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Supplement 
Robust Inference for High-Dimensional Linear Models via Residual Randomization 

In the supplement, we give proofs for statements in the main manuscript, propose an alternative procedure 
for selecting M?, and give additional simulation details. 

Proofs 

Recall the conditions required in the main text. 

Condition 1 (Covariates). Suppose that Xi,: ∈ Rp are generated i.i.d. with mean 0 and covariance Σ. 
Let λmax and λmin denote the largest and smallest eigenvalues of Σ. Suppose each element of Xi,: is sub-
Weibull(α) and the de-correlated covariates X̃i,

> 
: = Σ

−1/2X> are jointly sub-Weibull(α) with i,: � � 
max k X̃i,

> 
:kJ,Ψα , max kXi,vkΨα ≤ κ. (1) 

v 

Moreover, � 
>Σ−1X> 

�2 >Σ−1X> 
�2 2 

�� �� � �� � � 
Γ = max max E a i,:Xi,v , max E a i,:Xj,v , max E [Xi,uXi,v] . (2) 

v∈[p] v∈[p] u,v∈[p]2 

� √ � 
= κ2 λmax Condition 2 (Sample Size). Suppose κ? max |a|2 √ , 1 , and 

λmin ( ) 
4/α 4/α−1 

4Cα
2 (κ?)2 [log(2n)] [3 log(pn)]

n > max , 64Γ(log(pn) + 2 log(p)) (3) 
Γ 

for some constant Cα which only depends on α. 

Condition 3 (Exchangeability). Let G ⊂ Gp where Gp is the set of all matrices corresponding to a permuta-
tion g of [n] such that (i) [n] = N1 ∪ N2 for some N1 and N2 equal-sized disjoint sets, and (ii) for all j ∈ N1, 
g(j) ∈ N2 and for all j ∈ N2, g(j) ∈ N1. 

Condition 4 (Sign Symmetry). Let G ⊂ Gs where Gs is the set of all diagonal matrices containing only ±1 
such that there is an equal number of positive and negative 1’s. Snc Condition 5 (Cluster Exchangeability). Suppose there exist disjoint sets Lk with [n] = and nc k Lk 

|Lk| = n/nc = J such that {εi}i∈Lk are exchangeable, but may otherwise be dependent. That is, G ⊂ Gc, 
where Gc is the set of all block diagonal matrices where the GLk,Lk block is a permutation matrix satisfying 
Condition 3. 

Condition 6 (Lasso with sub-Weibull errors). Suppose εi is sub-Weibull(α) with kεikΨα ≤ κ. Suppose that � � 
32kΞn,h 

λmin ≥ 54 min Ξn,h + (4) 
1≤h≤p h 
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� 

where r 
√  n,hh log(36np/h) 

Ξn,h = 14 2 
n 

Cακ
2h(log(2n))2/α(h log(36np/h))2/α 

+ (5) n 
Θh = {θ ∈ Rp : h� |θ|0 ≤ h, i |θ|2 ≤ 1} �2 
 n,h = sup var X> θ . i,:

θ∈Θh 

Furthermore, suppose that the Lasso penalty term λ1 is set such that r 
√ log(np) Cα/2κ

2(log(2n))2/α(2 log(np))2/α 

λ1 = 14 2σ + , (6) 
n n 

and in addition to Condition 2 
C2 
α/2κ

4(log(pn))8/α−1 

n > , (7) 
σ2 

where σ = maxv∈[p] var(Xi,vεv) and Cα/2 is a constant only depending on α. 

Lemma 1 

Lemma 1. For any M ∈ Rp×p, let d1 (Ft(X, ε), F (̂X, ε)) denote the Wasserstein-1 distance between the t

oracle randomization distribution and attainable randomization distributions. Then, ��� ��� � 
d1 Ft(X, ε), Fˆ(X, ε) ≤ t β̂l − β × 

1 h��� √ 
na >(I − MS) 

��� + 
���a 

��� EQ 

����X>GX/ 
√ 
n 
��� �i (8) 

>M . 
∞ 1 ∞ 

where Q is the uniform distribution over G in G. 

βd,M Proof. The debiased Lasso ˆ is defined as 

βd,M ˆ = β̂l +
1 
MX>(Y − Xβ̂l) (9) 

n 

so that 
1 1 1 

βd,M − β ˆ = β̂l − β + MX>(Y − Xβ̂l) + MX>(Y − Xβ) − MX>(Y − Xβ) 
n n n 
1 1 ˆ= βl − β + MX>X(β − β̂l) + MX>ε (10) � n � n 

= I − 
1 
MX>X ( β̂l − β) + 

1 
MX>ε. 

n n 

So that for any M , under the null hypothesis that a>β = a0, we have 
√ > β̂d,M − a0) Tn = n(a 
√ >( β̂d,M − β) = na (11) 

= 
√ 
na >(I − MS)( β̂l − β) + √ 

1 
a >MX>ε. 

n 

Thus, the oracle randomization distribution which has access to the realization of ε would be �� � � √ > 1 1 
t(Gε) = na I − MX>X ( β̂l − β) + MX>Gε (12) 

n n 

where G is drawn uniformly from G. The attainable randomization distribution which we actually use is 

t(Gε̂) = √ 
1 

a >MX>Gε ̂= √ 
1 

a >MX>G(ε + X(β − β̂l)) 
n n 

(13) 
= √ 

1 
a >MX>Gε + √ 

1 
a >MX>GX(β − β̂l)). 

n n 
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For any Q which is a joint distribution over (G1, G2) where, marginally, G1 and G2, are uniform from G, we 
have 

d1 (Ft(X, ε), F (̂X, ε)) ≤ EQ (|t(G1ε) − t(G2 ε̂)|) (14) t

Setting Q to the distribution where G1 = G2 are drawn uniformly from G, and using (11) and (13), we have: ���� �
a>MX>Gε √ 

√ + na >(I − MS)( β̂l − β) (X, ε)) ≤ EQ d1 (Ft(X, ε), Ft̂ n 

a>MX>Gε a>MX>GX(β − β̂l) − √ − √ 
n n 

! ����� 
1 

√ a>MX>GX( β̂l − β) 
na >(I − MS)( β̂l − β) + √ 

n 

����� 
! ����� ≤ EQ 

1 (15) � ���β̂l − β 
��� �� �� √ √ 

na >(I − MS) + a >MX>GX/ = EQ n ∞ 1 # " 
1 ��X � �� 

! 
� √ √ 

|βl − β|1 
>(I − MS) + a >MX>GX/ = na n ∞ |G| 

G∈G ���� ���� X √ 
n 

��a >(I − MS) 
�� 
∞ 
+ 

� � 1 1 |βl − β|1 
>MX>GX ≤ × a 

|G| n ∞ G∈G 

Lemma 2 

Lemma 2. Under Conditions 1 and 2 and either Condition 3, 4, or 5, we have ! r X 1 2Γ(log(pn) + 2 log(p)) |X>GX|∞ ≥ 8 ≤ 6|G|(np)−1 

n 
P . (16) 

|G| 
G∈G 

Proof. We bound |X>GX|∞ for each G ∈ G, and then the final result follows from a union bound. 

Exchangeability For some fixed G ∈ G, letting g(i) = {j : Gij 6
vec operator vectorizes the p × p matrix so that γi ∈ Rp 2 

. = E 
� Xg(i),:) where the 

Xg(i),:) = 0 since 
i,:= 0} and γi = vec(X> 

Note that E(γi) vec(Xi,
> 
:

i 6= g(i). Furthermore, 

kXi,uXg(i),v kψα/2 
≤ kXi,ukΨα kXg(i),v kΨα ≤ κ2 ≤ κ? . (17) 

Thus, each element of γi is sub-Weibull(α/2) with Orlicz-norm bounded by κ? . Now, 

= 

����� 1 n 

X 
X> 
i,:Xg(i),: 

����� = 

����� 1 n 

X 
γi 

����� 
���� X>GX 

���� 1 
, (18) 

n ∞ i i ∞ ∞ 

but the γi’s are not independent of each other because Xi,: appears both in γi and γg−1(i). However, by 
construction, each Xi,: only appears in one term of {γi}i∈N1 and one term in {γi}i∈N2 . Thus, we can 
decompose the entire sum with possibly dependent terms into two separate sums of independent terms. ����� γi 

����� = 

����� 
����� X 1 X 1 X 1 

γi + γi 
n n n 

i i∈N2 ∞ ����� 
⎛⎝ 

i∈N1 ∞ ⎞⎠ (19) X 
γi 

����� , 

����� X 
γi 

����� 2 
n 

2 
n 

≤ max 
i∈N1 i∈N2 ∞ ∞ 
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We apply Kuchibhotla & Chakrabortty (2018, Theorem 3.4) to each term with t > 0 so that 

P 

����� 1 n 
γi 
∞ ⎛⎝ 

����� 
! r 

2Γ(t + 2 log(p)) ≥ 7 + 
2Cακ

? log(n)2/α(t + 2 log(p))2/α 

n n 
i 

⎛⎝ 

⎛⎝ ⎞⎠ ≥ 7 

⎞⎠ ����� 2 n 

X 
γi 

����� , 

����� 2 n 

X 
γi 

����� 
r 
2Γ(t + 2 log(p)) 

+ 
2Cακ

? log(n)2/α(t + 2 log(p))2/α 

≤ P max 
n n 

i∈N1 i∈N2 ∞ ∞ ⎞⎠ ����� γi 

����� ≥ 7 

r X 2Cακ
? log(n)2/α(t + 2 log(p))2/α 2 2Γ(t + 2 log(p)) ≤ 2P + 

n n n 
i∈N1 ∞ 

≤ 6 exp(−t). 
(20) 

Note that when applying the concentration inequality to each term, the sample size is n/2 rather than n. 
Letting t = log(pn) and using Condition 2 implies that the r r 

2Γ(log(pn) + 2 log(p)) 2Cακ
? log(n)2/α(log(pn) + 2 log(p))2/α 2Γ(log(pn) + 2 log(p)) 

7 + ≤ 8 (21) 
n n n 

and using a union bound over all G ∈ G completes the proof. 

Cluster Exchangeability Because Gc ⊂ Gp, then the proof for exchangeability directly implies that the 
statement holds for cluster exchangeability as well. 

Symmetry � We repeat the same arguments with a slight modification due to sign-flipping. For some fixed 
G ∈ G, let γi = vec(GiiXi,:Xi,

> 
:) so that γi ∈ Rp 2 

Xi,:Xi 
> Note that E(γi) = GiiE 6= 0, so we instead pair . 

together each i ∈ N1 = {i : Gii = 1} with some j ∈ N2 = {i : Gii = −1}. Specifically, assume that N1 and 
N2 are ordered and let N1(i) and N2(i) denote the ith element of N1 and N2 respectively. We then define 

1 � 
γ̃i = γN1(i) − γN2(i) (22) 

2 

so that E (γ̃i) = 0. Each element of γ̃i is sub-Weibull(α/2) with Orlicz-norm bounded by κ? . Now, ����� 
����� 1 X ��X>GX/n 

�� 
∞ 

giiXi,:Xi 
> = 

n 
i ∞ 

(23) ������ γ̃i 

������ . 
2 X 
n 
i∈[n/2] 

= 

∞ 

Now we again apply Kuchibhotla & Chakrabortty (2018, Theorem 3.4) to each term with t > 0 so that 

P 

⎛⎝ ������ γ̃i 

������ 
⎞⎠ r X 

+ 
2Cακ

? log(n)2/α(t + 2 log(p))2/α 2 2Γ(t + 2 log(p)) ≥ 7 
(24) n n n 

i∈[n/2] ∞ 

≤ 3 exp(−t). 

Again, letting t = log(pn) and using Condition 2 implies that the r r 
2Γs(log(pn) + 2 log(p)) 2Cακ

? log(n)2/α(log(pn) + 2 log(p))2/α 2Γ(log(pn) + 2 log(p)) 
7 + ≤ 8 . (25) 

n n n 

Taking a union bound over all G ∈ G completes the proof. Note that for sign-flips, we actually get a 
tighter upper bound on the probability, but we use looser leading term of 6 from the permutation setting for 
simplicity. 
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Lemma 3 

Suppose we select M? = M? by solving λ 

λ? 1 = arg min δ|a >(I − MλS)|∞ + 
a>Mλ 

λ∈[0,1) 

�� �� ���� ���� , 
X X>GX 

(26) |G| n ∞ G 

where 
|a >M |1 Mλ = arg min

M (27) 
s.t. 

��a 
�� >(I − MS) ≤ λ. ∞ 

Lemma 3. Under the Conditions 1 and 2, we have ! r 
Γ(log(pn) + 2 log(p)) 

P |a >(I − Σ−1S|∞ ≥ 8 ≤ 3(np)−1 . (28) 
n 

Thus, with probability at least 1 − 3(np)−1 the feasible set of (27) is non-empty with λ = 8
and 

q
Γ(log(pn)+2 log(p)) 

n 

|a >Mλ|1 ≤ |a >Σ−1|1. (29) 

Proof. We show that (28) holds which then trivially implies that Σ−1 is in the feasible set for λ = 8

and that |a>Mλ|1 < |a>Σ−1|1 by the optimality of Mλ. 

q
Γ(log(pn)+2 log(p)) 

n 

� 
Let γi = a>(I − Σ−1X> Xi,:) such that γi ∈ Rp. Note that E(γi) = a>E(I − Σ−1X> Xi,:) = 0. Furthermore, i,: i,:

>Σ−1X> kγi,vkψα/2 
= k(a i,:Xi,:)v kψα/2 � 
= ka >Σ−1/2 X̃i,

> 
: X̃i,:Σ

1/2 kψα/2 
v (30) √ 

λmax √ 
� � 

>Σ−1/2 X̃i,
> 
:kΨα k X̃i,:Σ

1/2 κ2 ≤ κ? . ≤ ka 
v 
kΨα ≤ |a|2 

λmin P 
1 Thus, each γi is sub-Weibull(α/2) with Orlicz-norm bounded by κ? . Now, a>(I − Σ−1S) = γi so we n i 

again apply Kuchibhotla & Chakrabortty (2018, Theorem 3.4) which implies that for any t ≥ 0, 

P 

����� 1 n 

X 
γi 

����� 
! r 

Γ(t + 2 log(p)) ≥ 7 + 
Cακ

? log(2n)2/α(t + 2 log(p))2/α 

≤ 3 exp(−t). (31) 
n n 

i ∞ 

Letting t = log(pn) and assuming Condition 2, we have r
r 

Cακ
? log(2n)2/α(log(pn) + 2 log(p))2/α Γ(log(pn) + 2 log(p)) Cακ? log(2n)2/α(log(pn) + 2 log(p))2/α−1/2 

= √ 
n n nΓ 

Γ(log(pn) + 2 log(p)) ≤ . 
n 

(32) P 
Thus, the first term in the lower bound of (31) dominates. Again, since a>(I − Σ−1 1 X>X) = 1 

n n i γi, we 
then have ! 

P 

����a > 

� 
I − Σ−1 

���� 
r �

1 ≥ 8 
Γ(log(pn) + 2 log(p)) ≤ 3(np)−1 . X>X (33) 

n n ∞ 
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Corollary 1. Assume the conditions of Lemma 3 and Lemma 2. Then with probability greater than 1 − 
3(np)−1 − 6|G|(np)−1 using M? selected from (27) and (26) yields 

β̂l − β × 
��� ��� d1 (Ft(X, ε), F (̂X, ε)) ≤ t

1 h i (34) �� >Σ−1 
�� 
1 

�p
8 δ + 2Γ(log(pn) + 2 log(p)) a . 

Condition 2, b < 1. By the optimality of λ? 

>(I − M?S)|∞ + |a >M?|1EQ 

q
Γ(log(pn)+2 log(p)) and suppose that Σ−1 Proof. Let b = 8 is in the feasible set for λ = b. Note, that by n 

, M ?, and Mb we have �� �� �� �� � � 
X>GX/n �� >Mb|1EQ 

X>GX/n 

X>GX/n δ|a < δ|a ∞ ∞ (35) 
>(I − MbS|∞ + |a ��−1> E|Σ 1 Q 

� 
< δb + |a . ∞ 

Lemma 2 and 3 imply that with probability greater than 1 − 3(np)−1 − 6|G|(np)−1 that Σ−1 is feasible for √ � �� ��X>GX/n λ = b and that EQ ∞ 
< 2b. Applying Lemma 1 then implies that ���β̂l − β 

��� × d1 (Ft(X, ε), F (̂X, ε)) ≤ t
1 h i (36) ��a >Σ−1 

�� 
1 

�p
8 δ + 2Γ(log(pn) + 2 log(p)) . 

Theorem 1 (Sub-Weibull Errors and Covariates). Suppose Conditions 1, 2, and 6 hold. Under either 
3 3 Condition 3 or 4, with probability no less than 1 − 6|G|+3 + + , np np n 

√ 
10752s 3Γσ log(np) 

d1 (Ft(X, ε), F (̂X, ε)) ≤ (δ + |a T Σ−1|1) √ (37) 
t λmin n 

Proof. We combine Corollary 1 with results from Kuchibhotla & Chakrabortty (2018). Specifically, to bound 
|βl − β|1, we apply Kuchibhotla & Chakrabortty (2018, Theorem 4.5), which states that with probability at 
least 1 − 3(np)−1 − 3n−1, letting the Lasso penalty parameter be: r 

√ log(np) Cγ κ
2(log(2n))2/α(2 log(np))2/α 

λ1 = 14 2σ + (38) 
n n 

yields β̂l such that √ " r # 
Cα/2κ

2
√ 
s(log(np))4/α 84 2 s log(np) | β̂l − β|2 ≤ σ 

λmin 
. (39) + 

n n 

We require the corresponding bound on | β̂l −β|1. As part of proving Theorem 4.5 (Appendix E.4), Kuchibolta 
and Chakroborty show that with the probability stated above, 

λn ≥ 2 

���� ���� . (40) 
X>ε 
n ∞ 

This allows us to apply Hastie et al. (2015, Lemma 11.1) which states that when (40) holds, the estimation 
error belongs to the cone set: 

ˆν ̂= βl − β ∈ C(S, 3) = {ν : |νSC |1 ≤ 3|νS |1} , (41) 

where S = {j : βj 6= 0} and SC is its complement. Thus, we have 

| β ̂− β|1 ≤ |( β ̂− β)S |1 + |( β̂l)SC |1 
√ √ (42) 

≤ 4|( β ̂− β)S |1 ≤ 4 s|( β ̂− β)S |2 ≤ 4 s| β ̂− β|2. 
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Thus, we have under the same conditions and stated probability that " # √ r 
336s 2 log(np) Cα/2κ

2(log(np))4/α 

| β ̂− β|1 ≤ σ + 
λmin n n 
√ " r # (43) 

672s 2 log(np) ≤ σ . 
λmin n 

3 Combining with Corollary 1, we then have with probability no less than 1 − 6|G|+3 − − 3 , np np n 

√ " r # r 
√ 672s 2 log(np) 6Γ log(np) 

d1 (FT (X, ε), Ft(X, ε)) ≤ n σ × 8(δ + |a T Σ−1|1) 
λmin n n 

(44) √ 
10752s 3Γσ log(np) 

= (δ + |a T Σ−1|1) √ 
λmin n 
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2 Assumptions of Belloni et al. (2016) for Cluster Dependence 

The proof of Theorem 2 follow directly from Corollary 1 and Theorem 1 of Belloni et al. (2016). 

Using our notation, we restate the relevant portion of Theorem 1 of Belloni et al. (2016) as well as the 
conditions required. Recall that we assume that clusters are indexed by i = 1, . . . , nc and observations 
within each cluster are indexed by j = 1, . . . , J so that n = ncJ . To accommodate this notation, we let 
Xij ∈ Rp be the covariates of the jth observation from the ith cluster. Furthermore, let Xijv ∈ R denote 
the vth covariate of the jth observation from the ith cluster. Similarly, let Yij denote the jth outcome from 
the ith cluster. 

Belloni et al. (2016) begin with a more general additive fixed effects model where: 

Yij = f(wij ) + ei + εij where E(εij | wi1, . . . wiJ ) = 0. (45) 

However, the Approximately Sparse Model condition stated below requires that f is well approximated by a 
linear model so that f(wij ) = X> β +r(wij ) for some sparse β and r(wij ) term which vanishes as p increases. ij 
We require the stronger assumption of a linear model; i.e., r(wij ) = 0. 

Belloni et al. (2016) define the “demeaned observations” 

J J JX X X 1 1 1 ¨ ¨ Xij = Xij − Xij , Yij = Yij − Yij , and ε̈ij = εij − εij . (46) 
J J J 
j=1 j=1 j=1 

The Cluster-Lasso estimate is then defined as 

nc J pXX X 1 λ1 ˆ ¨ Ẍ > ˆβ ∈ arg min ( Yij − ij b)
2 + φv|bv |, (47) 

b ncJ ncJ 
i=1 j=1 v=1 

where p
λ1 = 2c ncJΦ

−1(1 − γ/2p) (48) 

with c > 1 being is a constant slack parameter, γ = o(1), and Φ is the CDF of the standard Gaussian. 
Furthermore, φ̂2 are estimates of v ⎛ ⎞ 2 

JX X 1 
nc

φ2 
v = ⎝ Ẍ 

ijv ε̈ij ⎠ . (49) 
ncJ 

i=1 j=1 

Since we do not have access to ε̈ij , we instead use ⎛ ⎞ 2 
nc JX X 1 ˆ ¨ φ2 

v = ⎝ Xijv ε̂ij ⎠ (50) 
ncJ 

i=1 j=1 

where ε̂ij are preliminary estimates of ε̈ij . Belloni et al. (2016) give a procedure for calculating φ̂v, but 
ultimately only require with probability 1 − o(1) for all v ∈ [p] that 

lφv ≤ φ̂v ≤ uφv (51) 

for some l → 1 and u ≤ C < ∞. 

The Sparse Eigenvalues condition concerns the empirical Gram matrix of the re-centered data 

nc JXX 1 ¨ ¨ ¨ M = {Mjk}u,v∈[p]2 , Mu,v = Xijv Xiju, (52) 
ncJ 

i=1 j=1 

and requires its minimum and maximum m-sparse eigenvalues to be bounded. Specifically, they require 
conditions on the quantities 

¨ δ> ¨ ¨ δ> ¨ ϕmin(m)( M) = min Mδ and ϕmax(m)( M) = max Mδ (53) 
δ∈Δ(m) δ∈Δ(m) 
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where Δ(M) = {δ ∈ Rp : |δ|0 ≤ m, |δ|2 = 1}. 

Finally, the regularity conditions require two additional quantities. The first, ω̄v, involves the third moment 
of the vth covariate and error: ⎤ ⎡ 

ω̄v = 

⎛ ⎜⎝E ⎢⎣ 
������ ¨ Xijv ε̈ij 

������ 
3 ⎥⎦ 

⎞ ⎟⎠ 
1/3 

. (54) 
J

J 
j=1 

X 1 √ 

They additionally require a measure of dependence within cluster, ıJ : � � 
1 PJ Ẍ 2 ε2 E ¨
J j=1 ijv ij 

ıJ = J min � hPJ 
i2 

� . (55) 
1≤v≤p 1 Ẍ 2 ε2 E ¨

J j=1 ijv ij 

With no intra-cluster dependence, ıJ = J , but in the worst case, ıJ = 1. 

Theorem 1 of Belloni et al. (2016) 

Let {Pn,J } be a sequence of probability laws, such that {(Yij , wij , Xij )}J ∼ Pn,J , i.i.d. across i for which j=1 
nc, J → ∞ jointly or nc → ∞, J fixed. Suppose that Conditions ASM, SE, and R hold for probability 
measure P induced by Pn,J . Consider a feasible Cluster-Lasso estimator with penalty level set by = PPn,J 

(48) and penalty loadings obeying (51). Then ⎛⎝ ⎞ s 
s2 log(p ∨ n) | β ̂− β|1 = Op ⎠ . (56) 

ncıJ 

Condition ASM (Approximately Sparse Model) The function f(wij ) is well approximated by a linear 
combination of a dictionary of transformations, Xij = XncJ (wij ) where Xij is a p × 1 vector with p � n 
allowed, and Xnc J is a measureable map. That is, for each i and j, 

f(wij ) = X> (57) ij β + r(wij ), 

where the coefficient β and the remainder term r(wij ) satisfy ⎤ ⎡ 1/2 X X nc J

ncJ 
i=1 j=1 

≤ As = Op(
p
s/ncıJ ). (58) 

1 
r(wij )

2 ⎦ ⎣|β|0 ≤ s = o(ncıJ ) and 

κ00 Condition SE (Sparse Eigenvalues). For any C > 0, there exists constants 0 < κ0 < < ∞, 
which do not depend on n but may depend on C, such that with probability approaching one, as n → ∞ 
κ0 ≤ ϕmin(Cs)( M̈) ≤ ϕmax(Cs)( M ¨ ) ≤ κ00 . 

Condition R (Regularity Conditions). Assume that for data {yij , wij } that are i.i.d. across i, the 
following conditions hold with Xij defined as in Condition ASM with probability 1 − o(1): h i−1 PJ PJ E( Ẍ 2 ε2 

ij ) + ijv ̈ E( Ẍ 2 1 ε2 
ijv ̈ ij ) = O(1) 1. j=1 j=1 J J 

2. 1 ≤ maxv∈[p] φv/ minv∈[p] φv = O(1) 

E(φ2 
v3. 1 ≤ maxv∈[p] ω̄v/ ) = O(1) 

4. log3(p) = o(ncJ) and s log(p ∨ ncJ) = o(ncıJ ) 
√ 

p
E(φ2 )|/ E(φ2 

v v 5. maxv∈[p] |φv −
p

) = o(1). 

9 

1 



� 

� ��
�

� 

3 Alternative Procedure for Selecting M 

Recall that 
Mλ = arg min

M 
|a >M |1 

>(I − MS) 
(59) 

s.t. 
��a 

�� ≤ λ. ∞ 

Define ���� ���� X a>MλX
>GX 1 

d(λ) = |a >(I − MλS)|∞ + 
|G| n ∞ G ���� ���� (60) X X>GX 1 

d0(λ) = |a >(I − MλS)|∞ + |a >Mλ|1 |G| n ∞ G 
√ 

such that d(λ) ≤ d0(λ). When Γ (or some reasonable upper bound) is known, select δ1 

and 1 > δ1
select M? is 

p so that δ1 ≥ 8 Γ 
(log(pn) + 2 log(p))/n. Condition 2 ensures that such a δ1 exists. Then, an alternative way to 

λ? = min |a >(I − MλS)|∞ 
λ∈[0,1) (61) p

(log(pn) + 2 log(p))/n). 

Similar to the procedure described in the main text, (61) selects a λ? which minimizes |a

s.t. (59) has non-empty feasible set for λ and d(λ) ≤ d0(δ1

>(I−MλS)|∞. 

This procedure, which we refer to as RR Tuning Free, may be preferable to the one (RR) presented in the 
main manuscript since it involves selecting a tuning parameter δ1 which is tied to a population quantity, 
Γ, rather than picking δ which may be hard to interpret. However, when δ1 is not large enough to satisfy √ 
δ1 ≥ 8 Γ, the procedure may not be asymptotically valid. This is in contrast to the original procedure 
which is asymptotically valid for any δ, though the empirical performance may be affected by selecting δ too 
small. 

We show that this alternative selection procedure is also valid by slightly modifying the proof of Corol-
lary 1. 

√ 
Corollary 2. Assume the conditions of Lemma 3 and Lemma 2. Suppose in (61) that δ1 ≥ 8 Γ and 1 > √ 

(log(pn) + 2 log(p))/n. Let δ2 = δ1/(8 Γ). 
using M? 

p
Then with probability greater than 1 − 3(np)−1 − 6|G|(np)−1 δ1

selected from (61) yields ���β̂l − β 
��� × d1 (Ft(X, ε), F (̂X, ε)) ≤ t
1 h i (62) �� >Σ−1 

�� 
1 

�p
8 δ2 + 2Γ(log(pn) + 2 log(p)) a . 

p
, M?, and Mb we have 

>(I − M?S)|∞ + EQ 

Suppose that Σ−1 Proof. Let b = δ1 (log(pn) + 2 log(p))/n. is in the feasible set for λ = b. By the 
optimality of λ? �� �� � 

∞ 

�� �� � >M?X>GX/n �� >Mb|1EQ 

X>GX/n 

X>GX/n |a < |a a ∞ (63) ��>(I − MbS|∞ + |a 
>Σ−1|1EQ 

� 
< b + |a . ∞ 

� �� ��Lemma 2 and 3 imply that with probability greater than 1 − 3(np)−1 − 6|G|(np)−1 that Σ−1 is feasible for √ 
X>GX/n λ = b and that EQ ∞ 

< 2b. Applying Lemma 1 then implies that 

d1 (Ft(X, ε), F (̂X, ε)) ≤ t

���β̂l − β 
��� × 
1 h �� �� �p i (64) 

8 δ2 + a >Σ−1 
1 

2Γ(log(pn) + 2 log(p)) . 
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4 Experiment Details 

We compare the empirical coverage of 95% confidence intervals produced by BLPR (Liu et al., 2017), HDI 
(Dezeure et al., 2015), SSLASSO (Javanmard & Montanari, 2014)1 , SILM (Zhang et al., 2019) (non-studentized 
confidence intervals) and residual randomization (RR). For each setting, we replicate the experiment 1000 
times for for (n = 50, p = 100) and again for (n = 100, p = 300). 

In each setting, we sample random X ∈ Rn×p with rows drawn i.i.d. from either 

• N1: Xi,: ∼ N(0, I) 

• G1: Xiv ∼ Gamma(1, 1) − 1; i.e., a centered gamma with shape = 1 and rate = 1 

• N2: Xiv ∼ N(µ, 1) with P (µ = −2) = P (µ = 2) = 0.5 

• NT: Xi,: ∼ (0, Σ) for Σij = .8|i−j| 

• GT: Xi,: ∼ Gamma(Σ) − 1 for Σij = .8|i−j|; i.e., each Xiv is marginally a centered gamma with shape 
= 1 and rate = 1, but the covariance is Topelitz. 

• WB: Xiv ∼ Weibull(1, 0.5) − Γ(2); i.e., a centered Weibull with scale = 1 and shape = 1/2. 

We sample the errors ε ∈ Rn from 

• N1: εi ∼ N(0, 1) 

• N2: εi ∼ N(µ, 1) with P (µ = −2) = P (µ = 2) = 0.5; 

• HN: εi ∼ N(0, 2kXi,:k22/p); i.e., the errors are heteroskedastic and drawn from a normal distribution. 

• HM: εi ∼ N(µ, 2kXi,:k22/p) with P (µ = −2) = P (µ = 2) = 0.5; i.e., the errors are heteroskedastic and 
drawn from a mixture of normal distributions. 

• WB εi ∼ Weibull(1, 0.5) − Γ(2); i.e., a centered Weibull with scale = 1 and shape = 1/2. 

For each setting, we draw β ∈ Rp with s = 4 or 15 active (i.e., non-zero) coordinates drawn from the 
Rademacher distribution and set the remaining p − s inactive coordinates to 0. We arrange entries in β 
in such a way that there is one active entry between two inactive entries (isolated) so that βj = 1 and 
βj−1 = βj+1 = 0, one active between an active entry and an inactive entry (adjacent) so that βj = βj−1 = 1 
and βj+1 = 0, and one active entry between two other active entries (sandwiched) βj = βj−1 = βj+1 = 1. 
We also use the same scheme for the inactive variables. We then set Y = Xβ + ε. 

Since in practice we do not know the appropriate tuning parameter λ1 a priori, for the residual randomiza-
tion procedure we employ the Square-Root Lasso (Belloni et al., 2011) implemented in RPtests (Shah & q

βl Buhlmann, 2017) to obtain estimates for ˆ . We follow Zhang & Cheng (2017) and rescale ε̂ by n/(n − | β̂l|0) 
as a finite-sample correction. 

Empirically, a larger value of δ generally results in RR producing better coverage at the expense of confidence 
interval length. We set δ = 10000 for all settings; broadly speaking though, we see that for δ ≥ 1000, the 
performance of the proposed procedure is fairly insensitive to the value of δ. p √ 
Given Corollary 2 requires λ2 = α (log(pn) + log(p))/n for some α ≥ 8 Γ. In practice, we may not know p
the value of Γ, but can provide a reasonable upper bound. Since we assumed that 8 Γ(log(pn) + log(p))/n < 
1 and require that λ? < 1, in the implementation of RR Tuning Free used for the simulations, we set λ = .99. p
For added interpretability, we parameterize λ with α log(p))/n and use R’s optimize function to find the p
smallest α ∈ [0.001, 0.99/ log(p))/n] whose d(λ?) < d(0.99). 

Throughout our simulations, we use 1, 000 draws for the bootstrap-based methods, and 1, 000 group actions 
for our method. 

1https://web.stanford.edu/ montanar/sslasso/code.html 
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5 Additional Experiments 

5.1 Inactive variables: (n = 50, p = 100) 

In Figures 1 and 2, we show empirical coverage and confidence interval length for the inactive variables 
over 1000 trials when the errors and covariates are all sub-exponential with (n = 50, p = 100) assuming 
exchangeable and sign symmetric errors. The same plots for the active variables are shown in the main 
document. 

Generally, all DLASSO, SILM, and RR achieve (or exceed) nominal coverage. HDI performs well under ex-
changeable errors, but generally undercovers in the symmetric setting. BLPR generally performs poorly in all 
settings. 

n = 50; p = 100; s = (4, 15)
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Figure 1: Empirical coverage and confidence interval length for the inactive variables with n = 50, p = 100, 
1000 replications and exchangeable errors. The top two panels are for s = 4 and the bottom two are for 
s = 15. The first and third panels show empirical coverage rates for each procedure; the sandwich coordinate 
is denoted by Δ, isolated is �, and adjacent is ◦. In the bottom panel, the line segment spans the .25 quantile 
and .75 quantile of the confidence interval lengths and the single point indicates the .99 quantile. Instead of 
showing the quantiles for each coordinate, we instead plot the maximum .25 (or .75, .99) quantile across the 
sandwich, isolated, and adjacent coordinates. The labels on the horizontal axis indicate a different simulation 
setting and are coded as “Covariate - Errors” where the different covariate and error settings are detailed in 
the main text. For some settings and procedures, the empirical coverage drops below .6 and is not shown. 
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n = 50; p = 100; s = (4, 15)
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Figure 2: Empirical coverage and confidence interval length for inactive variables when n = 50 and p = 100 
for sign symmetric errors. All other elements remain the same as Figure 1. 
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5.2 All variables: (n = 100, p = 300) 

In Figures 3 and 4, we show empirical coverage and confidence interval length for the active variables over 
1000 trials when the errors and covariates are sub-exponential with (n = 100, p = 300) assuming exchangeable 
and sign symmetric errors. Figures 5 and 6 show the analogous plots for inactive variables. 

The conclusions are qualitatively similar to the (n = 50, p = 100) experiments for both active and inactive 
variables. However, we note that in this case the confidence intervals produced by the residual randomization 
procedure have lengths comparable to the competing methods in most settings. 

n = 100; p = 300; s = (4, 15)
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Figure 3: Empirical coverage and confidence interval length for the active variables with n = 100, p = 300, 
1000 replications and exchangeable errors. The top two panels are for s = 4 and the bottom two are for 
s = 15. The first and third panels show empirical coverage rates for each procedure; the sandwich coordinate 
is denoted by Δ, isolated is �, and adjacent is ◦. In the bottom panel, the line segment spans the .25 quantile 
and .75 quantile of the confidence interval lengths and the single point indicates the .99 quantile. Instead of 
showing the quantiles for each coordinate, we instead plot the maximum .25 (or .75, .99) quantile across the 
sandwich, isolated, and adjacent coordinates. The labels on the horizontal axis indicate a different simulation 
setting and are coded as “Covariate - Errors” where the different covariate and error settings are detailed in 
the main text. For some settings and procedures, the empirical coverage drops below .6 and is not shown. 
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n = 100; p = 300; s = (4, 15)
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Figure 4: Empirical coverage and confidence interval length for active variables when n = 100 and p = 300 
for sign symmetric errors. All other elements remain the same as Figure 3. 
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n = 100; p = 300; s = (4, 15)
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Figure 5: Empirical coverage and confidence interval length for inactive variables when n = 100 and p = 300 
for exchangeable errors. In the top two and bottom two panels, the true support of β are 4 and 15 respectively. 
The first and third panels show empirical coverage rates for each procedure. In the bottom panels, the line 
segment indicates the .25 and .75 quantiles of the confidence interval lengths (averaged across all inactive 
variables for each run) and the single point indicates the .99 quantile. The labels on the horizontal axis 
indicate a different simulation setting and are coded as “Covariate - Errors” where the different covariate 
and error settings are detailed in the main text. 
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n = 100; p = 300; s = (4, 15)
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Figure 6: Empirical coverage and confidence interval length for inactive variables when n = 100 and p = 300 
for sign symmetric errors. All other elements remain the same as Figure 5. 
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5.3 Comparison of RR to RR Tuning Free 

In the following set of figures, we compare the performance of RR to RR Tuning Free. We note that when 
s = 4, RR Tuning Free generally performs slightly worse compared to RR. However, when s = 15 , RR 
Tuning Free performs comparably. In both cases, RR Tuning Free yields shorter CI lengths compared to 
RR, especially with covariates with Toeplitz covariances. With δ = 10000, we would expect the solution from 
the selection procedure of the original method to be very close to what is obtained via that of RR Tuning 
Free albeit with a less precise grid search. The two main sources of discrepancies comes from 1) the second 
term in d(λ) (60) being a tighter upper bound compared to that in eq. 12 in the main text and 2) fastclime 
symmetrizing M . 

n = 50; p = 100; s = (4, 15)
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Figure 7: Empirical coverage and confidence interval length for active variables when n = 50 and p = 100 for 
exchangeable errors. In the top two and bottom two panels, the true support of β are 4 and 15 respectively. 
The first and third panels show empirical coverage rates for each procedure. In the bottom panels, the line 
segment indicates the .25 and .75 quantiles of the confidence interval lengths (averaged across all inactive 
variables for each run) and the single point indicates the .99 quantile. The labels on the horizontal axis 
indicate a different simulation setting and are coded as “Covariate - Errors” where the different covariate 
and error settings are detailed in the main text. 
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n = 50; p = 100; s = (4, 15)
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Figure 8: Empirical coverage and confidence interval length for active variables when n = 50 and p = 100 
for sign symmetric errors. All other elements remain the same as Figure 7. 
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n = 50; p = 100; s = (4, 15)
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Figure 9: Empirical coverage and confidence interval length for inactive variables when n = 50 and p = 100 
for exchangeable errors. In the top two and bottom two panels, the true support of β are 4 and 15 respectively. 
The first and third panels show empirical coverage rates for each procedure. In the bottom panels, the line 
segment indicates the .25 and .75 quantiles of the confidence interval lengths (averaged across all inactive 
variables for each run) and the single point indicates the .99 quantile. The labels on the horizontal axis 
indicate a different simulation setting and are coded as “Covariate - Errors” where the different covariate 
and error settings are detailed in the main text. 
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n = 50; p = 100; s = (4, 15)
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Figure 10: Empirical coverage and confidence interval length for inactive variables when n = 50 and p = 100 
for sign symmetric errors. All other elements remain the same as Figure 9. 
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n = 100; p = 300; s = (4, 15)
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Figure 11: Empirical coverage and confidence interval length for active variables when n = 100 and p = 300 
for exchangeable errors. In the top two and bottom two panels, the true support of β are 3 and 10 respectively. 
The first and third panels show empirical coverage rates for each procedure. In the bottom panels, the line 
segment indicates the .25 and .75 quantiles of the confidence interval lengths (averaged across all inactive 
variables for each run) and the single point indicates the .99 quantile. The labels on the horizontal axis 
indicate a different simulation setting and are coded as “Covariate - Errors” where the different covariate 
and error settings are detailed in the main text. 
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n = 100; p = 300; s = (4, 15)
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Figure 12: Empirical coverage and confidence interval length for active variables when n = 100 and p = 300 
for sign symmetric errors errors. All other elements remain the same as Figure 11. 
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n = 100; p = 300; s = (4, 15)
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Figure 13: Empirical coverage and confidence interval length for inactive variables when n = 100 and p = 300 
for exchangeable errors. In the top two and bottom two panels, the true support of β are 4 and 15 respectively. 
The first and third panels show empirical coverage rates for each procedure. In the bottom panel, the line 
segment indicates the .25 and .75 quantiles of the confidence interval lengths (averaged across all inactive 
variables for each run) and the single point indicates the .99 quantile. The labels on the horizontal axis 
indicate a different simulation setting and are coded as “Covariate - Errors” where the different covariate 
and error settings are detailed in the main text. 
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n = 100; p = 300; s = (4, 15)
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Figure 14: Empirical coverage and confidence interval length for inactive variables when n = 100 and p = 300 
for sign symmetric errors. All other elements remain the same as Figure 13. 
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