
SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

A. Rasterization
The key enabler of our novel pixel loss for sketch drawings
is our differentiable rasterization function fraster. Sequence
based loss functions such as Lstroke are sensitive to the order
of points while in reality, drawings are sequence invariant.
Visually, a square is a square whether it is drawn clockwise
or counterclockwise.

One purpose of the sketch representation is to lower the
complexity of the data space and decode in a more visually
intuitive manner. While it is a necessary departure point, the
sequential generation of drawings is not key to our visual
representation and we would like SketchEmbedNet to be
agnostic to any specific sequence needed to draw the sketch
that is representative of the image input.

To facilitate this, we develop our rasterization function fraster
which renders an input sequence of strokes as a pixel im-
age. However, during training, the RNN outputs a mixture
of Gaussians at each timestep. To convert this to a stroke
sequence, we sample from these Gaussians; this can be re-
peated to reduce the variance of the pixel loss. We then scale
our predicted and ground truth sequences by the properties
of the latter before rasterization.

Stroke sampling. At the end of sequence generation we
have Ns × (6M + 3) parameters, 6 Gaussian mixture pa-
rameters, 3 pen states, Ns times, one for each stroke. To
obtain the actual drawing we sample from the mixture of
Gaussians:[

∆xt
∆yt

]
=

[
µx,t
µy,t

]
+

[
σx,t 0

ρxy,tσy,t σy,t

√
1− ρ2xy,t

]
ε (7)

ε ∼ N (0,12). (8)

After sampling we compute the cumulative sum of every
stroke over the time so that we obtain an absolute position
at each timestep: [

xt
yt

]
=

T∑
τ=0

[
∆xτ
∆yτ

]
. (9)

yt,abs = (xt, yt, s1, s2, s3). (10)

Sketch scaling. Each sketch generated by our model be-
gins at (0,0) and the variance of all strokes in the training
set is normalized to 1. On a fixed canvas the image is both
very small and localized to the top left corner. We remedy
this by computing a scale λ and shift xshift, yshift using labels
y and apply them to both the prediction y′ as well as the
ground truth y. These parameters are computed as:

λ = min
{

W

xmax − xmin
,

H

ymax − ymin

}
, (11)

xshift =
xmax + xmin

2
λ, yshift =

ymax + ymin

2
λ. (12)

xmax, xmin, ymax, ymin are the minimum and maximum val-
ues of xt, yt from the supervised stroke labels and not the
generated strokes. W and H are the width and height in
pixels of our output canvas.

Calculate pixel intensity. Finally we are able to calculate
the pixel pij intensity of every pixel in our H ×W canvas.

pij = σ

[
2− 5× min

t=1...Ns

(
(13)

dist
(
(i, j), (xt−1, yt−1), (xt, yt)

)
+ (1− bs1,t−1e)106

)]
,

(14)

where the distance function is the distance between point
(i, j) from the line segment defined by the absolute points
(xt−1, yt−1) and (xt, yt). We also blow up any distances
where s1,t−1 < 0.5 so as to not render any strokes where
the pen is not touching the paper.

B. Implementation Details
We train our model for 300k iterations with a batch size of
256 for the Quickdraw dataset and 64 for Sketchy due to
memory constraints. The initial learning rate is 1e-3 which
decays by 0.85 every 15k steps. We use the Adam (Kingma
& Ba, 2015) optimizer and clip gradient values at 1.0.
σ = 2.0 is used for the Gaussian blur in Lpixel. For the
curriculum learning schedule, the value of α is set to 0 ini-
tially and increases by 0.05 every 10k training steps with an
empirically obtained cap at αmax = 0.50 for Quickdraw and
αmax = 0.75 for Sketchy.

The ResNet12 (Oreshkin et al., 2018) encoder uses 4 ResNet
blocks with 64, 128, 256, 512 filters respectively and ReLU
activations. The Conv4 backbone has 4 blocks of convolu-
tion, batch norm (Ioffe & Szegedy, 2015), ReLU and max
pool, identical to Vinyals et al. (2016). We select the latent
space to be 256 dimensions, RNN output size to be 1024,
and the hypernetwork embedding size to be 64. We use
a mixture of M = 30 bivariate Gaussians for the mixture
density output of the stroke offset distribution.

C. Data Processing
C.1. Quickdraw

We apply the same data processing methods as in Ha & Eck
(2018) with no additional changes to produce our stroke
labels y. When rasterizing for our input x, we scale, center
the strokes then pad the image with 10% of the resolution
in that dimension rounded to the nearest integer.



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

The following list of classes were used for training: The Eiffel

Tower, The Mona Lisa, aircraft carrier, alarm clock, ambulance, angel, animal migration, ant, ap-

ple, arm, asparagus, banana, barn, baseball, baseball bat, bathtub, beach, bear, bed, bee, belt, bench,

bicycle, binoculars, bird, blueberry, book, boomerang, bottlecap, bread, bridge, broccoli, broom,

bucket, bulldozer, bus, bush, butterfly, cactus, cake, calculator, calendar, camel, camera, camou-

flage, campfire, candle, cannon, car, carrot, castle, cat, ceiling fan, cell phone, cello, chair, chan-

delier, church, circle, clarinet, clock, coffee cup, computer, cookie, couch, cow, crayon, crocodile,

crown, cruise ship, diamond, dishwasher, diving board, dog, dolphin, donut, door, dragon, dresser,

drill, drums, duck, dumbbell, ear, eye, eyeglasses, face, fan, feather, fence, finger, fire hydrant,

fireplace, firetruck, fish, flamingo, flashlight, flip flops, flower, foot, fork, frog, frying pan, garden,

garden hose, giraffe, goatee, grapes, grass, guitar, hamburger, hand, harp, hat, headphones, hedge-

hog, helicopter, helmet, hockey puck, hockey stick, horse, hospital, hot air balloon, hot dog, hour-

glass, house, house plant, ice cream, key, keyboard, knee, knife, ladder, lantern, leaf, leg, light bulb,

lighter, lighthouse, lightning, line, lipstick, lobster, mailbox, map, marker, matches, megaphone,

mermaid, microphone, microwave, monkey, mosquito, motorbike, mountain, mouse, moustache,

mouth, mushroom, nail, necklace, nose, octopus, onion, oven, owl, paint can, paintbrush, palm

tree, parachute, passport, peanut, pear, pencil, penguin, piano, pickup truck, pig, pineapple, pliers,

police car, pool, popsicle, postcard, purse, rabbit, raccoon, radio, rain, rainbow, rake, remote con-

trol, rhinoceros, river, rollerskates, sailboat, sandwich, saxophone, scissors, see saw, shark, sheep,

shoe, shorts, shovel, sink, skull, sleeping bag, smiley face, snail, snake, snowflake, soccer ball,

speedboat, square, star, steak, stereo, stitches, stop sign, strawberry, streetlight, string bean, subma-

rine, sun, swing set, syringe, t-shirt, table, teapot, teddy-bear, tennis racquet, tent, tiger, toe, tooth,

toothpaste, tractor, traffic light, train, triangle, trombone, truck, trumpet, umbrella, underwear, van,

vase, watermelon, wheel, windmill, wine bottle, wine glass, wristwatch, zigzag, blackberry, power

outlet, peas, hot tub, toothbrush, skateboard, cloud, elbow, bat, pond, compass, elephant, hurri-

cane, jail, school bus, skyscraper, tornado, picture frame, lollipop, spoon, saw, cup, roller coaster,

pants, jacket, rifle, yoga, toilet, waterslide, axe, snowman, bracelet, basket, anvil, octagon, wash-

ing machine, tree, television, bowtie, sweater, backpack, zebra, suitcase, stairs, The Great Wall of

China

C.2. Omniglot

We derive our Omniglot tasks from the stroke dataset origi-
nally provided by Lake et al. (2015) rather than the image
analogues. We translate the Omniglot stroke-by-stroke for-
mat to the same one used in Quickdraw. Then we apply the
Ramer-Douglas-Peucker (Douglas & Peucker, 1973) algo-
rithm with an epsilon value of 2 and normalize variance to
1 to produce y. We also rasterize our images in the same
manner as above for our input x.

C.3. Sketchy

Sketchy data is provided as an SVG image composed of
line paths that are either straight lines or Bezier curves. To
generate stroke data we sample sequences of points from
Bezier curves at a high resolution that we then simplify with
RDP, ε = 5. We also eliminate continuous strokes with a
short path length or small displacement to reduce our stroke
length and remove small and noisy strokes. Path length and
displacement are considered with respect to the scale of the
entire sketch.

Once again we normalize stroke variance and rasterize for
our input image in the same manners as above.

The following classes were use for training after removing
overlapping classes with mini-ImageNet: hot-air balloon, violin, tiger,

eyeglasses, mouse, jack-o-lantern, lobster, teddy bear, teapot, helicopter, duck, wading bird, rab-

bit, penguin, sheep, windmill, piano, jellyfish, table, fan, beetle, cabin, scorpion, scissors, banana,

tank, umbrella, crocodilian, volcano, knife, cup, saxophone, pistol, swan, chicken, sword, seal,

alarm clock, rocket, bicycle, owl, squirrel, hermit crab, horse, spoon, cow, hotdog, camel, turtle,

pizza, spider, songbird, rifle, chair, starfish, tree, airplane, bread, bench, harp, seagull, blimp, ap-

ple, geyser, trumpet, frog, lizard, axe, sea turtle, pretzel, snail, butterfly, bear, ray, wine bottle,

, elephant, raccoon, rhinoceros, door, hat, deer, snake, ape, flower, car (sedan), kangaroo, dol-

phin, hamburger, castle, pineapple, saw, zebra, candle, cannon, racket, church, fish, mushroom,

strawberry, window, sailboat, hourglass, cat, shoe, hedgehog, couch, giraffe, hammer, motorcycle,

shark

D. Pixel-loss Weighting αmax Ablation for
Generation Quality

Table 6. Effect of αmax on classification accuracy of generated
sketches.
αmax 0.00 0.25 0.50 0.75 0.95 1.00

Seen 87.76 87.35 81.44 66.80 36.98 04.80
Unseen 84.02 85.32 77.94 63.10 32.94 04.50

(a) Autoregressive generation.

Input Image

Output Sketch

(b) Teacher-forced generation.
Input Image

Teacher-forced Image

Figure 9. Sketches of SketchEmbedNet trained with αmax = 1.0.

We also ablate the impact of pixel-loss weighting parameter
αmax on the classification accuracy of the ResNet models
from Section 4.5. The evaluation process is the same, gen-
erating sketches of examples from classes that were either
seen during training or new to the model and classifying
them in 45-way classification. Results are shown in Table 6.

Results are only shown for the Quickdraw (Jongejan et al.,
2016) setting. Increasing pixel-loss weighting has a minor
impact on classification accuracy at lower values but has
a significant detriment at higher weightings. This is due
to the teacher-forcing training process. As we de-weight



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

the stroke loss, the model no longer learns to handle the
uncertainty of the input position in the space of the 2D
canvas by predicting a distribution that explains the next
ground truth point. It only matches the generation in pixel
space and no longer generates a sensible stroke trajectory on
the canvas. While training under teacher forcing, this is not
an issue as it is fed the ground truth input point every time,
but in autoregressive this generation quickly degrades as
each step no longer produces the a point that is a meaningful
input for the next time step. We can see the significant
difference between generation quality under techer forcing
and autoregressive generation in Figure 9.

E. Latent Space Interpolation
Like in many encoding-decoding models we evaluate the
interpolation of our latent space. We select 4 embeddings
at random and use bi-linear interpolation to produce new
embeddings. Results are in Figures 10a and 10b.

We observe that compositionality is also present in these
interpolations. In the top row of Figure 10a, the model first
plots a third small circle when interpolating from the 2-circle
power outlet and the 3-circle snowman. This small circle
is treated as single component that grows as it transitions
between classes until it’s final size in the far right snowman
drawing.

Some other RNN-based sketching models (Ha & Eck, 2018;
Chen et al., 2017) experience other classes materializing in
interpolations between two unrelated classes. Our model
does not exhibit this same behaviour as our embedding space
is learned from more classes and thus does not contain local
groupings of classes.

F. Intra-alphabet Lake Split
The creators of the Omniglot dataset and one-shot classi-
fication benchmark originally proposed an intra-alphabet
classification task. This task is more challenging than the
common Vinyals split as characters from the same alphabet
may exhibit similar stylistics of sub-components that makes
visual differentiation more difficult. This benchmark has
been less explored by researchers; however, we still present
the performance of our SketchEmbedding model against
evaluations of other few-shot classification models on the
benchmark. Results are shown in Table 7.

Unsurprisingly, our model is outperformed by supervised
models and does fall behind by a more substantial margin
than in the Vinyals split. However, our SketchEmbedding
approach still achieves respectable classification accuracy
overall and greatly outperforms a Conv-VAE baseline.

G. Effect of Random Seeding on Few-Shot
Classification

The training objective for SketchEmbedding is to repro-
duce sketch drawings of the input. This task is unrelated to
few-shot classification may perform variably given differ-
ent initialization. We quantify this variance by training our
model with 15 unique random seeds and evaluating the per-
formance of the latent space on the few-shot classification
tasks.

We disregard the per (evaluation) episode variance of our
model in each test stage and only present the mean accuracy.
We then compute a new confidence interval over random
seeds. Results are presented in Tables 8a, 8b.

H. Few-shot Classification on Omniglot – Full
Results.

The full results (Table 9) for few-shot classification on the
Omniglot (Lake et al., 2015) dataset, including the ResNet12
(Oreshkin et al., 2018) model.

I. Few-shot Classification on mini-ImageNet –
Full Results

The full results (Table 10) for few-shot classification on the
mini-ImageNet dataset, including the ResNet12 (Oreshkin
et al., 2018) model and Conv4 models.



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

(a) Interpolation of classes: power outlet, snowman, jacket, elbow. (b) Interpolation of classes: cloud, power outlet, basket, compass.

Figure 10. Latent space interpolations of randomly selected examples.

Table 7. Few-shot classification results on Omniglot (Lake split).
Omniglot (Lake split) (way, shot)

Algorithm Backbone Train Data (5,1) (5,5) (20,1) (20,5)

Conv-VAE Conv4 Quickdraw 73.12 ± 0.58 88.50 ± 0.39 53.45 ± 0.51 73.62 ± 0.48

SketchEmbedding (Ours) Conv4 Quickdraw 89.16 ± 0.41 97.12 ± 0.18 74.24 ± 0.48 89.87 ± 0.25
SketchEmbedding (Ours) ResNet12 Quickdraw 91.03 ± 0.37 97.91 ± 0.15 77.94 ± 0.44 92.49 ± 0.21

BPL (Supervised) (Lake et al., 2015; 2019) N/A Omniglot - - 96.70 -
ProtoNet (Supervised) (Snell et al., 2017; Lake et al., 2019) Conv4 Omniglot - - 86.30 -
RCN (Supervised) (George et al., 2017; Lake et al., 2019) N/A Omniglot - - 92.70 -
VHE (Supervised) (Hewitt et al., 2018; Lake et al., 2019) N/A Omniglot - - 81.30 -

Table 8. Few-shot classification random seeding experiments.
(a) Omniglot (Conv4).

(way, shot)

Seed (5,1) (5,5) (20,1) (20,5)

1 96.45 99.41 90.84 98.08
2 96.54 99.48 90.82 98.10
3 96.23 99.40 90.05 97.94
4 96.15 99.46 90.50 97.99
5 96.21 99.40 90.54 98.10
6 96.08 99.43 90.20 97.93
7 96.19 99.39 90.70 98.05
8 96.68 99.44 91.11 98.18
9 96.49 99.42 90.64 98.06
10 96.37 99.47 90.50 97.99
11 96.52 99.40 91.13 98.18
12 96.96 99.50 91.67 98.30
13 96.31 99.38 90.57 98.04
14 96.12 99.45 90.54 98.03
15 96.30 99.48 90.62 98.05

Average 96.37 ± 0.12 99.43 ± 0.02 90.69 ± 0.20 98.07 ± 0.05

(b) mini-ImageNet.

(way, shot)

Seed (5,1) (5,5) (5,20) (5,50)

1 37.15 52.99 63.92 68.72
2 39.38 55.20 65.60 69.79
3 39.40 55.47 65.94 70.41
4 40.39 57.15 67.60 71.99
5 38.40 54.08 65.36 70.08
6 37.94 53.98 65.24 69.65
7 38.88 55.71 66.59 71.35
8 37.89 52.65 63.42 68.14
9 38.25 53.86 65.02 69.82

10 39.11 55.29 65.99 69.98
11 37.39 52.88 63.66 68.33
12 38.24 53.91 65.19 69.82
13 38.62 53.84 63.83 68.69
14 37.73 53.61 64.22 68.41
15 39.50 55.23 65.51 70.25

Average 38.55 ± 0.45 54.39 ± 0.63 65.14 ± 0.59 69.69 ± 0.56



SketchEmbedNet: Learning Novel Concepts by Imitating Drawings

Table 9. Full table of few-shot classification results on Omniglot.
Omniglot (way, shot)

Algorithm Backbone Train Data (5,1) (5,5) (20,1) (20,5)

Training from Scratch (Hsu et al., 2019) N/A Omniglot 52.50 ± 0.84 74.78 ± 0.69 24.91 ± 0.33 47.62 ± 0.44

Random CNN Conv4 N/A 67.96 ± 0.44 83.85 ± 0.31 44.39 ± 0.23 60.87 ± 0.22
Conv-VAE Conv4 Omniglot 77.83 ± 0.41 92.91 ± 0.19 62.59 ± 0.24 84.01 ± 0.15
Conv-VAE Conv4 Quickdraw 81.49 ± 0.39 94.09 ± 0.17 66.24 ± 0.23 86.02 ± 0.14
Conv-AE Conv4 Quickdraw 81.54 ± 0.40 93.57 ± 0.19 67.24 ± 0.24 84.15 ± 0.16
β-VAE (β = 250) (Higgins et al., 2017) Conv4 Quickdraw 79.11 ± 0.40 93.23 ± 0.19 63.67 ± 0.24 84.92 ± 0.15
k-NN (Hsu et al., 2019) N/A Omniglot 57.46 ± 1.35 81.16 ± 0.57 39.73 ± 0.38 66.38 ± 0.36
Linear Classifier (Hsu et al., 2019) N/A Omniglot 61.08 ± 1.32 81.82 ± 0.58 43.20 ± 0.69 66.33 ± 0.36
MLP + Dropout (Hsu et al., 2019) N/A Omniglot 51.95 ± 0.82 77.20 ± 0.65 30.65 ± 0.39 58.62 ± 0.41
Cluster Matching (Hsu et al., 2019) N/A Omniglot 54.94 ± 0.85 71.09 ± 0.77 32.19 ± 0.40 45.93 ± 0.40
CACTUs-MAML (Hsu et al., 2019) Conv4 Omniglot 68.84 ± 0.80 87.78 ± 0.50 48.09 ± 0.41 73.36 ± 0.34
CACTUs-ProtoNet (Hsu et al., 2019) Conv4 Omniglot 68.12 ± 0.84 83.58 ± 0.61 47.75 ± 0.43 66.27 ± 0.37
AAL-ProtoNet (Antoniou & Storkey, 2019) Conv4 Omniglot 84.66 ± 0.70 88.41 ± 0.27 68.79 ± 1.03 74.05 ± 0.46
AAL-MAML (Antoniou & Storkey, 2019) Conv4 Omniglot 88.40 ± 0.75 98.00 ± 0.32 70.20 ± 0.86 88.30 ± 1.22
UMTRA (Khodadadeh et al., 2019) Conv4 Omniglot 83.80 95.43 74.25 92.12

SketchEmbedding (Ours) Conv4 Omniglot 94.88 ± 0.22 99.01 ± 0.08 86.18 ± 0.18 96.69 ± 0.07
SketchEmbedding-avg (Ours) Conv4 Quickdraw 96.37 99.43 90.69 98.07
SketchEmbedding-best (Ours) Conv4 Quickdraw 96.96 ± 0.17 99.50 ± 0.06 91.67 ± 0.14 98.30 ± 0.05
SketchEmbedding-avg (Ours) ResNet12 Quickdraw 96.00 99.51 89.88 98.27
SketchEmbedding-best (Ours) ResNet12 Quickdraw 96.61 ± 0.19 99.58 ± 0.06 91.25 ± 0.15 98.58 ± 0.05

SketchEmbedding(KL)-avg (Ours) Conv4 Quickdraw 96.06 99.40 89.83 97.92
SketchEmbedding(KL)-best (Ours) Conv4 Quickdraw 96.60 ± 0.18 99.46 ± 0.06 90.84 ± 0.15 98.09 ± 0.06

SketchEmbedding (w/ Labels) (Ours) Conv4 Quickdraw 88.52 ± 0.34 96.73 ± 0.13 71.35 ± 0.24 88.16 ± 0.14

MAML (Supervised) (Finn et al., 2017) Conv4 Omniglot 94.46 ± 0.35 98.83 ± 0.12 84.60 ± 0.32 96.29 ± 0.13
ProtoNet (Supervised) (Snell et al., 2017) Conv4 Omniglot 98.35 ± 0.22 99.58 ± 0.09 95.31 ± 0.18 98.81 ± 0.07

* Stroke data used for training

Table 10. Full table of few-shot classification results on mini-ImageNet.
mini-ImageNet (way, shot)

Algorithm Backbone Train Data (5,1) (5,5) (5,20) (5,50)

Training from Scratch (Hsu et al., 2019) N/A mini-ImageNet 27.59 ± 0.59 38.48 ± 0.66 51.53 ± 0.72 59.63 ± 0.74

UMTRA (Khodadadeh et al., 2019) Conv4 mini-ImageNet 39.93 50.73 61.11 67.15
CACTUs-MAML (Hsu et al., 2019) Conv4 mini-ImageNet 39.90 ± 0.74 53.97 ± 0.70 63.84 ± 0.70 69.64 ± 0.63
CACTUs-ProtoNet (Hsu et al., 2019) Conv4 mini-ImageNet 39.18 ± 0.71 53.36 ± 0.70 61.54 ± 0.68 63.55 ± 0.64
AAL-ProtoNet (Antoniou & Storkey, 2019) Conv4 mini-ImageNet 37.67 ± 0.39 40.29 ± 0.68 - -
AAL-MAML (Antoniou & Storkey, 2019) Conv4 mini-ImageNet 34.57 ± 0.74 49.18 ± 0.47 - -
Random CNN Conv4 N/A 26.85 ± 0.31 33.37 ± 0.32 38.51 ± 0.28 41.41 ± 0.28
Conv-VAE Conv4 mini-ImageNet 23.30 ± 0.21 26.22 ± 0.20 29.93 ± 0.21 32.57 ± 0.20
Conv-VAE Conv4 Sketchy 23.27 ± 0.18 26.28 ± 0.19 30.41 ± 0.19 33.97 ± 0.19
Random CNN ResNet12 N/A 28.59 ± 0.34 35.91 ± 0.34 41.31 ± 0.33 44.07 ± 0.31
Conv-VAE ResNet12 mini-ImageNet 23.82 ± 0.23 28.16 ± 0.25 33.64 ± 0.27 37.81 ± 0.27
Conv-VAE ResNet12 Sketchy 24.61 ± 0.23 28.85 ± 0.23 35.72 ± 0.27 40.44 ± 0.28

SketchEmbedding-avg (ours) Conv4 Sketchy* 37.01 51.49 61.41 65.75
SketchEmbedding-best (ours) Conv4 Sketchy* 38.61 ± 0.42 53.82 ± 0.41 63.34 ± 0.35 67.22 ± 0.32
SketchEmbedding-avg (ours) ResNet12 Sketchy* 38.55 54.39 65.14 69.70
SketchEmbedding-best (ours) ResNet12 Sketchy* 40.39 ± 0.44 57.15 ± 0.38 67.60 ± 0.33 71.99 ± 0.3

MAML (supervised) (Finn et al., 2017) Conv4 mini-ImageNet 46.81 ± 0.77 62.13 ± 0.72 71.03 ± 0.69 75.54 ± 0.62
ProtoNet (supervised) (Snell et al., 2017) Conv4 mini-ImageNet 46.56 ± 0.76 62.29 ± 0.71 70.05 ± 0.65 72.04 ± 0.60

* Stroke data used for training


