ such that $\left\|\left(A-B K^{*}\right)^{-1}\right\|_{2}\|B\|_{2}\left\|K_{\pi_{s+1}}-K^{*}\right\|_{2} \leq\left\|\left(A-B K^{*}\right)^{-1}\right\|_{2}\|B\|_{2} \sigma_{\min }^{-1 / 2}(R) \sigma_{\min }^{-1 / 2}\left(D D^{\top}\right) \sqrt{\varepsilon_{s}} \leq$ $1 / 2$ where we use the bound $\left\|K_{\pi_{s+1}}-K^{*}\right\|_{2} \leq \sigma_{\min }^{-1 / 2}(R) \sigma_{\min }^{-1 / 2}\left(D D^{\top}\right) \sqrt{\varepsilon_{s}}$ from Theorem 5 Lastly,

$$
\begin{aligned}
& \left\|K_{\pi_{s+1}}\left(A-B K_{\pi_{s+1}}\right)^{-1}-K^{*}\left(A-B K^{*}\right)^{-1}\right\|_{2} \\
& \quad \leq\left\|K_{\pi_{s+1}}-K^{*}\right\|_{2}\left\|\left(A-B K_{\pi_{s+1}}\right)^{-1}\right\|_{2}+\left\|K^{*}\right\|_{2}\left\|\left(A-B K_{\pi_{s+1}}\right)^{-1}-\left(A-B K^{*}\right)^{-1}\right\|_{2} \\
& \quad \leq\left\|K_{\pi_{s+1}}-K^{*}\right\|_{2}\left\|\left(A-B K_{\pi_{s+1}}\right)^{-1}\right\|_{2}+2\left\|K^{*}\right\|_{2}\left\|\left(A-B K^{*}\right)^{-1}\right\|_{2}^{2}\|B\|_{2}\left\|K_{\pi_{s+1}}-K^{*}\right\|_{2} \\
& \quad \leq 2\left\|K_{\pi_{s+1}}-K^{*}\right\|_{2}\left\|\left(A-B K^{*}\right)^{-1}\right\|_{2}+2\left\|K^{*}\right\|_{2}\left\|\left(A-B K^{*}\right)^{-1}\right\|_{2}^{2}\|B\|_{2}\left\|K_{\pi_{s+1}}-K^{*}\right\|_{2},
\end{aligned}
$$

where the last inequality assumes $\left\|\left(A-B K^{*}\right)^{-1}\right\|_{2}\|B\|_{2}\left\|K_{\pi_{s+1}}-K^{*}\right\|_{2} \leq 1 / 2$ again. Combing the above derivations, we reach the following bound for $F_{2}$

$$
\begin{equation*}
F_{2} \leq 2 C_{K}\left(\mu_{s}\right)\left\|K_{\pi_{s+1}}-K^{*}\right\|_{2} \leq 2 C_{K}\left(\mu_{s}\right) \sigma_{\min }^{-1 / 2}(R) \sigma_{\min }^{-1 / 2}\left(D D^{\top}\right) \sqrt{\varepsilon_{s}}, \tag{C.14}
\end{equation*}
$$

where

$$
C_{K}\left(\mu_{s}\right)=\left(\left\|\widetilde{\alpha}_{\mu_{s}}\right\|_{2}+\left(1+L_{1}\left\|\mu_{s}\right\|_{2}\right)\|B\|_{2}\right)\left(\left\|\left(A-B K^{*}\right)^{-1}\right\|_{2}+\left(1+\left\|K^{*}\right\|_{2}\right)\left\|\left(A-B K^{*}\right)^{-1}\right\|_{2}^{2}\|B\|_{2}\right) .
$$

Combining the bounds (C.13) and (C.14, we have

$$
E_{1} \leq\left(L_{3} C_{b}\left(\mu_{s}\right)+2 C_{K}\left(\mu_{s}\right)\right) \sigma_{\min }^{-1 / 2}(R) \sigma_{\min }^{-1 / 2}\left(D D^{\top}\right) \sqrt{\varepsilon_{s}}
$$

Finally, we hope to choose $\varepsilon_{s}$ such that $E_{1} \leq \varepsilon \cdot 2^{-s-2}$, which will be sufficient to prove the theorem. Therefore, we just need to set $\varepsilon_{s}$ as follows

$$
\begin{aligned}
\varepsilon_{s}=\min \{ & 2^{-2}\|B\|_{2}^{-2}\left\|\left(A-B K^{*}\right)^{-1}\right\|_{2}^{-2}, C_{b}\left(\mu_{s}\right)^{-2}, \\
& \left.2^{-2 s-4}\left(L_{3} C_{b}\left(\mu_{s}\right)+2 C_{K}\left(\mu_{2}\right)\right)^{-2} \varepsilon^{2}\right\} \cdot \sigma_{\min }(R) \sigma_{\min }\left(D D^{\top}\right) .
\end{aligned}
$$

With the bounds of $E_{1}$ and $E_{2}$, we have shown from (C.12) that

$$
\begin{equation*}
\left\|\mu_{s+1}-\mu^{*}\right\|_{2} \leq L_{0}\left\|\mu_{s}-\mu^{*}\right\|_{2}+\varepsilon \cdot 2^{-s-2} . \tag{C.15}
\end{equation*}
$$

Iterating over $s$ and noting that $L_{0}<1$, we have

$$
\left\|\mu_{S}-\mu^{*}\right\|_{2} \leq L_{0}^{S}\left\|\mu_{0}-\mu^{*}\right\|_{2}+\varepsilon / 2 .
$$

Therefore, if we choose $S>\log \left(2\left\|\mu_{0}-\mu^{*}\right\|_{2} \cdot \varepsilon^{-1}\right) / \log \left(1 / L_{0}\right)$, we have $\left\|\mu_{S}-\mu^{*}\right\|_{2}<\varepsilon$.
Finally we show the bounds for $K_{\pi_{S}}$ and $b_{\pi_{S}}$. Since $K^{*}$ does not depend on $\mu_{s}$, for any iteration $s$ including the last iteration $S$, we directly get

$$
\begin{equation*}
\left\|K_{\pi_{S}}-K^{*}\right\|_{F} \leq \sigma_{\min }^{-1 / 2}(R) \sigma_{\min }^{-1 / 2}\left(D D^{\top}\right) \sqrt{\varepsilon_{S}} \leq \varepsilon \tag{C.16}
\end{equation*}
$$

from Theorem 5. By the triangle inequality,

$$
\begin{align*}
\left\|b_{\pi_{S}}-b^{*}\right\|_{2} & \leq\left\|b_{\pi_{S}}-b_{\mu_{S}}^{*}\right\|_{2}+\left\|b_{\mu_{S}}^{*}-b^{*}\right\|_{2} \\
& \leq C_{b}\left(\mu_{S}\right) \sigma_{\min }^{-1 / 2}(R) \sigma_{\min }^{-1 / 2}\left(D D^{\top}\right) \sqrt{\varepsilon_{S}}+L_{1}\left\|\mu_{S}-\mu^{*}\right\|_{2} \\
& \leq\left(1+L_{1}\right) \varepsilon \tag{C.17}
\end{align*}
$$

where the second inequality comes from Theorem 5 and the last inequality comes from the choice of $\varepsilon_{S}$. Thus we now complete the proof of the theorem.

## References

[1] Panos J Antsaklis and Anthony N Michel. Linear systems. Springer Science \& Business Media, 2006.
[2] Maryam Fazel, Rong Ge, Sham M Kakade, and Mehran Mesbahi. Global convergence of policy gradient methods for the linear quadratic regulator. arXiv preprint arXiv:1801.05039, 2018.
[3] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient methods under the polyak-łojasiewicz condition. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 795-811. Springer, 2016.
[4] Hesameddin Mohammadi, Armin Zare, Mahdi Soltanolkotabi, and Mihailo R Jovanović. Convergence and sample complexity of gradient methods for the model-free linear quadratic regulator problem. arXiv preprint arXiv:1912.11899, 2019.


[^0]:    *Faculty of Business and Economics, The University of Hong Kong. [nickweichwang@gmail.com](mailto:nickweichwang@gmail.com)
    $\dagger$ Department of Mathematics, Princeton University. [jiequnh@princeton.edu](mailto:jiequnh@princeton.edu)
    ${ }^{\ddagger}$ Department of Operations Research \& Financial Engineering, Princeton University. [zy6@princeton.edu](mailto:zy6@princeton.edu)
    §Department of Industrial Engineering \& Management Sciences, Northwestern University. [zhaoran.wang@northwestern.edu](mailto:zhaoran.wang@northwestern.edu)

