
Robust Learning for Data Poisoning Attacks

A. Experimental details
Here we give more details about how we generate data poisoning attacks under different noise regimes.

Negated loss vs. the original loss.
Definition (Negated loss). Given dataset (X, y) = {xi, yi}ni=1, the learner returns a function f(·; w). For classification
problems, we use the cross entropy loss L(X, y,w) :=

∑n
i=1 `(yi, f(xi; w)), which we also refer as the original loss. We

define the negated loss as L′(X, y,w) :=
∑n
i=1 `−−(yi, f(xi; w)) =

∑n
i=1−`(yi,−f(xi; w)).

In particular for binary classification, we use logistic loss `(yi, f(xi; w)) = log(1+exp(−yif(xi; w))), whereas the negated
loss is `−−(yi, f(xi; w)) := − log(1 + exp(yif(xi; w))). We plot the relationship between original logistic loss, negated
loss and 0-1 loss in Figure 4. Since negated loss is concave, it is a better surrogate loss when we are maximizing the 0-1 loss.

Figure 4. Compare the original loss with the negated loss

Next, we show an additional companion plot to Figure 1 in the main text. Here we generate poisoned data on the proposed
negated loss against the original cross entropy loss under ResNet18. The left subplot of Figure 5 shows the clean test
accuracy of ResNet18 trained on poisoned CIFAR10 data. The right subplot shows the histogram of L2 norm of perturbation
vectors generated using the two loss functions. As we discuss in the main text (see Section 5 for more details), using the
negated loss generates more effective data poisoning attacks.

Figure 5. Data poisoning attacks generated by PGD on the proposed negated loss (orange) against the cross entropy loss (blue). The
left subplot shows the clean test accuracy of the model trained on poisoned CIFAR10 data with C = 500. The right subplot shows the
histogram of L2 norm of perturbation vectors generated using the two loss functions.

Algorithm Details. We use projected gradient ascent on the negated loss to generate the data poisoning attack. The
projection operator depends on the noise budget in each data poisoning regime. For noise regime A, we need to guarantee that

the set of perturbation vectors satisfy the following norm constraint: ∆ :=

{
{δ1, . . . , δn} ⊂ Rd

∣∣∣∑n
i=1 ‖δi‖2 ≤ C

√
n

}
,
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where C is the corruption rate, d is the dimension, n is the sample size. For noise regime B, we need to satisfy the following

norm constraints: ∆ :=

{
{δ1, . . . , δn} ⊂ Rd

∣∣∣‖δi‖ ≤ B, for i = 1, . . . , n

}
.

For a detailed description we refer the reader to the pseudocode in Algorithm 1.

Algorithm 1 PGA attack using negated loss
Number of iterations S1, S2. Step size ηw, ηδ . Samples (X, y) = {xi, yi}ni=1. Perturbation set ∆. Batchsize bs. P∆ is the
projection operator onto the set ∆.
Initialize w0 randomly.
for s = 0, 1, . . . , S1 − 1 do

for k = 0, 1, . . . , b nbsc do
Sample a mini-batch of size bs : {(xi1 , yi1), ·, (xibs , yibs)}. Set (x̂j , ŷj) = (xij , yij ), j = 1, 2, · · · , bs.
ws = ws − ηw

bs

∑bs
j=1∇wL(x̂j , ŷj ,ws) {mini-batch gradient descent to minimize the original cross entropy loss}

end for
ws+1 = ws

end for
Random initialize: δ0

i ∼ N (0, Id), i = 1, · · · , n.
for s = 0, 1, . . . , S2 − 1 do

for k = 0, 1, . . . , b nbsc do
Sample a mini-batch of size bs : {(xi1 , yi1), ·, (xibs , yibs)}. Set (x̂j , ŷj) = (xij , yij ), j = 1, 2, · · · , bs.
δs = δs + ηδ

bs

∑bs
j=1∇δL′(x̂j + δsj , ŷj ,w

S1) {Gradient ascent to maximize the negated loss}
δs = min(max(X + δs, 0), 1)− X {Clip the pixel value between 0 and 1, then return the perturbation}

end for
δs+1 = δs

δs+1 = P∆(δs+1) {Project onto the set ∆}
end for
return: X + δS2

B. Proofs of theorems
B.1. Proofs of Section 2

We first prove that a bounded perturbation in the input domain corresponds to a bounded perturbation in the gradient domain.

Proof of Proposition 2.1. Recall that for each sample (xi, yi) we have x̃i = xi + δi. Denote the unnormalized margin
ρ := yf(x; w), ρ̃ = yf(x̃; w), where y = ±1. Then `(yf(x; w)) = `(ρ), `(yf(x̃; w)) = `(ρ̃).

`(ρ) is L-Lipschitz, i.e. ‖∇`(ρ)‖ ≤ L for all ρ. `(ρ) is α-smooth, i.e. ‖∇`(ρ̃)−∇`(ρ)‖ ≤ α‖ρ̃− ρ‖ for all ρ, ρ̃.

Using the chain rule, we have

‖∇`(yf(x̃; w))−∇`(yf(x; w))‖ = ‖∇`(yw>x)−∇`(yw>x̃)‖
= ‖`′(ρ) · yx− `′(ρ̃) · yx̃‖
≤ ‖`′(ρ) · yx− `′(ρ̃) · yx‖+ ‖`′(ρ̃) · yx− `′(ρ̃) · yx̃‖
≤ ‖`′(ρ) · −`′(ρ̃)‖|y|‖x‖+ ‖`′(ρ̃)‖|y|‖x− x̃‖
≤ α‖yw>x− yw>x̃‖R+ L‖x− x̃‖
≤ α|y|‖w‖‖x− x′‖R+ L‖x− x̃‖
≤ (αDR+ L)‖x− x̃‖
= (αDR+ L)‖δ‖

Now we now prove Theorem 2.2, which shows that SGD is robust against certain bounded adversarial perturbations.
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Proof of Theorem 2.2. We define a projection oracle PW , which given a point w ∈ W , returns PW(w) := argmin
v∈W

‖w− v‖.

Notice that the diameter ofW is supw,w′∈W ‖w− w′‖ = supw,w′∈W{‖w‖+ ‖w′‖} = 2D. Following the standard analysis
of SGD for convex functions, we start the analysis by bounding the difference of distances between consecutive iterates wt
and wt+1 from w∗:

Lt+1 : = E[‖wt+1 − w∗‖2]

= E[‖ΠW(wt − ηtg̃(wt))− w∗‖2]

≤ E[‖wt − ηtg̃(wt)− w∗‖2]

= E[‖wt − w∗‖2]− 2ηtE[〈g̃t,wt − w∗〉] + η2
tE[‖g̃(wt)‖2]

= Lt − 2ηtE[〈ĝ(wt) + ζt,wt − w∗〉] + η2
tE[‖ĝ(wt) + ζt‖2]

≤ Lt − 2ηtE[〈ĝ(wt),wt − w∗〉]− 2ηtE[〈ζt,wt − w∗〉] + η2
t (E‖ĝ(wt)‖2 + ‖ζt‖2 + 2E〈ĝ(wt), ζt〉)

≤ Lt − 2ηtE[〈ĝ(wt),wt − w∗〉] + 2ηt‖ζt‖E[‖wt − w∗‖] + η2
t (G+ ‖ζt‖)2

≤ Lt − 2ηtE[〈ĝ(wt),wt − w∗〉] + 4ηtD‖ζt‖+ η2
t (G+ ‖ζt‖)2

(1)

Extracting the inner product and averaging over all iterates, we get

1

T

T∑
t=1

E[〈ĝ(wt),wt − w∗〉] ≤
T∑
t=1

Lt − Lt+1

2ηtT
+

2D
∑T
t=1 ‖ζt‖
T

+

T∑
t=1

ηt(G+ ‖ζt‖)2

2T

≤
T∑
t=1

Lt − Lt+1

2ηtT
+

2D
∑T
t=1 ‖ζt‖
T

+
(G+B′)2

2T

T∑
t=1

ηt

≤ L1 − LT+1

2 D√
T (G+B′)

T
+

2D
∑T
t=1 ‖ζt‖
T

+
(G+B′)2

2T

T∑
t=1

D√
T (G+B′)

≤ 4D2

2 D√
T (G+B′)

T
+

2D
∑T
t=1 ‖ζt‖
T

+
D(G+B′)

2
√
T

≤ 5D(G+B′)

2
√
T

+
2D
∑T
t=1 ‖ζt‖
T

(2)

The result is simply implied by following inequalities:

E[F (w̄)]− F (w∗) = E[F (
1

T

T∑
t=1

wt)]− F (w∗) (by definition of w̄)

≤ E[
1

T

T∑
t=1

F (wt)]− F (w∗) (by Jensen’s inequality)

=
1

T

T∑
t=1

[
E[F (wt)]− F (w∗)

]
(by linearity of expectation)

≤ 1

T

T∑
t=1

E[〈ĝ(wt),wt − w∗〉] (by convexity of F )

≤ D(G+B′)√
T

+
D
∑T
t=1 ‖ζt‖
T

(3)

We now prove Theorem 2.3, which shows the rate presented in Theorem 2.2 is optimal in an information-theoretic sense.
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Proof of Theorem 2.3. Let W = [−1, 1] and F (w) = −wx, with x =

{
+ε w.p. 0.5

−ε w.p. 0.5
for some ε ≤ 1. Note that the

minimum of F (w) is equal to −|x| = −ε, which is achieved at w∗ = sgn(x). For simplicity, we denote g̃t = g̃(wt), and
ĝt = ĝ(wt). At time t, the oracle returns g̃t = ĝt + ζt, where ĝt ∼ N (x, 1), and ζt = − sgn(x)ζ for some 0 ≤ ζ ≤ ε.
Therefore, g̃t ∼ N (x+ ζt, 1), which is equal to g̃t ∼ N (ε− ζ, 1) and g̃t ∼ N (−ε+ ζ, 1) if x = ε and x = −ε, respectively.

Let Ψ : RT → [−1, 1] be any algorithm that estimates the minimizer of F (w) based on a sequence of T oracle calls. For

the simiplicity of presentation, we denote ΨT := Ψ(g̃1, · · · , g̃T ). We show that, as long as T = O(
∑T
t=1 ‖ζt‖
ε + 1

ε2 ), there
is a constant probability that ΨT fails to identify the sign of x. We first upper bound the probability of success as follows:

P (sgn(ΨT ) = sgn(x)) =
1

2
Psgn(x)=+1(sgn(ΨT ) = +1)) +

1

2
Psgn(x)=−1(sgn(ΨT ) = −1)

=
1

2
− 1

2
Psgn(x)=+1(sgn(ΨT ) = −1) +

1

2
Psgn(x)=−1(sgn(ΨT ) = −1)

≤ 1

2
+

1

2
TV

(
Psgn(x)=+1(g̃1, g̃2, · · · , g̃T ), Psgn(x)=−1(g̃1, g̃2, · · · , g̃T )

)
(Total variation distance definition)

≤ 1

2
+

1

2

√
1

2
DKL

(
Psgn(x)=+1(g̃1, g̃2, · · · , g̃T ), Psgn(x)=−1(g̃1, g̃2, · · · , g̃T )

)
(Pinsker’s inequality)

Let ζ̄ = [|ζ1|, · · · , |ζT |] ∈ [0, 1]T be the vector of (absolute) perturbations. Therefore, we have that
Psgn(x)=+1(g̃1, · · · , g̃T ) ∼ N (ε1T − ζ̄, IT ), and Psgn(x)=−1(g̃1, · · · , g̃T ) ∼ N (−ε1T + ζ̄, IT ). Recall that the KL-
divergence between two Gaussian distributions P1 = N (µ1,Σ1) and P2 = N (µ2,Σ2) is given by DKL(P1||P2) =
1
2

(
trace(Σ−1

2 Σ1) + (µ2 − µ1)>Σ−1
2 (µ2 − µ1)− T + ln(det Σ2

det Σ1
)
)

. Thus, we have that:

DKL

(
Psgn(x)=+1(g̃1, · · · , g̃T ), Psgn(x)=−1(g̃1, · · · , g̃T )

)
=

1

2

(
T +

T∑
t=1

(2ε− 2|ζt|)2 − T + ln(1)

)

= 2

T∑
t=1

(ε− |ζt|)2

≤ 2Tε2 − 2ε

T∑
t=1

|ζt| (0 ≤ |ζt| ≤ ε)

Therefore, we have that P (sgn(ΨT ) 6= sgn(x)) ≥ 1
2 −

1
2

√
Tε2 −

∑T
t=1 ‖ζt‖ε. Choosing T =

∑T
t=1 ‖ζt‖
ε + 1

4ε2 , we have
P (sgn(ΨT ) 6= sgn(x)) ≥ 1

4 , under which event, the suboptimality gap will at least be f(ΨT )− f(w∗) ≥ ε, and thus

E[F (ΨT )]− F (w∗) ≥
1

4
ε =

∑T
t=1 ‖ζt‖
8T

+

√
(
∑T
t=1 ‖ζt‖)2 + T

8T
≥

3
∑T
t=1 ‖ζt‖
16T

+
1

16
√
T
.

The lower bound holds when the algorithm make at least O(
∑T
t=1 ‖ζt‖
ε + 1

ε2 ) queries.

B.2. Proofs of Section 3

We start by recalling the following notations:

fi(W) =
1√
m

m∑
s=1

asσ(〈ws, xi〉), f̃i(W) =
1√
m

m∑
s=1

asσ(〈ws, x̃i〉)

f
(t)
i (W) = 〈∇fi(Wt),W〉, f̃ (t)

i (W) = 〈∇f̃i(Wt),W〉
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Also, the following is due to the homogeneity of ReLU:

f
(t)
i (Wt) = 〈∇fi(Wt),Wt〉 = fi(Wt), f̃

(t)
i (Wt) = 〈∇f̃i(Wt),Wt〉 = f̃i(Wt)

For any i and W, we define the following quantities:

Ri(W) := `(yi〈∇fi(Wi),W〉), Qi(W) := −`′(yi〈∇fi(Wi),W〉)
R̃i(W) := `(ỹi〈∇f̃i(Wi),W〉), Q̃i(W) := −`′(ỹi〈∇f̃i(Wi),W〉)

Again, due to homogeneity of ReLU, we have Ri(Wi) = `(yifi(Wi)), R̃i(Wi) = `(ỹif̃i(Wi)), and Qi(Wi) =
−`′(yifi(Wi)), Q̃i(Wi) = −`′(ỹif̃i(Wi)).

Given an initialization (W0, a), for any 1 ≤ s ≤ m, define ūs := 1√
m
asv̄(ws,0), where v̄ is given by Assumption 1.

Collect ūs into a matrix Ū ∈ Rm×d. It holds that ‖ūs‖2 ≤ 1√
m

and ‖Ū‖F ≤ 1. Furthermore, note that ‖∇fi(Wi)‖F ≤ 1,

‖∇f̃i(Wi)‖F ≤ 1 + ‖δi‖2.

B.2.1. PROOF OF THEOREM 3.1

We first discuss clean label attacks. Recall that for clean label attack, we have ỹi = yi; and for label flip attack, we have
f̃i(Wi) = fi(Wi). Lemma B.1 ensures that with high probability, the margin attained by Ū (with respect to features given
by the gradient of the network at the initialization) is not much smaller than the margin parameter γ in Assumption 1.

Lemma B.1. [Clean label attacks] Under Assumption 1, given any δ ∈ (0, 1) and any ε1 > 0, if m ≥ 2 ln(n/δ)
ε21

, then with
probability at least 1− 3δ, it holds simultaneously for all 1 ≤ i ≤ n that

yif̃
(0)
i (Ū) = yi〈∇f̃i(W0), Ū〉 ≥ γ − ε1 − C0‖δi‖2 −

ε1
2

(1 +B).

where C0 = 1 +
(4
√
d+2
√

ln(mn/δ))

(1−B) .

Proof of lemma B.1. By Assumption 1, given any 1 ≤ i ≤ n,

µ : = Ew∼N (0,Id)

[
yi〈v̄(w), xi〉1[〈w, xi〉] > 0

]
≥ γ

Let S′i,0 :=
{
s
∣∣1[〈ws,0, x̃i〉 > 0]− 1[〈ws,0, xi〉 > 0] 6= 0, 1 ≤ s ≤ m

}
denote the set of hidden nodes at initialization that

change sign due to i-th perturbation. Based on Lemma B.3, we know that with probability at least 1− 2δ/n,

|S′i,0| ≤ m
(
‖δi‖2
‖x̃i‖2

(
4
√
d+ 2

√
ln(mn/δ)

)
+
ε1
2
‖x̃i‖2

)

Thus, we have the following set of inequalities:

∣∣yif̃ (0)
i (Ū)− yif (0)

i (Ū)
∣∣ =

∣∣∣∣ yim
m∑
s=1

as

[
〈v̄(ws,0), xi + δi〉1

[
〈ws,0, xi + δi〉 > 0

]
− 〈v̄(ws,0), xi〉1

[
〈ws,0, xi〉 > 0

]]∣∣∣∣
≤
∣∣∣∣ 1

m

m∑
s=1

as〈v̄(ws,0), δi〉1
[
〈ws,0, xi + δi〉 > 0

]∣∣∣∣+

∣∣∣∣ 1

m

m∑
s=1

as〈v̄(ws,0), xi〉
[
1
[
〈ws,0, xi + δi〉 > 0

]
− 1

[
〈ws,0, xi〉 > 0

]]∣∣∣∣
≤ ‖δi‖+

|S′i,0|
m

max
s
{|〈v̄(ws,0), xi〉|}

≤ ‖δi‖2 +
|S′i,0|
m
‖xi‖2

≤ C0‖δi‖2 +
ε1
2

(1 +B)
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where C0 = 1 +
(4
√
d+2
√

ln(mn/δ))

(1−B) . Since yif
(0)
i (Ū) = 1

m

∑m
s=1 yi〈v̄(ws,0), xi〉1

[
〈ws,0, xi〉 > 0

]
is the empirical mean

of i.i.d. r.v’s supported on [−1,+1] with mean µ, using Hoeffding’s inequality, with probability at least 1− δ/n,

yif
(0)
i (Ū)− γ ≥ yif (0)

i (Ū)− µ ≥ −
√

2 ln(n/δ)

m
≥ −ε1. (4)

Thus, with probability at least 1− 3δ/n,

yif̃
(0)
i (Ū) ≥ yif (0)

i (Ū)− C0‖δi‖2 −
ε1
2

(1 +B)

≥ γ − ε1 − C0‖δi‖2 −
ε1
2

(1 +B).

Applying a union bound finishes the proof.

The following lemma helps later in the proof of Lemma B.3 to bound the size of the set of hidden nodes whose activation
pattern change from initialization.

Lemma B.2. Under Assumption 1, given any δ ∈ (0, 1) and any ε1 > 0, if m ≥ 2 ln(n/δ)
ε21

, then for any ε2 > 0, with
probability at least 1− δ, it holds simultaneously for all 1 ≤ i ≤ n that

1

m

m∑
s=1

1
[
|〈ws,0, x̃i〉| ≤ ε2

]
≤ ε2
‖xi + δi‖2

+
ε1
2
‖xi + δi‖2.

Proof of Lemma B.2. Given any fixed ε2 and 1 ≤ i ≤ n, we have

E
[

1

m

m∑
s=1

1
[
|〈ws,0, x̃i〉| ≤ ε2

]]
= P

(
|〈w, x̃i〉| ≤ ε2

)
≤ 2ε2

‖xi + δi‖22
√

2π
≤ ε2
‖xi + δi‖2

,

where the expectation is with respect to the randomness in initialization, and the inequality holds since 〈w, x̃i〉 is a Gaussian
r.v. with variance ‖xi + δi‖22. By Hoeffding inequality, with probability at least 1− δ/n,

1

m

m∑
s=1

1
[
|〈ws,0, x̃i〉| ≤ ε2

]
≤ E

[
1

m

m∑
s=1

1
[
|〈ws,0, x̃i〉| ≤ ε2

]]
+

√
ln(n/δ)

2m
‖xi + δi‖2 (Hoeffding inequality)

≤ ε2
‖xi + δi‖2

+
ε1
2
‖xi + δi‖2 (ε1 ≥

√
2 ln(n/δ)

m )

Applying a union bound finishes the proof.

In Lemma B.3, we let Si,t denote the set of neurons at time t that change sign (compared to the initialization) for the i-th
poisoned data. We show that the cardinality of Si,t is small as long as the weights stay close to initialization. We also
define the set S′i,0, which corresponds to the set of neurons that change sign at initialization (time t = 0) due to the i-th
perturbations. We prove that with high probability, it holds that |S′i,0| ≤ O(m‖δi‖2).
Lemma B.3. For any 1 ≤ i ≤ n, denote

Si,t :=
{
s
∣∣1[〈ws,t, x̃i〉 > 0]− 1[〈ws,0, x̃i〉 > 0] 6= 0, 1 ≤ s ≤ m

}
,

S′i,0 :=
{
s
∣∣1[〈ws,0, x̃i〉 > 0]− 1[〈ws,0, xi〉 > 0] 6= 0, 1 ≤ s ≤ m

}
If ‖ws,t − ws,0‖2 ≤W2, then the following hold:

|Si,t| ≤ m
(
W2 +

ε1
2
‖x̃i‖2

)
w.p. at least 1− δ for any 0 ≤ δ ≤ 1.

|S′i,0| ≤ m
(
‖δi‖2
‖x̃i‖2

(
4
√
d+ 2

√
ln
m

δ

)
+
ε1
2
‖x̃i‖2

)
w.p. at least 1− 2δ for any 0 ≤ δ ≤ 0.5.
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Proof of Lemma B.3. Note that s ∈ Si,t implies∣∣〈ws,0, x̃i〉∣∣ ≤ ∣∣〈ws,0, x̃i〉∣∣+
∣∣〈ws,t, x̃i〉∣∣ =

∣∣〈ws,t − ws,0, x̃i〉
∣∣ ≤ ‖ws,t − ws,0‖2‖x̃i‖2 ≤W2‖x̃i‖2 (5)

Let denote ε2 = W2‖x̃i‖2. Using Lemma B.2, with probability at least 1− δ, we arrive at the following upperbound on the
size of Si,t:

|Si,t| ≤
∣∣∣∣{s∣∣|〈ws,0, x̃i〉| ≤ ε2}∣∣∣∣ =

m∑
s=1

1
[
|〈ws,0, x̃i〉| ≤ ε2

]
≤ m

(
W2 +

ε1
2
‖x̃i‖2

)

Similarly, s ∈ S′i,0 implies ∣∣〈ws,0, x̃i〉∣∣ ≤ ∣∣〈ws,0, x̃i − xi〉
∣∣ ≤ ‖ws,0‖2‖δi‖2

Since ws,0 ∼ N (0, Id), using Gaussian concentration inequality, for any 1 ≤ s ≤ m, with probability at least 1− δ
m , we

have that

‖ws,0‖2 ≤ 4
√
d+ 2

√
ln
m

δ
. (6)

Let ε2 =
(
4
√
d+ 2

√
ln m

δ

)
‖δi‖2 and use Lemma B.2. Applying a union bound, we conclude that with probability at least

(1− δ)(1− δ) ≥ 1− 2δ, the following holds:

|S′i,0| ≤
∣∣∣∣{s∣∣|〈ws,0, x̃i〉| ≤ ε2}∣∣∣∣ =

m∑
s=1

1
[
|〈ws,0, x̃i〉| ≤ ε2

]
≤ m

(
‖δi‖2
‖x̃i‖2

(
4
√
d+ 2

√
ln
m

δ

)
+
ε1
2
‖x̃i‖2

)
,

Which completes the proof.

Lemma B.4 upperbounds the network output at initialization, under poisoning attacks.

Lemma B.4. Given any δ ∈ (0, 1), if m ≥ 25 ln(2n/δ), then with probability at least 1− δ, it holds simultaneously for all
1 ≤ i ≤ n that

|f̃i(W0)| = |f(x̃i; W0, a)| ≤
√

2 ln(4n/δ)(1 + ‖δi‖2)

Proof of Lemma B.4. The proof closely follows Lemma 2.5 in Ji & Telgarsky (2019). The only difference here is that we
bound the norm of x̃i rather than ‖xi‖, which introduces a factor of 1 + ‖δi‖ on the right hand side. Regardless, here, we
include a proof for completeness. Given 1 ≤ i ≤ n, let hi = σ(W0(xi + δi))/

√
m = σ(W0

(xi+δi)
‖xi+δi‖2 )/(

√
m/‖xi + δi‖2).

Define h(a) =

(∑m
i=1 σ(ai)

2

) 1
2

= ‖σ(a)‖2, where σ(a) is obtained by applying σ coordinate-wise to a. For any

a, b ∈ Rm, by the triangle inequality, we have |f(a)− f(b)| = |‖σ(a)‖2 − ‖σ(b)‖2| ≤ ‖σ(a)− σ(b)‖2 =

(∑m
i=1(ai −

bi)
2

) 1
2

= ‖a− b‖2. As a result, h is a 1-Lipschitz continuous function w.r.t. the `2 norm, and h(·) is 1-subgaussian and the

bound follows by Gaussian concentration. Thus ‖hi‖2 is sub-Gaussian with variance proxy ‖xi+δi‖
2
2

m , and with probability at
least 1− δ/2n over W0,

‖hi‖2 − E[‖hi‖2] ≤
√

2 ln
2n

δ

‖xi + δi‖2√
m

≤
√

2

25
(1 + ‖δi‖2).

On the other hand, by Jensen’s inequality,

E[‖hi‖2] ≤
√
E[‖hi‖22] ≤

√
2

2
‖xi + δi‖2 ≤

√
2

2
+

√
2

2
‖δi‖2.
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As a result, with probability at least 1− δ/2n, it holds that

‖hi‖2 ≤
√

2

25
(1 + ‖δi‖2) +

√
2

2
+

√
2

2
‖δi‖2 ≤ 1 + ‖δi‖2.

Apply a union bound, with probability at least 1− δ/2 over W0, for all 1 ≤ i ≤ n, we have ‖hi‖2 ≤ 1 + ‖δi‖2. Recall that
a is the top layer weights and is uniformly distributed over {−1,+1}. For any W0 such that the above event holds, and for
any 1 ≤ i ≤ n, the r.v. 〈hi, a〉 is sub-Gaussian with variance proxy ‖hi‖22 ≤ (1 + ‖δi‖2)2. By Hoeffding’s inequality, with
probability at least 1− δ/2n over a,

|f(xi + δi; W0, a)| = |〈hi, a〉| ≤
√

2 ln(4n/δ)(1 + ‖δi‖2).

With a union bound, with probability 1−δ/2 over a, for all 1 ≤ i ≤ n, we have |f(xi+δi; W0, a)| ≤
√

2 ln(4n/δ)(1+‖δi‖2).
The probability that the above events all happen is at least (1− δ/2)(1− δ/2) ≥ 1− δ over W0 and a.

Lemma B.5. For any W and any n ≥ 0, using SGD updates with constant step size η ≤ 1
(1+B)2 for 0 ≤ i < n, then

η

(∑
i<n

R̃i(Wi)

)
+ ‖Wn −W‖2F ≤ ‖W0 −W‖2F + 2η

(∑
i<n

R̃i(W)

)

Proof of Lemma B.5. We have

‖Wi+1 −W‖2F = ‖Wi −W‖2F − 2η`′(ỹif̃i(Wi))ỹi〈∇f̃i(Wi),Wi −W〉+ η2

(
`′(ỹif̃i(Wi))

)2

‖∇f̃i(Wi)‖2F

≤ ‖Wi −W‖2F − 2η`′(ỹif̃i(Wi))(yifi(Wi)− yif (i)
i (W)) + η2(1 +B)2

(
`′(ỹif̃i(Wi))

)2

(Homogeneity of ReLU)

≤ ‖Wi −W‖2F − 2ηR̃i(Wi) + 2ηR̃i(W) + η2(1 +B)2

(
`′(ỹif̃i(Wi))

)2

(Convexity of `)

≤ ‖Wi −W‖2F − 2ηR̃i(Wi) + 2ηR̃i(W) + ηR̃i(Wi)

≤ ‖Wi −W‖2F − ηR̃i(Wi) + 2ηR̃i(W)

where the third inequality is because η2(1+B)2

(
`′(ỹif̃i(Wi))

)2

≤ η
(
−`′(ỹif̃i(Wi))

)2

≤ −η`′(ỹif̃i(Wi)) = ηR̃i(Wi).

Telescoping gives the result.

Using Lemma B.1, B.3, B.4, B.5, we prove the following result, which bounds the deviation of iterates from initialization,
as well as the average of the instantaneous loss under poisoning attacks.

Lemma B.6. Under Assumption 1, given any risk target ε ∈ (0, 1), and any δ ∈ (0, 1/5), let

λ :=
ln(4/ε) +

√
2 ln(4n/δ)(1 +B)

3γ/16− C0B
> 0,

M1 := 4096λ2(1 +B)6/γ6,

B1 :=
0.04γ

0.04γ + 4
√
d+ 2

√
ln(mn/δ)

,

where C0 = 1 +
(4
√
d+2
√

ln(mn/δ))

(1−B) . Then for any m ≥ M1, B ≤ B1, and any constant step size η ≤ 1
(1+B)2 , with

probability at least 1− 5δ over the random initialization, if n :=
⌈

2λ2

ηε

⌉
, we have 1) for any 0 ≤ i < n and any 1 ≤ s ≤ m,

‖ws,i − ws,0‖2 ≤ 4λ(1+B)
γ
√
m

holds; 2) 1
n

∑
i<n R̃i(Wi) ≤ ε.



Robust Learning for Data Poisoning Attacks

Proof of Lemma B.6. We follow the proof of Theorem 2.2 in (Ji & Telgarsky, 2019) for data poisoning attack. Let SGD
receive (x̃i, yi) at step i. Let n1 be the first step before n such that there exists some 1 ≤ s ≤ m with ‖ws,n1 − ws,0‖2 >
4λ(1+B)
γ
√
m

. If such a step does not exist, let n1 = n. Let W := W0 + λŪ, first show that with probability at least 1− 5δ, for
any 0 ≤ i < n1,

ỹi〈∇f̃i(Wi),W〉 ≥ ln

(
4

ε

)
, and thus R̃i(W) = `(ỹi〈∇f̃i(Wi),W〉) ≤

ε

4
.

Notice that for clean label attack, ỹi = yi. We will split the left hand side into three terms and control them separately:

yi〈∇f̃i(Wi),W〉 = yi〈∇f̃i(W0),W0〉+ yi〈∇f̃i(Wi)−∇f̃i(W0),W0〉+ λyi〈∇f̃i(Wi), Ū〉 (7)

• The first term of equation (7) can be controlled using Lemma B.4:

|yi〈∇f̃i(W0),W0〉| = |f̃i(W0)| ≤
√

2 ln(4n/δ)(1 + ‖δi‖2) ≤
√

2 ln(4n/δ)(1 +B). (8)

• The second term of equation (7) can be written as

yi〈∇f̃i(Wi)−∇f̃i(W0),W0〉 = yi
1√
m

m∑
s=1

as

(
1[〈ws,i, x̃i〉 > 0]− 1[〈ws,0, x̃i〉]

)
〈ws,0, x̃i〉

Equation (5) and Lemma B.3 ensure that for all s ∈ Si,i, the followings hold:∣∣〈ws,0, x̃i〉∣∣ ≤ ∣∣〈ws,i − ws,0, x̃i〉
∣∣ ≤ ‖ws,i − ws,0‖2‖xi + δi‖2 ≤

4λ(1 +B)

γ
√
m

‖xi + δi‖2

|Si,i| ≤ m
(

4λ(1 +B)

γ
√
m

+
ε1
2

(1 +B)

)

Let ε1 = γ2

8(1+B)3 . We have,

∣∣yi〈∇f̃i(Wi)−∇f̃i(W0),W0〉
∣∣ ≤ 1√

m
· |Si,i| ·

∣∣〈ws,0, x̃i〉∣∣
≤
(

4λ(1 +B)

γ
√
m

+
ε1
2

(1 +B)

)
4λ

γ
(1 +B)‖xi + δi‖2

≤ λγ

2
(9)

where the last step is simply plugging into ε1 = γ2

8(1+B)3 and m ≥ (4096λ2(1 +B)6)/γ6.

• The third term of equation (7) can be bounded using Lemma B.1,

yi〈∇f̃i(Wi), Ū〉 = yi〈∇f̃i(W0), Ū〉+ yi〈∇f̃i(Wi)−∇f̃i(W0), Ū〉

≥ γ − ε1 − C0‖δi‖2 −
ε1
2

(1 +B) + yi〈∇f̃i(Wi)−∇f̃i(W0), Ū〉

In addition,

yi〈∇f̃i(Wi)−∇f̃i(W0), Ū〉 = yi
1

m

m∑
i=1

(
1
[
〈ws,i, x̃i〉 > 0

]
− 1

[
〈ws,0, x̃i〉 > 0

])
〈v̄(ws,0), xi + δi〉

≥ − 1

m
· |Si,i| · ‖xi + δi‖2

≥ − γ2

8(1 +B)

(10)
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Therefore,

yi〈∇f̃i(Wi), Ū〉 ≥ γ −
γ2

8(1 +B)3
− C0‖δi‖2 −

γ2

16(1 +B)2
− γ2

8(1 +B)

≥ 11

16
γ − C0B

(11)

Put equation (8), (9) and (11) into equation (7), we have

ỹi〈∇f̃i(Wi),W〉 = yi〈∇f̃i(Wi),W〉 ≥ −
√

2 ln(4n/δ)(1 +B)− λγ

2
+ λ(

11

16
γ − C0B)

Given λ =
ln(4/ε)+

√
2 ln(4n/δ)(1+B)

3γ/16−C0B
> 0, we have ỹi〈∇f̃i(Wi),W〉 ≥ ln( 4

ε ). Consequently, for any 0 ≤ i ≤ n1, it holds

that R̃i(W) ≤ ε/4.

Next we start proving for any 0 ≤ i ≤ n and any 1 ≤ s ≤ m, ‖ws,i − ws,0‖2 ≤ 4λ(1+B)
γ
√
m

. Let n :=
⌈

2λ2

ηε

⌉
. The next claim

is that n1 ≥ n. We prove it by contradiction. Suppose n1 < n =
⌈

2λ2

ηε

⌉
, we start bounding ‖ws,i − ws,0‖2 using triangle

inequality. For any 1 ≤ s ≤ m, we have

‖ws,i − ws,0‖2 ≤ η
∑
τ<i

∥∥∥∥`′(ỹτ f̃τ (Wτ ))yτ
∂f̃τ
∂ws,τ

∥∥∥∥
2

≤ η
∑
τ<i

|`′(ỹτ f̃τ (Wτ ))| ·
∥∥∥∥ ∂f̃i
∂ws,τ

∥∥∥∥
2

≤ η√
m

∑
τ<i

Q̃τ (Wτ )(1 + ‖δi‖2) (12)

Next we start giving the upper bound of η
∑
i<n1

Q̃i(Wi). To see this, we first use Lemma B.5 to ensure that

‖Wn1
−W‖2F ≤ ‖W0 −W‖2F + 2η

( ∑
i<n1

R̃i(W)

)
≤ λ2 +

ε

2
ηn1 ≤ 2λ2

We further deduct that
√

2λ ≥ ‖Wn1
−W‖F ≥ 〈Wn1

−W, Ū〉 = 〈Wn1
−W0, Ū〉 − 〈W−W0, Ū〉 ≥ 〈Wn1

−W0, Ū〉 − λ

Thus we have 〈Wn1 −W0, Ū〉 ≤ (
√

2 + 1)λ. Moreover, due to equation (11), we arrive at

(
√

2 + 1)λ ≥ 〈Wn1
−W0, Ū〉 = η

∑
i<n1

−`′(yif̃i(Wi))yi〈∇f̃i(Wi), Ū〉 ≥ η
∑
i<n1

Q̃i(Wi)(
11

16
γ − C0B)

Since B ≤ B1 gives us C0B ≤ 0.08γ, we get that:

η
∑
i<n1

Q̃i(Wi) ≤
(
√

2 + 1)λ

11γ/16− C0B
≤ 4λ

γ
.

Plugging the above inequality into (12), we arrive at

‖ws,i − ws,0‖2 ≤
4λ(1 +B)

γ
√
m

which contradicts the definition of n1. Therefore n1 ≥ n.

Now consider n :=
⌈

2λ2

ηε

⌉
. Using Lemma B.5, we can get,
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1

n

∑
i<n

R̃i(Wi) ≤
‖W0 −W‖2F

ηn
+

2

n

∑
i<n

R̃i(W) ≤ ε

2
+
ε

2
= ε. (13)

Recall that Qi(W) := −`′(yi〈∇fi(Wi),W〉) is the derivative of the instantaneous loss Ri(W) := `(yi〈∇fi(Wi),W〉). An
interesting property of Qi(W) is that it upperbounds the zero-one loss, and is upperbounded by Ri(W). Lemma B.7 can be
proved using a martingale concentration argument.

Lemma B.7 (Lemma 4.3 in Ji & Telgarsky (2019)). Define Q(Wi) := E(x,y)∼D
[
− `′(yf(x; Wi, a))

]
. Given any δ ∈ (0, 1),

with probability at least 1− δ, it holds that:

∑
i≤n

Q(Wi) ≤ 4
∑
i≤n

Qi(Wi) + 4 ln

(
1

δ

)
.

Using Lemma B.6 and Lemma B.7, we are able to prove our Theorem 3.1 and Theorem 3.2. We argue that under the
perturbation budgets considered in our theorems, Ri(Wi) is closed to R̃i(Wi). In particular, for Theorem 3.1, the crucial
step is to show the difference Ri(Wi)− R̃i(Wi) can be bounded by O(

√
md‖δi‖2) using the convexity of loss function and

Lipschitzness of the network.

Theorem B.8 (Regime A, Theorem 3.1). Under Assumption 1, for any δ ∈ (0, 1), with probability at least 1 − δ over
random initialization and the training samples, the iterates of SGD with constant step size η = 1

(1+B)2
√
n

satisfy

1

n

∑
i<n

L(Wi) ≤
6264(1 +B)2 ln2(4

√
n) + 12528(1 +B)4 ln(24n/δ)√

nγ2
,

provided that (1+B)8 ln(n/δ)
γ8 + (1+B)6

γ8 ln2(n) . m . (1+B)4 ln4(
√
n/4)+(1+B)8 ln2(n/δ)

γ4
n
S2 , and B ≤

0.04γ

0.04γ+4
√
d+2
√

ln(6mn/δ)
.

Proof of Theorem 3.1. We know that

|f̃i(Wi)− fi(Wi)| =
∣∣∣∣ 1√
m

m∑
s=1

as
(
σ(〈ws,i, x̃i〉)− σ(〈ws,i, xi〉)

)∣∣∣∣
≤ 1√

m

m∑
s=1

∣∣σ(〈ws,i, x̃i〉)− σ(〈ws,i, xi〉)
∣∣

≤ 1√
m

m∑
s=1

∣∣σ(〈ws,i, x̃i〉 − 〈ws,i, xi〉)
∣∣ (σ is 1-Lipschitz)

≤ 1√
m

m∑
s=1

‖ws,i‖‖x̃i − xi‖ (Cauchy-Schwarz)

=
1√
m

m∑
s=1

‖ws,i‖2‖δi‖2

≤
√
m‖δi‖2 max

s
‖ws,i‖2

where the first inequality is due to Jensen’s inequality, and the second inequality holds because the ReLU function is
1-Lipschitz. Since ws,0 ∼ N (0, Id), we know from (6) that ‖ws,0‖2 ≤ 4

√
d+ 2

√
ln(m/δ) holds with probability at least
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1 − δ
m for any 1 ≤ s ≤ m. From Lemma B.6, we have ‖ws,i − ws,0‖2 ≤ 4λ(1+B)

γ
√
m
≤ γ2

16(1+B)2 ≤
√
d holds for any

1 ≤ s ≤ m. Combine them together, we arrive at with probability at least 1− δ
m ,

‖ws,i‖2 ≤ ‖ws,0‖2 + ‖ws,i − ws,0‖2 ≤ (4
√
d+ 2

√
ln(m/δ)) +

4λ(1 +B)

γ
√
m

≤ (5
√
d+ 2

√
ln(m/δ)), (14)

Take a union bound, with probability at least 1− δ, we arrive at

R̃i(Wi)−Ri(Wi) = `(yif̃i(Wi))− `(yifi(Wi))

≥ `′(yifi(Wi))yi(f̃i(Wi)− fi(Wi)) (conveixity of `(·))

≥ −|f̃i(Wi)− fi(Wi)| (−1 ≤ `′(·) ≤ 0)

≥ −(5
√
d+ 2

√
ln(m/δ))

√
m‖δi‖2

Lemma B.6 indicate that n =
⌈

2λ2

ηε

⌉
. Choose η = 1

(1+B)2
√
n

, we are able to represent ε as a function of n:

ε ≤ 2(1 +B)2λ2

√
n

≤ 348(1 +B)2 ln2(4/ε) + 696(1 +B)4 ln(4n/δ)√
nγ2

≤ 348(1 +B)2 ln2(4
√
n) + 696(1 +B)4 ln(4n/δ)√
nγ2

,

where the last inequality follows because n =
⌈

2λ2

ηε

⌉
implies that ε ≥ 1√

n
. Since m ≤ ε2n2

(5
√
d+2
√

ln(m/δ))2S2
=

Θ

(
(1+B)4 ln4(4

√
n)+(1+B)8 ln2(n/δ)
γ4

n
S2

)
, combine equation (13), with probability at least 1− 5δ, we can get

1

n

∑
i<n

Qi(Wi) ≤
1

n

∑
i<n

Ri(Wi) ≤
1

n

∑
i<n

R̃i(Wi) + (5
√
d+ 2

√
ln(m/δ))

S

n

√
m ≤ ε+ ε = 2ε.

Further invoking Lemma B.7 gives that with probability at least 1− 6δ,

1

n

∑
i<n

Q(Wi) ≤
4

n

∑
i<n

Qi(Wi) +
4

n
ln

(
1

δ

)
≤ 9ε

From (Cao & Gu, 2020), we know that L(Wi) = P(x,y)∼D(yf(x; Wi, a) ≤ 0) ≤ 2Q(Wi). Rescale δ by 1/6, we have

1

n

∑
i<n

L(Wi) ≤ 18ε ≤ 6264(1 +B)2 ln2(4
√
n) + 12528(1 +B)4 ln(24n/δ)√

nγ2
.

To make the condition of Lemma B.6 hold, we set the parameters as

M1 = Ω

(
(1 +B)8 ln(n/δ)

γ8
+

(1 +B)6

γ8
ln2(n)

)
.

B.2.2. PROOF OF THEOREM 3.2

Theorem B.9 (Regime B, Theorem 3.2). Under Assumption 1, for any δ ∈ (0, 1), with probability at least 1 − δ over
random initialization and the training samples, the iterates of SGD with constant step size η = 1

(1+B)2 satisfy

1

n

∑
i<n

L(Wi) ≤
6264(1 +B)2 ln2(4n) + 12528(1 +B)4 ln(24n/δ)

nγ2
,

for m = Ω

(
(1+B)8 ln(n/δ)

γ8 + (1+B)6

γ8 ln2(n)

)
, provided that B < min{ 1

10
√
md+
√

8m ln(6m/δ)
, 0.04γ

0.04γ+4
√
d+2
√

ln(mn/δ)
}.
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Now we prove Theorem 3.2. The crucial step here is to show (1−O(
√
md))Ri(Wi) ≤ R̃i(Wi) using the convexity of the

loss function and the fact that Qi(Wi) ≤ Ri(Wi).

Proof of Theorem 3.2. We have

R̃i(Wi)−Ri(Wi) = `(ỹif̃i(Wi))− `(yifi(Wi))

≥ `′(yifi(Wi))yi(f̃i(Wi)− fi(Wi)) (convexity of `(·))

≥ −Qi(Wi) max
1≤i≤n

|f̃i(Wi)− fi(Wi)|

≥ −Ri(Wi) max
1≤i≤n

1√
m

m∑
s=1

‖ws,i‖2B (Qi(Wi) ≤ Ri(Wi))

≥ −1

2
Ri(Wi),

where the last inequality is because of equation (14) and B < 1

2
√
m(5
√
d+
√

2 ln(m/δ))
. Thus, Rt(Wt) ≤ 2R̃t(Wt). Combine

Lemma B.6 equation (13), we can get

1

n

∑
i<n

Ri(Wi) ≤
1

n

∑
i<n

2R̃i(Wi) ≤ 2ε.

Choose n =
⌈

2λ2

ηε

⌉
, η = 1

(1+B)2 , we are able to represent ε as a function of n:

ε ≤ 2(1 +B)2λ2

n
≤ 348(1 +B)2 ln2(4/ε) + 696(1 +B)4 ln(4n/δ)

n
≤ 348(1 +B)2 ln2(4n) + 696(1 +B)4 ln(4n/δ)

n
,

where the last inequality follows because n =
⌈

2λ2

ηε

⌉
implies that ε ≥ 1

n .

With probability at least 1− 5δ,

1

n

∑
i<n

Qi(Wi) ≤
1

n

∑
i<n

Ri(Wi) ≤ 2ε.

The same procedure as the proof of Theorem 3.1, we get

1

n

∑
i<n

L(Wi) ≤ 18ε ≤ 6264(1 +B)2 ln2(4n) + 12528(1 +B)4 ln(24n/δ)

nγ2
.

To make the condition of Lemma B.6 hold, we set the parameters as

M1 = Ω

(
(1 +B)8 ln(n/δ)

γ8
+

(1 +B)6

γ8
ln2(n)

)
.

B.2.3. PROOF OF THEOREM 3.3

We now focus on label flip attacks. At the i-th iterate, we receive a sample (x̃i, ỹi), where x̃i = xi and the label is flipped
with probability β, that is, ỹi = yi with probability 1− β, and ỹi = −yi otherwise. We first introduce some lemmas that
will be used in the proof of the main theorem.
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Lemma B.10. Under Assumption 1, given any risk target ε ∈ (0, 1) and any δ ∈ (0, 1/3), let

λ :=

√
2 ln(4n/δ) + ln(4/ε)

γ/4
,

M :=
4096λ2

γ6
,

β ≤ min{ ε

12
√

2 ln(4n/δ) + λ(12 + 7.5γ)
,

(2−
√

3)ε

3(1 + γ2/8)λ
} =

εγ

(48 + 42γ)
√

2 ln(4n/δ) + (48 + 30γ) ln(4/ε)

Then for anym ≥M and any step size η ≤ 1√
n

, with probability at least 1−3δ over the random initialization, if n := d 3λ2

ηε e,
we have 1) ‖ws,i − ws,0‖2 ≤ 4λ

γ
√
m

for any 0 ≤ i ≤ n and any 1 ≤ s ≤ m; and 2) 1
n

∑
i<n E`(ỹif̃i(Wi)) ≤ ε. The

expectation is with respect to the randomness of label flips.

Proof of Lemma B.10. Let n1 be the first step before n such that there exists some 1 ≤ s ≤ mwith ‖ws,n1
−ws,0‖2 > 4λ

γ
√
m

.
If such a step does not exist, we simply set n1 = n. As before, let W̄ := W0 + λŪ. We first show that with probability at
least 1− 3δ, for any 0 ≤ i < n1, the following holds:

yi〈∇fi(Wi),W〉 ≥ ln

(
4

ε

)
Since in label flip attacks x̃i = xi, it also holds that ∇f̃i(Wi) = ∇fi(Wi). We will split the left hand side into three terms
and control them individually:

yi〈∇fi(Wi),W〉 = yi〈∇fi(W0),W0〉+ yi〈∇fi(Wi)−∇fi(W0),W0〉+ λyi〈∇fi(Wi), Ū〉. (15)

With ε1 = γ2/8, similar to equation (8), (9) and (10) in Lemma B.6 we obtain the following inequalities:

|yi〈∇fi(W0),W0〉| ≤
√

2 ln(4n/δ).

|yi〈∇fi(Wi)−∇fi(W0),W0〉| ≤
λγ

2
.

|yi〈∇fi(Wi)−∇fi(W0), Ū〉| ≤ γ2

8
. (16)

Using inequality (4), with probability at least 1− 2δ, the third term in Equation (15) can be bounded as follows:

yi〈∇fi(Wi), Ū〉 = yi〈∇fi(W0), Ū〉+ yi〈∇fi(Wi)−∇fi(W0), Ū〉
≥ (γ − ε1) + yi〈∇fi(Wi)−∇fi(W0), Ū〉
≥ γ − γ2/4

≥ 3γ

4
.

(17)

Therefore, we get the following lower bound

yi〈∇fi(Wi),W〉 ≥ −
√

2 ln(4n/δ)− λγ

2
+

3λγ

4
= ln(4/ε),

Thus, by definition of the logistic loss, for the λ given in the statement of Lemma B.10, we have that:

`(yif
(i)
i (W)) ≤ ln(1 + ε/4) ≤ ε/4.



Robust Learning for Data Poisoning Attacks

We can similarly give an upper bound on yi〈∇fi(Wi),W〉, by bounding each term in Equation (15):

yi〈∇fi(Wi),W〉 ≤
√

2 ln(4n/δ) +
λγ

2
+ λyi〈∇fi(W0), Ū〉+ λyi〈∇fi(Wi)−∇fi(W0), Ū〉

≤
√

2 ln(4n/δ) +
λγ

2
+ λ|yi|‖∇fi(W0)‖F ‖Ū‖F +

λγ2

8
(Inequality (16))

≤
√

2 ln(4n/δ) + λ(1 +
5γ

8
).

It is easy to see that the logistic loss `(z) = ln(1+e−z) satisfies `(−z)− `(z) = z. We leverage this equality to upperbound
the instantaneous loss in expectation:

E`(ỹif (i)
i (W)) = (1− β) ln(1 + e−yif

(i)
i (W)) + β ln(1 + eyif

(i)
i (W))

= `(yif
(i)
i (W)) + βyi〈∇fi(Wi),W〉

≤ ε

4
+ β

(√
2 ln(4n/δ) + λ(1 +

5γ

8
)

)
≤ ε

4
+

ε

12

≤ ε

3
,

(18)

where the penultimate step follows due to the following assumption on the label flip probabilities:

β ≤ ε

12
√

2 ln(4n/δ) + λ(12 + 7.5γ)
. (19)

Let n :=
⌈

3λ2

ηε

⌉
; we claim that n1 ≥ n. We prove this claim by contradiction. Suppose n1 < n. Using Lemma B.5 with

B = 0 and taking expectation (with respect to the randomness in label flips) on both side, we have:

E‖Wn1 −W‖2F ≤ E‖W0 −W‖2F + 2η

( ∑
i<n1

E`(ỹifi(W))

)
≤ λ2 +

2

3
ηn1ε ≤ 3λ2.

Further, by Jensen’s inequality, we have that E‖Wn1 −W‖F ≤
√

E‖Wn1 −W‖2F ≤
√

3λ. Using ‖Ū‖F ≤ 1 and the

definition of W,
√

3λ ≥ E‖Wn1
−W‖F ≥ 〈EWn1

−W, Ū〉 = E〈Wn1
−W0, Ū〉 − E〈W−W0, Ū〉 ≥ E〈Wn1

−W0, Ū〉 − λ.

The inner product on the right hand side reduces to the following: We have

E〈Wn1 −W0, Ū〉 = −η
∑
i<n1

〈E[`′(ỹifi(Wi))ỹi∇fi(Wi)], Ū〉

= η
∑
i<n1

−(`′(yifi(Wi)) + β)yi〈∇fi(Wi), Ū〉 (20)

where the last equality is due to the following:

E[`′(ỹifi(Wi))ỹi∇fi(Wi)] = (1− β)yi`
′(yifi(Wi))∇fi(Wi)− βyi`′(−yifi(Wi))∇fi(Wi)

= yi`
′(yifi(Wi))∇fi(Wi)− βyi[`′(yifi(Wi)) + `′(−yifi(Wi)]∇fi(Wi)

= (`′(yifi(Wi))yi + β)yi∇fi(Wi) (`′(−z) + `′(z) = −1)

We now rearrange, and lower- and upper-bound the first term in the right hand side of Equation (20):

η
∑
i<n1

−(`′(yifi(Wi)))yi〈∇fi(Wi), Ū〉 = E〈Wn1
−W0, Ū〉+ ηβ

∑
i<n1

yi〈∇fi(Wi), Ū〉 ≤ (
√

3 + 1)λ+ ηn1β(1 +
γ2

8
)

η
∑
i<n1

−`′(yifi(Wi))yi〈∇fi(Wi), Ū〉 ≥ η
∑
i<n1

−(`′(yifi(Wi)))
3γ

4
(Using Equation (17))
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where the first inequality follows due to the following:

yi〈∇fi(Wi), Ū〉 = yi〈∇fi(W0), Ū〉+ yi〈∇fi(Wi)−∇fi(W0), Ū〉 ≤ 1 +
γ2

8
.

Thus, combining the lower- and the upper-bound above, we get the following bound on the negative sum of the derivative of
the instantaneous losses:

η
∑
i<n1

−`′(yifi(Wi)) ≤
4

3γ

(
(
√

3 + 1)λ+ ηn1β(1 +
γ2

8
)

)
≤ 4λ

γ
. (21)

where the last inequality holds due to following assumption on the magnitude of the label flip probabilities:

β ≤ (2−
√

3)ε

3(1 + γ2/8)λ
.

Finally, for any 1 ≤ s ≤ m, the distance of the n1-th iterate from initialization is bounded as:

‖ws,n1
− ws,0‖2 ≤ η

∑
τ<n1

∥∥∥∥`′(ỹτfτ (Wτ ))ỹτ
∂fτ
∂ws,τ

∥∥∥∥
2

≤ η
∑
τ<n1

|`′(ỹτfτ (Wτ ))ỹτ | ·
∥∥∥∥ ∂fi
∂ws,τ

∥∥∥∥
2

=
η√
m

∑
τ<n1

−`′(ỹτfτ (Wτ ))

≤ 4λ

γ
√
m
. (Inequality (21).)

which contradicts the definition of n1. Therefore, we conclude that n1 ≥ n.

Let n :=
⌈

3λ2

ηε

⌉
; using Lemma B.5 with B = 0 and taking expectation on both side, we arrive at

1

n

∑
i<n

E`(ỹif̃i(Wi)) ≤
‖W0 −W‖2F

ηn
+

2

n

∑
i<n

E`(ỹif (i)
i (W))

≤ ε

3
+

2ε

3
= ε.

(22)

which completes the proof.

Now we are ready to prove Theorem 3.3.

Theorem B.11 (Regime C, Theorem 3.3). Under Assumption 1, for any δ ∈ (0, 1), with probability at least 1 − δ over
random initialization and the training samples, the iterates of SGD with constant step size η = 1/

√
n satisfy

1

n

∑
i<n

L(Wi) ≤
1728 ln(12n/δ) + 864 ln2(

√
n/4)

γ2
√
n

,

provided β ≤ 192 ln(12n/δ)+96 ln2(
√
n/4)

((48+42γ)
√

2 ln(16n/δ)+(48+30γ) ln( γ2
√
n

48 ln(12n/δ)+24 ln2(
√
n/4)

))γ
√
n

, and m = Ω

(
ln(n/δ)
γ8 + 1

γ8 ln2(n)

)
.

Proof of Theorem 3.3. For λ given by Lemma B.10, n =
⌈

3λ2

ηε

⌉
, and η = 1√

n
, we have that:

ε ≤ 3λ2

√
n

=
96 ln(4n/δ) + 48 ln2(ε/4)

γ2
√
n

≤ 192 ln(4n/δ) + 96 ln2(
√
n/4)

γ2
√
n

.
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From Lemma B.10, we need

β ≤ εγ

(48 + 42γ)
√

2 ln(4n/δ) + (48 + 30γ) ln(4/ε)

≤ 192 ln(4n/δ) + 96 ln2(
√
n/4)

((48 + 42γ)
√

2 ln(4n/δ) + (48 + 30γ) ln( γ2
√
n

48 ln(4n/δ)+24 ln2(
√
n/4)

))γ
√
n
.

Recall that Q(Wi) := E(x,y)∼D
[
− `′(yf(x; Wi, a))

]
. Following (Cao & Gu, 2020), we upperbound the zero-one loss by the

negative derivative of the logistic loss, i.e. L(Wi) ≤ 2Q(Wi). Using Lemma B.10 with δ re-scaled by 1/3, the following
holds with probability at least 1− δ,

1

n

∑
i<n

L(Wi) =
1

n

∑
i<n

PD(yf(Wi) ≤ 0)

=
1

n

∑
i<n

PD((1− 2β)yf(Wi) ≤ 0)

≤ 2

n

∑
i<n

E(x,y)∼D
[
− `′((1− 2β)ỹf(x; Wi, a))

]
≤ 8

n

∑
i<n

−`′((1− 2β)ỹifi(Wi)) + ε (Lemma B.7.)

=
8

n

∑
i<n

−`′(Eỹifi(Wi)) + ε

≤ 8

n

∑
i<n

`(Eỹifi(Wi)) + ε (−`′(·) ≤ `(·))

≤ 8

n

∑
i<n

E`(ỹifi(Wi)) + ε (Jensen’s inequality.)

≤ 9ε (Lemma B.10)

≤ 1728 ln(12n/δ) + 864 ln2(
√
n/4)

γ2
√
n

.

The width requirement in the statement of the theorem comes from plugging the value of λ in the width lower-bound in

Lemma B.10. In particular, we have that m ≥ 4096λ2

γ6 and λ =

√
2 ln(4n/δ)+ln(4/ε)

γ/4 . Therefore, we get

m ≥ 4096 ∗ 32 ln(4n/δ) + 4096 ∗ 16 ln2(4/ε)

γ8

Finally, plugging in ε ≤ 3λ2

ηn , we get m = Ω

(
ln(n/δ)
γ8 + 1

γ8 ln2(n)

)
.


