
Supplementary materials for
An Exact Solver for the Weston-Watkins SVM Subproblem

Contents
A.1 Regarding offsets . 11
A.2 Proof of Proposition 3.2 . 11
A.3 Proof of Proposition 3.5 . 13
A.4 Global linear convergence . 14
A.5 Proof of Theorem 3.4 . 18
A.6 Experiments . 29
A.7 Code availability . 31

A.1. Regarding offsets

In this section, we review the literature on SVMs in particular with regard to offsets.

For binary kernel SVMs, Steinwart et al. (2011) demonstrates that kernel SVMs without offset achieve comparable classi-
fication accuracy as kernel SVMs with offset. Furthermore, they propose algorithms that solve kernel SVMs without offset
that are significantly faster than solvers for kernel SVMs with offset.

For binary linear SVMs, Hsieh et al. (2008) introduced coordinate descent for the dual problem associated to linear SVMs
without offsets, or with the bias term included in the w term. Chiu et al. (2020) studied whether the method of Hsieh
et al. (2008) can be extended to allow offsets, but found evidence that the answer is negative. For multiclass linear SVMs,
Keerthi et al. (2008) studied block coordinate descent for the CS-SVM and WW-SVM, both without offsets. We are not
aware of a multiclass analogue to Chiu et al. (2020) although the situation should be similar.

The previous paragraph discussed coordinate descent in relation to the offset. Including the offset presents challenges to
primal methods as well. In Section 6 of Shalev-Shwartz et al. (2011), the authors argue that including an unregularized
offset term in the primal objective leads to slower convergence guarantee. Furthermore, Shalev-Shwartz et al. (2011)
observed that including an unregularized offset did not significantly change the classification accuracy.

The original Crammer-Singer (CS) SVM was proposed without offsets (Crammer & Singer, 2001). In Section VI of (Hsu
& Lin, 2002), the authors show the CS-SVM with offsets do not perform better than CS-SVM without offsets. Furthermore,
CS-SVM with offsets requires twice as many iterations to converge than without.

A.2. Proof of Proposition 3.2

Below, let i ∈ [n] be arbitrary. First, we note that −π′ =

[
−1′
Ik−1

]
and so

π′βi =

[
−1′βi
βi

]
. (14)

Now, let j ∈ [k], we have by (3) that
[αi]j = [−σyiπ′βi]j = [−π′βi]σyi (j). (15)

Note that if j 6= yi, then σyi(j) 6= 1 and so [αi]j = [−π′βi]σyi (j) = [βi]σyi (j)−1 ∈ [0, C]. On the other hand, if j = yi,
then σyi(yi) = 1 and [αi]yi = [−π′βi]1 = −1′βi = −

∑
t∈[k−1][βi]t = −

∑
t∈[k]:t 6=yi [βi]σyi (t)−1 = −

∑
t∈[k]:t6=yi [αi]t.

Thus, α ∈ F . This proves that Ψ(G) ⊆ F .

Weston-Watkins SVM subproblem

Next, let us define another map Ξ : F → R(k−1)×n as follows: For each α ∈ F , define β := Ξ(α) block-wise by

βi := proj2:k(σyiαi) ∈ Rk−1

where
proj2:k =

[
0 Ik−1

]
∈ R(k−1)×k.

By construction, we have for each j ∈ [k − 1] that [βi]j = [σyiαi]j+1 = [σyiαi]j+1 = [αi]σyi (j+1) Since j + 1 6= 1 for
any j ∈ [k − 1], we have that σyi(j + 1) 6= yi for any j ∈ [k − 1]. Thus, [βi]j = [αi]σyi (j+1) ∈ [0, C]. This proves that
Ξ(F) ⊆ G.

Next, we prove that for all α ∈ F and β ∈ G, we have Ξ(Ψ(β)) = β and Ψ(Ξ(α)) = α.

By construction, the i-th block of Ξ(Ψ(β)) is given by

proj2:k(σyi(−σyiπ′βi)) = −proj2:k(σyiσyiπ
′βi)

= −proj2:k(π′βi)

= −
[
0 Ik−1

] [1′

−Ik−1

]
βi

= Ik−1βi = βi.

For the second equality, we used the fact that σ2
y = I for all y ∈ [k]. Thus, Ξ(Ψ(β)) = β.

Next, note that the i-th block of Ψ(Ξ(α)) is, by construciton,

− σyiπ
′proj2:k(σyiαi) = −σyiπ′

[
0 Ik−1

]
σyiαi = −σyi

[
0 π′

]
σyiαi (16)

Recall that π′ =

[
1′

−Ik−1

]
and so

[
0 π′

]
=

[
0 1′

0 −Ik−1

]
. Therefore,

[[
0 π′

]
σyiαi

]
1

=

k∑
j=2

[σyiαi] =
∑

j∈[k]:j 6=yi

[αi]j = −[αi]yi = −[σyiαi]1

and, for j = 2, . . . , k, [[
0 π′

]
σyiαi

]
j

= −[σyiαi]j .

Hence, we have just shown that
[
0 π′

]
σyiαi = −σyiαi. Continuing from (16), we have

−σyiπ′proj2:k(σyiαi) = −σyi(−σyiαi) = σyiσyiαi = αi.

This proves that Ψ(Ξ(α)) = α. Thus, we have shown that Ψ and Ξ are inverses of one another. This proves that Ψ is a
bijection.

Finally, we prove that
f(Ψ(β)) = g(β).

Recall that
f(α) :=

1

2

∑
i,s∈[n]

x′sxiα
′
iαs −

∑
i∈[k]

∑
j∈[k]:
j 6=yi

αij

Thus,
α′iαs = (−σyiπ′βi)′(−σysπ′βs) = β′iπσyiσ

′
ysπ
′βs

On the other hand, (3) implies that σyiαi = −π′βi. Hence∑
j∈[k]\{yi}

αij =
∑

j∈[k]:j 6=1

[αi]σyi (j) =
∑

j∈[k]:j 6=1

[σyiαi]j =
∑

j∈[k]:j 6=1

[−π′βi]j =
∑

j∈[k−1]

[βi]j = 1′βi.

Thus,

f(α) :=
1

2

∑
i,s∈[n]

x′sxiα
′
iαs −

∑
i∈[k]

∑
j∈[k]:
j 6=yi

αij =
1

2

∑
i,s∈[n]

x′sxiβ
′
iπσyiσ

′
ysπ
′βs −

∑
i∈[k]

1′βi = g(β)

as desired. Finally, we note that σy = σ′y for all y ∈ [k]. This concludes the proof of Proposition 3.2.

Weston-Watkins SVM subproblem

A.3. Proof of Proposition 3.5

We prove the following lemma which essentially unpacks the succinct Proposition 3.5:

Lemma A.1. Recall the situation of Corollary 3.3: Let β ∈ G and i ∈ [n]. Let α = Ψ(β). Consider

min
β̂∈G

g(β̂) such that β̂s = βs, ∀s ∈ [n] \ {i}. (17)

Let w be as in (1), i.e., w = −
∑
i∈[n] xiα

′
i. Then a solution to (17) is given by [β1, . . . , βi−1, β̃i, βi+1, . . . , βn] where β̃i

is a minimizer of

min
β̂i∈Rk−1

1

2
β̂′iΘβ̂i − β̂′i

(
(1− πσyiw

′xi)/‖xi‖22 + Θβi
)

such that 0 ≤ β̂i ≤ C.

Furthermore, the above optimization has a unique minimizer which is equal to the minimizer of (4) where

v := (1− ρyiπw′xi + Θβi‖xi‖22)/‖xi‖22

and w is as in (1).

Proof. First, we prove a simple identity:

ππ′ =
[
1 −Ik−1

] [1′

−Ik−1

]
= I + O = Θ. (18)

Next, recall that by definition, we have

g(β) :=

1

2

∑
s,t∈[n]

x′sxtβ
′
tπσytσysπ

′βs

−
∑
s∈[n]

1′βs

 .

Let us group the terms of g(β) that depends on βi:

g(β) =
1

2
x′ixiβ

′
iπσyiσyiπ

′βi

+
1

2

∑
s∈[n]:s6=i

x′sxiβ
′
iπσyiσysπ

′βs

+
1

2

∑
t∈[n]:t6=i

x′ixtβ
′
tπσytσyiπ

′βi

+
1

2

∑
s,t∈[n]

x′sxtβ
′
tπσytσysπ

′βs −
∑
s∈[n]

1′βs

=
1

2
x′ixiβ

′
iΘβi ∵ σ2

yi = I and (18)

+
∑

s∈[n]:s6=i

x′sxiβ
′
iπσyiσysπ

′βs

− 1′βi

+
1

2

∑
s,t∈[n]

x′sxtβ
′
tπσytσysπ

′βs −
∑

s∈[n]:s6=i

1′βs︸ ︷︷ ︸
=:Ci

where Ci is a scalar quantity which does not depend on βi. Thus, plugging in β̂, we have

g(β̂) =
1

2
‖xi‖22β̂′iΘβ̂i +

∑
s∈[n]:s6=i

x′sxiβ̂
′
iπσyiσysπ

′βs − 1′β̂i + Ci. (19)

Weston-Watkins SVM subproblem

Furthermore, ∑
s∈[n]:s 6=i

x′sxiβ̂
′
iπσyiσysπ

′βs =
∑

s∈[n]:s6=i

β̂′iπσyiσysπ
′βsx

′
sxi

= β̂′iπσyi

 ∑
s∈[n]:s6=i

σysπ
′βsx

′
s

xi

= β̂′iπσyi

−σyiπ′βix′i +
∑
s∈[n]

σysπ
′βsx

′
s

xi

= β̂′iπσyi

−σyiπ′βix′i −∑
s∈[n]

αsx
′
s

xi ∵ (3)

= β̂′iπσyi (−σyiπ′βix′i + w′)xi ∵ (1)

= β̂′i
(
−πσyiσyiπ′βi‖xi‖22 + πσyiw

′xi
)

= β̂′i
(
πσyiw

′xi − ππ′βi‖xi‖22
)

∵ σ2
yi = I

= β̂′i
(
πσyiw

′xi −Θβi‖xi‖22
)

∵ (18)

Therefore, we have

g(β̂) =
1

2
‖xi‖22β̂′iΘβ̂i + β̂′i

(
πσyiw

′xi −Θβi‖xi‖22 − 1
)

+ Ci

=
1

2
‖xi‖22β̂′iΘβ̂i − β̂′i

(
1− πσyiw

′xi + Θβi‖xi‖22
)

+ Ci

Thus, (17) is equivalent to

min
β̂∈G

1

2
‖xi‖22β̂′iΘβ̂i − β̂′i

(
1− πσyiw

′xi + Θβi‖xi‖22
)

+ Ci

s.t. β̂s = βs, ∀s ∈ [n] \ {i}.

Dropping the constant Ci and dividing through by ‖xi‖22 does not change the minimizers. Hence, (17) has the same set of
minimizers as

min
β̂∈G

1

2
β̂′iΘβ̂i − β̂′i

(
(1− πσyiw

′xi)/‖xi‖22 + Θβi
)

s.t. β̂s = βs, ∀s ∈ [n] \ {i}.

Due to the equality constraints, the only free variable is β̂i. Note that the above optimization, when restricted to β̂i, is
equivalent to the optimization (4) with

v := (1− πσyiw
′xi)/‖xi‖22 + Θβi

and w is as in (1). The uniqueness of the minimizer is guaranteed by Theorem 3.4.

A.4. Global linear convergence

Wang & Lin (2014) established the global linear convergence of the so-called feasible descent method when applied to
a certain class of problems. As an application, they prove global linear convergence for coordinate descent for solving
the dual problem of the binary SVM with the hinge loss. Wang & Lin (2014) considered optimization problems of the
following form:

min
x∈X

f(x) := g(Ex) + b′x (20)

Weston-Watkins SVM subproblem

where f : Rn → R is a function such that ∇f is Lipschitz continuous, X ⊆ Rn is a polyhedral set, arg minx∈X f(x) is
nonempty, g : Rm → R is a strongly convex function such that ∇g is Lipschitz continuous, and E ∈ Rm×n and b ∈ Rn

are fixed matrix and vector, respectively.

Below, let PX : Rn → X denote the orthogonal projection on X .

Definition A.2. In the context of (20), an iterative algorithm that produces a sequence {x0, x1, x2, . . . } ⊆ X is a feasible
descent method if there exists a sequence {ε0, ε1, ε2, . . . } ⊆ Rn such that for all t ≥ 0

xt+1 = PX
(
xt −∇f(xt) + εt

)
(21)

‖εt‖ ≤ B‖xt − xt+1‖ (22)

f(xt)− f(xt+1) ≥ Γ‖xt − xt+1‖2 (23)

where B,Γ > 0.

One of the main result of (Wang & Lin, 2014) is

Theorem A.3 (Theorem 8 from (Wang & Lin, 2014)). Suppose an optimization problem minx∈X f(x) is of the form (20)
and {x0, x1, x2, . . . } ⊆ X is a sequence generated by a feasible descent method. Let f∗ := minx∈X f(x). Then there
exists ∆ ∈ (0, 1) such that

f(xt+1)− f∗ ≤ ∆(f(xt)− f∗), ∀t ≥ 0.

Now, we begin verifying that the WW-SVM dual optimization and the BCD algorithm for WW-SVM satisfies the require-
ments of Theorem A.3.

Given β ∈ R(k−1)×n, define its vectorization

vec(β) =

β1

...
βn

 ∈ R(k−1)n.

Define the matrix Pis = πσyix
′
ixsσysπ

′ ∈ R(k−1)×(k−1), and Q ∈ R(k−1)n×(k−1)n by

Q =

P11 P12 · · · P1n

P21 P22 · · · P2n

...
...

. . .
...

Pn1 Pn2 · · · Pnn

 .
Let

E =

x1σy1π

′

x2σy2π
′

...
xnσynπ

′

 .
We observe that Q = E′E. Thus, Q is symmetric and positive semi-definite. Let ‖Q‖op be the operator norm of Q.

Proposition A.4. The optimization (D2) is of the form (20). More precisely, the optimization (D2) can be expressed as

min
β∈G

g(β) = ϕ(Evec(β))− 1′vec(β) (24)

where the feasible set G is a nonempty polyhedral set (i.e., defined by a system of linear inequalities, hence convex), ϕ is
strongly convex, and ∇g is Lipschitz continuous with Lipschitz constant L := ‖Q‖op. Furthermore, (24) has at least one
minimizer.

Weston-Watkins SVM subproblem

Proof. Observe

g(β) =
1

2

∑
i,s∈[n]

x′sxiβ
′
iπσyiσysπ

′βs −
∑
i∈[n]

1′βi

=
1

2
vec(β)′Qvec(β)− 1′vec(β)

=
1

2
(Evec(β))′(Evec(β))− 1′vec(β)

= ϕ(Evec(β))− 1′vec(β)

where ϕ(•) = 1
2‖ • ‖

2. Note that vec(∇g(β)) = Qvec(β) − 1. Hence, the Lipschitz constant of g is ‖Q‖op. For the
“Furthermore” part, note that the above calculation shows that (24) is a quadratic program where the second order term is
positive semi-definite and the constraint set is convex. Hence, (24) has at least one minimizer.

Let B = [0, C]k−1. Let βt be β at the end of the t-iteration of the outer loop of Algorithm 1. Define

βt,i := [βt+1
1 , · · · , βt+1

i , βti+1, · · · , βtn].

By construction, we have
βt+1
i = arg min

β∈B
g
(
[βt+1

1 , · · · , βt+1
i−1 , β, β

t
i+1, · · · , βtn]

)
(25)

For each i = 1, . . . , n, let

∇ig(β) =

[
∂g

∂β1i
(β),

∂g

∂β2i
(β), . . . ,

∂g

∂β(k−1)i
(β)

]′
.

By Lemma 24 (Wang & Lin, 2014), we have

βt+1
i = PB(βt+1

i −∇ig(βt,i))

where PB denotes orthogonal projection on to B. Now, define εt ∈ R(k−1)×n such that

εti = βt+1
i − βti −∇ig(βt,i) +∇ig(βt).

Proposition A.5. The BCD algorithm for the WW-SVM is a feasible descent method. More precisely, the sequence
{β0,β1, . . . } satisfies the following conditions:

βt+1 = PG
(
βt −∇g(βt) + εt

)
(26)

‖εt‖ ≤ (1 +
√
nL)‖βt − βt+1‖ (27)

g(βt)− g(βt+1) ≥ Γ‖βt − βt+1‖2 (28)

where L is as in Proposition A.4, Γ := mini∈[n]
‖xi‖2

2 , G is the feasible set of (D2), and PG is the orthogonal projection
onto G.

The proof of Proposition A.5 essentially generalizes Proposition 3.4 of (Luo & Tseng, 1993) to the higher dimensional
setting:

Proof. Recall that G = B×n := B × · · · ×B. Note that the i-th block of βt −∇g(βt) + εt is

βti −∇ig(βt) + εti = βti −∇ig(βt) + (βt+1
i − βti −∇ig(βt,i) +∇ig(βt)) = βt+1

i −∇ig(βt,i).

Thus, the i-th block of PG(βt −∇g(βt) + εt) is

PB(βt+1
i −∇ig(βt,i)) = βt+1

i .

This is precisely the identity (26).

Weston-Watkins SVM subproblem

Next, we have

‖εti‖ ≤ ‖βt+1
i − βti‖+ ‖∇ig(βt,i)−∇ig(βt)‖

≤ ‖βt+1
i − βti‖+ L‖βt,i − βt‖

≤ ‖βt+1
i − βti‖+ L‖βt+1 − βt‖.

From this, we get that

‖εt‖ =

√√√√ n∑
i=1

‖εti‖2

≤

√√√√ n∑
i=1

(‖βt+1
i − βti‖+ L‖βt+1 − βt‖)2

≤

√√√√ n∑
i=1

‖βt+1
i − βti‖2 +

√√√√ n∑
i=1

L2‖βt+1 − βt‖2

= ‖βt+1 − βt‖+
√
nL‖βt+1 − βt‖

= (1 +
√
nL)‖βt+1 − βt‖.

Thus, we conclude that ‖εt‖ ≤ (1 +
√
nL)‖βt+1 − βt‖ which is (27).

Finally, we show that
g(βt,i−1)− g(βt,i) +∇ig(βt,i)′(βt+1

i − βti) ≥ Γ‖βt+1
i − βti‖2

where Γ := mini∈[n]
‖xi‖2

2 .

Lemma A.6. Let β1, · · · , βi−1, β, βi+1, · · · , βn ∈ Rk−1 be arbitrary. Then there exist v ∈ Rk−1 and C ∈ R which
depend only on β1, . . . , βi−1, βi+1, . . . , βn, but not on β, such that

g ([β1, · · · , βi−1, β, βi+1, · · · , βn]) =
1

2
‖xi‖2β′β − v′β − C.

In particular, we have
∇ig ([β1, · · · , βi−1, β, βi+1, · · · , βn]) = ‖xi‖2β − v.

Proof. The result follows immediately from the identity (19).

Lemma A.7. Let β1, · · · , βi−1, β, η, βi+1, · · · , βn ∈ Rk−1 be arbitrary. Then we have

g ([β1, · · · , βi−1, η, βi+1, · · · , βn])− g ([β1, · · · , βi−1, β, βi+1, · · · , βn])

+∇ig ([β1, · · · , βi−1, β, βi+1, · · · , βn])
′
(β − η)

=
‖xi‖2

2
‖η − β‖2

Proof. Let v, C be as in Lemma A.6. We have

g ([β1, · · · , βi−1, η, βi+1, · · · , βn])− g ([β1, · · · , βi−1, β, βi+1, · · · , βn])

=
‖xi‖2

2
‖η‖2 − v′η − ‖xi‖

2

2
‖β‖2 + v′β

=
‖xi‖2

2
(‖η‖2 − ‖β‖2) + v′(β − η)

and

Weston-Watkins SVM subproblem

∇ig ([β1, · · · , βi−1, β, βi+1, · · · , βn])
′
(β − η) = (‖xi‖2β − v)′(β − η) = ‖xi‖2(‖β‖2 − β′η)− v′(β − η).

Thus,

g ([β1, · · · , βi−1, η, βi+1, · · · , βn])− g ([β1, · · · , βi−1, β, βi+1, · · · , βn])

+∇ig ([β1, · · · , βi−1, β, βi+1, · · · , βn])
′
(β − η)

=
‖xi‖2

2
(‖η‖2 − ‖β‖2) + v′(β − η) + ‖xi‖2(‖β‖2 − β′η)− v′(β − η)

=
‖xi‖2

2
(‖η‖2 − ‖β‖2) + ‖xi‖2(‖β‖2 − β′η)

= ‖xi‖2
(

1

2
(‖η‖2 − ‖β‖2) + (‖β‖2 − β′η)

)
= ‖xi‖2

(
1

2
(‖η‖2 + ‖β‖2)− β′η

)
=
‖xi‖2

2
‖η − β‖2

as desired.

Applying Lemma A.7, we have

g(βt,i−1)− g(βt,i) +∇ig(βt,i)′(βt+1
i − βti) ≥

‖xi‖2

2
‖βt+1

i − βti‖2.

Since (25) is true, we have by Lemma 24 of (Wang & Lin, 2014) that

∇ig(βt,i)′(βti − βt+1
i) ≥ 0

Equivalently, ∇ig(βt,i)′(βt+1
i − βti) ≤ 0. Thus, we deduce that

g(βt,i−1)− g(βt,i) ≥ ‖xi‖
2

2
‖βt+1

i − βti‖2 ≥ Γ‖βt+1
i − βti‖2

Summing the above identity over i ∈ [n], we have

g(βt,0)− g(βt,n) =

n∑
i=1

g(βt,i−1)− g(βt,i) ≥ Γ

n∑
i=1

‖βt+1
i − βti‖2 = Γ‖βt+1 − βt‖2

Since (βt,0) = βt and βt,n = βt+1, we conclude that g(βt)− g(βt+1) ≥ Γ‖βt+1 − βt‖2.

To conclude the proof of Theorem 3.6, we note that Proposition A.5 and Proposition A.4 together imply that the require-
ments of Theorem 8 from (Wang & Lin, 2014) (restated as Theorem A.3 here) are satisfied for the BCD algorithm for
WW-SVM. Hence, we are done.

A.5. Proof of Theorem 3.4

The goal of this section is to prove Theorem 3.4. The time complexity analysis has been carried out at the end of Section 4
of the main article. Below, we focus on the part of the theorem on the correctness of the output. Throughout this section,
k ≥ 2, C > 0 and v ∈ Rk−1 are assumed to be fixed. Additional variables used are summarized in Table 2.

Weston-Watkins SVM subproblem

Table 2. Variables used in Section A.5

VARIABLE(S) DEFINED IN NOTA BENE

t ALGORITHM 2 ITERATION INDEX

`, vals, δt, γt SUBROUTINE 3 t ∈ [`] IS AN ITERATION INDEX

up, dn SUBROUTINE 3 SYMBOLS

b̃, γ̃, vmax LEMMA A.9

〈1〉, . . . , 〈k − 1〉 ALGORITHM 2

ntm, n
t
u, S

t, γ̂t, b̂t ALGORITHM 2 t ∈ [`] IS AN ITERATION INDEX

TkU, Iγu , I
γ
m, n

γ
u , n

γ
m DEFINITION A.10 γ ∈ R IS A REAL NUMBER

S(nm,nu) , γ̂(nm,nu) , b̂(nm,nu) DEFINITION A.13 (nm, nu) ∈ TkU2

vals+ DEFINITION A.18

u(j), d(j) DEFINITION A.19 j ∈ [k − 1] IS AN INTEGER

crit1 , crit2 DEFINITION A.20

KKT cond() SUBROUTINE 5

A.5.1. THE CLIPPING MAP

First, we recall the clipping map:
Definition A.8. The clipping map clipC : Rk−1 → [0, C]k−1 is the function defined as follows: for w ∈ Rk−1,
[clipC(w)]i := max{0,min{C,wi}}.
Lemma A.9. Let vmax = maxi∈[k−1] vi. The optimization (4) has a unique global minimum b̃ satisfying the following:

1. b̃ = clipC(v − γ̃1) for some γ̃ ∈ R

2. γ̃ =
∑k−1
i=1 b̃i. In particular, γ̃ ≥ 0.

3. If vi ≤ 0, then b̃i = 0. In particular, if vmax ≤ 0, then b̃ = 0.

4. If vmax > 0, then 0 < γ̃ < vmax.

Proof. We first prove part 1. The optimization (4) is a minimization over a convex domain with strictly convex objective,
and hence has a unique global minimum b̃. For each i ∈ [k − 1], let λi, µi ∈ R be the dual variables for the constraints
0 ≥ bi − C and 0 ≥ −bi, respectively. The Lagrangian for the optimization (4) is

L(b, λ, µ) =
1

2
b′(I + O)b− v′b+ (b− C)′λ+ (−b)′µ.

Thus, the stationarity (or gradient vanishing) condition is

0 = ∇bL(b, λ, µ) = (I + O)b− v + λ− µ.

The KKT conditions are as follows:

for all i ∈ [k − 1], the following holds:
[(I + O)b]i + λi − µi = vi stationarity (29)

C ≥ bi ≥ 0 primal feasibility (30)
λi ≥ 0 dual feasibility (31)
µi ≥ 0 " (32)

λi(C − bi) = 0 complementary slackness (33)
µibi = 0 " (34)

Weston-Watkins SVM subproblem

(29) to (34) are satisfied if and only if b = b̃ is the global minimum.

Let γ̃ ∈ R be such that γ̃1 = Ob̃. Note that by definition, part 2 holds. Furthermore, (29) implies

b̃ = v − γ̃1− λ+ µ. (35)

Below, fix some i ∈ [k − 1]. Note that λi or µi cannot both be nonzero. Otherwise, (33) and (34) would imply that
C = b̃i = 0, a contradiction. We claim the following:

1. If vi − γ̃ ∈ [0, C], then λi = µi = 0 and b̃i = vi − γ̃.

2. If vi − γ̃ > C, then b̃i = C.

3. vi − γ̃ < 0, then b̃i = 0.

We prove the first claim. To this end, suppose vi − γ̃ ∈ [0, C]. We will show λi = µi = 0 by contradiction. Suppose
λi > 0. Then we have C = b̃i and µi = 0. Now, (35) implies that C = b̃i = vi − γ̃ − λi. However, we now have
vi − γ̃ − λi ≤ C − λi < C, a contradiction. Thus, λi = 0. Similarly, assuming µi > 0 implies

0 = b̃i = vi − λ+ µi ≥ 0 + µi > 0,

a contradiction. This proves the first claim.

Next, we prove the second claim. Note that

C ≥ b̃i = vi − γ̃ − λi + µi > C − λi + µi =⇒ 0 > −λi + µi ≥ −λi.

In particular, we have λi > 0 which implies C = b̃i by complementary slackness.

Finally, we prove the third claim. Note that

0 ≤ b̃i = vi − γ̃ − λi + µi < −λi + µi ≤ µi

Thus, µi > 0 and so 0 = b̃i by complementary slackness. This proves that b̃ = clipC(v− γ̃1), which concludes the proof
of part 1.

For part 2, note that γ̃ =
∑k−1
i=1 b̃i holds by definition. The “in particular” portion follows immediately from b̃ ≥ 0.

We prove part 3 by contradiction. Suppose there exists i ∈ [k − 1] such that vi ≤ 0 and b̃i > 0. Thus, by (34), we have
µi = 0. By (29), we have bi + γ̃ ≤ bi + γ̃ + λi = vi ≤ 0. Thus, we have −γ̃ ≥ bi > 0, or equivalently, γ̃ < 0.
However, this contradicts part 2. Thus, b̃i = 0 whenever vi ≤ 0. The “ in particular” portion follows immediately from the
observation that vmax ≤ 0 implies that vi ≤ 0 for all i ∈ [k − 1].

For part 4, we first prove that γ̃ < vmax by contradiction. Suppose that γ̃ ≥ vmax. Then we have v− γ̃1 ≤ v−vmax1 ≤ 0.
Thus, by part 1, we have b̃ = clipC(v − γ̃1) = 0. By part 2, we must have that γ̃ =

∑k−1
i=1 b̃i = 0. However,

γ̃ ≥ vmax > 0, which is a contradiction.

Finally, we prove that γ̃ > 0 again by contradiction. Suppose that γ̃ = 0. Then part 2 and the fact that b̃ ≥ 0 implies
that b̃ = 0. However, by part 1, we have b̃ = clipC(v). Now, let i∗ be such that vi∗ = vmax. This implies that
b̃i∗ = clipC(vmax) > 0, a contradiction.

A.5.2. RECOVERING γ̃ FROM DISCRETE DATA

Definition A.10. For γ ∈ R, let bγ := clipC(v − γ1) ∈ Rk−1. Define

Iγu := {i ∈ [k − 1] : bγi = C}
Iγm := {i ∈ [k − 1] : bγi ∈ (0, C)}
nγu := |Iγu |, and nγm := |nγm|.

Let TkU := {0} ∪ [k − 1]. Note that by definition, nγm, n
γ
u ∈ TkU.

Weston-Watkins SVM subproblem

Note that Iγu and Iγm are determined by their cardinalities. This is because

Iγu = {〈1〉, 〈2〉, . . . , 〈nγu〉}
Iγm = {〈nγu + 1〉, 〈nγu + 2〉, . . . , 〈nγu + nγm〉}.

Definition A.11. Define

disc+ := {vi : i ∈ [k − 1], vi > 0} ∪ {vi − C : i ∈ [k − 1], vi − C > 0} ∪ {0}.

Note that disc+ is slightly different from disc as defined in the main text.

Lemma A.12. Let γ′, γ′′ ∈ disc+ be such that γ 6∈ disc+ for all γ ∈ (γ′, γ′′). The functions

(γ′, γ′′) 3 γ 7→ Iγm

(γ′, γ′′) 3 γ 7→ Iγu

are constant.

Proof. We first prove Iλm = Iρm. Let λ, ρ ∈ (γ′, γ′′) be such that λ < ρ. Assume for the sake of contradiction that Iλm 6= Iρm.
Then either 1) i ∈ [k − 1] such that vi − λ ∈ (0, C) but vi − ρ 6∈ (0, C) or 2) i ∈ [k − 1] such that vi − λ 6∈ (0, C) but
vi−ρ ∈ (0, C). This implies that there exists some γ ∈ (λ, ρ) such that vi−γ ∈ {0, C}, or equivalently, γ ∈ {vi, vi−C}.
Hence, γ ∈ disc+, which is a contradiction. Thus, for all λ, ρ ∈ (γ′, γ′′), we have Iλm = Iρm.

Next, we prove Iλu = Iρu . Let λ, ρ ∈ (γ′, γ′′) be such that λ < ρ. Assume for the sake of contradiction that Iλu 6= Iρu . Then
either 1) i ∈ [k − 1] such that vi − λ ≥ C but vi − ρ < C or 2) i ∈ [k − 1] such that vi − λ < C but vi − ρ ≥ C. This
implies that there exists some γ ∈ (λ, ρ) such that vi − γ = C, or equivalently, γ = vi = C. Hence, γ ∈ disc+, which is
a contradiction. Thus, for all λ, ρ ∈ (γ′, γ′′), we have Iλu = Iρu .

Definition A.13. For (nm, nu) ∈ TkU2, define S(nm,nu), γ̂(nm,nu) ∈ R by

S(nm,nu) :=

nu+nm∑
i=nu+1

v〈i〉,

γ̂(nm,nu) :=
(
C · nu + S(nm,nu)

)
/(nm + 1).

Furthermore, define b̂(nm,nu) ∈ Rk−1 such that, for i ∈ [k − 1], the 〈i〉-th entry is

b̂
(nm,nu)
〈i〉 :=

C : i ≤ nu
v〈i〉 − γ(nm,nu) : nu < i ≤ nu + nm

0 : nu + nm < i.

Below, recall ` as defined on Subroutine 3-line 2.

Lemma A.14. Let t ∈ [`]. Let ntm, ntu, and b̂t be as in the for loop of Algorithm 2. Then γ̂(ntm,n
t
u) = γ̂t and b̂(n

t
m,n

t
u) = b̂t.

Proof. It suffices to show that St = S(ntm,n
t
u) where the former is defined as in Algorithm 2 and the latter is defined as in

Definition A.13. In other words, it suffices to show that

St =
∑

j∈[k−1] :ntu<j≤ntu+ntm

v〈j〉. (36)

We prove (36) by induction. The base case t = 0 follows immediately due to the initialization in Algorithm 2-line 4.

Now, suppose that (36) holds for St−1:

St−1 =
∑

j∈[k−1] :nt−1
u <j≤nt−1

u +nt−1
m

v〈j〉. (37)

Weston-Watkins SVM subproblem

Consider the first case that δt = up. Then we have ntu + ntm = nt−1
u + nt−1

m and ntu = nt−1
u + 1. Thus, we have

St = St−1 − v〈nt−1
u 〉 ∵ Subroutine 4-line 3,

=
∑

j∈[k−1] :nt−1
u +1<j≤nt−1

u +nt−1
m

v〈j〉 ∵ (37)

=
∑

j∈[k−1] :ntu<j≤ntu+ntm

v〈j〉

which is exactly the desired identity in (36).

Consider the second case that δt = dn. Then we have ntu + ntm = nt−1
u + nt−1

m + 1 and ntu = nt−1
u . Thus, we have

St = St−1 + v〈ntu+ntm〉 ∵ Subroutine 4-line 6,

=
∑

j∈[k−1] :nt−1
u +1<j≤nt−1

u +nt−1
m +1

v〈j〉 ∵ (37)

=
∑

j∈[k−1] :ntu<j≤ntu+ntm

v〈j〉

which, again, is exactly the desired identity in (36).

Lemma A.15. Let γ̃ be as in Lemma A.9. Then we have

b̃ = b̂(n
γ̃
m,n

γ̃
u) = clipC(v − γ̂(nγ̃m,n

γ̃
u)1).

Proof. It suffices to prove that γ̃ = γ̂(nγ̃m,n
γ̃
u). To this end, let i ∈ [k − 1]. If i ∈ I γ̃m, then b̃i = vi − γ̃. If i ∈ I γ̃u , then

b̃i = C. Otherwise, b̃i = 0. Thus

γ̃ = 1′b̃ = C · nγ̃u + S(nγ̃m,n
γ̃
u) − γ̃ · nγ̃m

Solving for γ̃, we have

γ̃ =
(
C · nγ̃u + S(nγ̃m,n

γ̃
u)
)
/(nγ̃m + 1) = γ̂(nγ̃m,n

γ̃
u),

as desired.

A.5.3. CHECKING THE KKT CONDITIONS

Lemma A.16. Let (nm, nu) ∈ TkU2. To simplify notation, let b := b̂(nm,nu), γ := γ̂(nm,nu). We have Ob = γ1 and for all
i ∈ [k − 1] that

[(I + O)b]〈i〉 =

C + γ : i ≤ nu
v〈i〉 : nu < i ≤ nu + nm

γ : nu + nm < i.

(38)

Furthermore, b satisfies the KKT conditions (29) to (34) if and only if, for all i ∈ [k − 1],

v〈i〉

≥ C + γ : i ≤ nu
∈ [γ,C + γ] : nu < i ≤ nu + nm

≤ γ : nu + nm < i.

(39)

Weston-Watkins SVM subproblem

Proof. First, we prove Ob = γ1 which is equivalent to [Ob]j = γ for all j ∈ [k− 1]. This is a straightforward calculation:

[Ob]j = 1′b =
∑

i∈[k−1]

b〈i〉

=
∑

i∈[k−1] : i≤nu

b〈i〉 +
∑

i∈[k−1] :nu<i≤nu+nm

b〈i〉 +
∑

i∈[k−1] :nu+nm<i

b〈i〉

=
∑

i∈[k−1] : i≤nu

C +
∑

i∈[k−1] :nu<i≤nu+nm

v〈i〉 − γ

= C · nu + S(ntm,n
t
u) − nmγ

= γ.

Since [(I + O)b]i = [Ib]i + [Ob]i, the identity (38) now follows immediately.

Next, we prove the “Furthermore” part. First, we prove the “only if” direction. By assumption, we have b = b̃ and so
γ = γ̃. Furthermore, from Lemma A.9 we have b̃ = clipC(v − γ̃1) and so b = clipC(v − γ1). To proceed, recall that
by construction, we have

b〈i〉 =

C : i ≤ nu
v − γ : nu < i ≤ nu + nm

0 : nu + nm < i

Thus, if i ≤ nu, then C = b〈i〉 = [clipC(v−γ1)]〈i〉 implies that v〈i〉−γ ≥ C. If nu < i ≤ nu +nm, then b〈i〉 = v〈i〉−γ.
Since bj ∈ [0, C] for all j ∈ [k − 1], we have in particular that v〈i〉 − γ ∈ [0, C]. Finally, if nu + nm < i, then
0 = b〈i〉 = [clipC(v − γ1)]〈i〉 implies that v − γ ≤ 0. In summary,

v〈i〉 − γ

≥ C : i ≤ nu
∈ [0, C] : nu < i ≤ nu + nm

≤ 0 : nu + nm < i.

Note that the above identity immediately implies (39).

Next, we prove the “if” direction. Using (38) and (39), we have

[(I + O)b]〈i〉 − v〈i〉

≤ 0 : i ≤ nu
= 0 : nu < i ≤ nu + nm

≥ 0 : nu + nm < i.

For each i ∈ [k − 1], define λi, µi ∈ R where

λ〈i〉 =

−([(I + O)b]〈i〉 − v〈i〉) : i ≤ nu
0 : nu < i ≤ nu + nm

0 : nu + nm < i

and

µ〈i〉 =

0 : i ≤ nu
0 : nu < i ≤ nu + nm

[(I + O)b]〈i〉 − v〈i〉 : nu + nm < i.

It is straightforward to verify that all of (29) to (34) are satisfied for all i ∈ [k − 1], i.e., the KKT conditions hold at b.

Recall that we use indices with angle brackets 〈1〉, 〈2〉, . . . , 〈k − 1〉 to denote a fixed permutation of [k − 1] such that

v〈1〉 ≥ v〈2〉 ≥ · · · ≥ v〈k−1〉.

Weston-Watkins SVM subproblem

Corollary A.17. Let t ∈ [`] and b̃ be the unique global minimum of the optimization (4). Then b̂t = b̃ if and only if
KKT cond() returns true during the t-th iteration of Algorithm 2.

Proof. First, by Lemma A.9 we have b̂t = b̃ if and only if b̂t satisfies the KKT conditions (29) to (34). From Lemma A.14,
we have b̂(n

t
m,n

t
u) = b̂t and γ̂(ntm,n

t
u) = γ̂t. To simplify notation, let γ = γ̂(ntm,n

t
u). By Lemma A.16, b̂(n

t
m,n

t
u) satisfies the

KKT conditions (29) to (34) if and only if the following are true:

v〈i〉

≥ C + γ : i ≤ ntu
∈ [γ,C + γ] : ntu < i ≤ ntu + ntm
≤ γ : ntu + ntm < i.

Since v〈1〉 ≥ v〈2〉 ≥ · · · , the above system of inequalities holds for all i ∈ [k − 1] if and only if
C + γ ≤ v〈ntu〉 : if ntu > 0.
γ ≤ v〈ntu+ntm〉 and v〈ntu+1〉 ≤ C + γ : if ntm > 0,
v〈ntu+ntm+1〉 ≤ γ : if ntu + ntm < k − 1.

Note that the above system holds if and only if KKT cond() returns true.

A.5.4. THE VARIABLES ntm AND ntu

Definition A.18. Define the set vals+ = {(vj , dn, j) : vj > 0, j = 1, . . . , k − 1} ∪ {(vj − C, up, j) : vj > C, j =
1, . . . , k − 1}. Sort the set vals+ = {(γ1, δ1, j1), . . . , (γ`, δ`, j`)} so that the ordering of {(γ1, δ1), . . . , (γ`, δ`)} is
identical to vals from Subroutine 3-line 2.

To illustrate the definitions, we consider the following running example

〈j〉 = 〈1〉 〈2〉 〈3〉 〈4〉 〈5〉 〈6〉 〈7〉 〈8〉 〈9〉 〈10〉
v〈j〉 = 1.8 1.4 1.4 1.4 1.2 0.7 0.4 0.4 0.1 −0.2

t = 1 2 3 4 5 6 7 8 9 10 11 12 13 14
γt = 1.8 1.4 1.4 1.4 1.2 0.8 0.7 0.4 0.4 0.4 0.4 0.4 0.2 0.1
δt = dn dn dn dn dn up dn up up up dn dn up dn

Definition A.19. Define

u(j) := max{τ ∈ [`] : v〈j〉 − C = γτ}, and d(j) := max{τ ∈ [`] : v〈j〉 = γτ}, (40)

where max ∅ = `+ 1.

Below, we compute d(3), d(6) and u(3) for our running example.

d(3) d(6) u(3)
↓ ↓ ↓

t = 1 2 3 4 5 6 7 8 9 10 11 12 13 14
γt = 1.8 1.4 1.4 1.4 1.2 0.8 0.7 0.4 0.4 0.4 0.4 0.4 0.2 0.1
δt = dn dn dn dn dn up dn up up up dn dn up dn

Definition A.20. Define the following sets

crit1(v) = {τ ∈ [`] : γτ > γτ+1}
crit2(v) = {τ ∈ [`] : γτ = γτ+1, δτ = up, δτ+1 = dn}

where γ`+1 = 0.

Weston-Watkins SVM subproblem

Below, we illustrate the definition in our running example. The arrows ↓ and ⇓ point to elements of crit1(v) and crit2(v),
respectively.

↓ ↓ ↓ ↓ ↓ ⇓ ↓ ↓ ↓
t = 1 2 3 4 5 6 7 8 9 10 11 12 13 14
γt = 1.8 1.4 1.4 1.4 1.2 0.8 0.7 0.4 0.4 0.4 0.4 0.4 0.2 0.1
δt = dn dn dn dn dn up dn up up up dn dn up dn

Later, we will show that Algorithm 2 will halt and output the global optimizer b̃ on or before the t-th iteration where
t ∈ crit1(v) ∪ crit2(v).

Lemma A.21. Suppose that t ∈ crit1(v). Then

#{j ∈ [k − 1] : d(j) ≤ t} = #{τ ∈ [t] : δτ = dn}, and #{j ∈ [k − 1] : u(j) ≤ t} = #{τ ∈ [t] : δτ = up}.

Proof. First, we observe that

#{τ ∈ [t] : δτ = up} = #{(γ, δ, j′) ∈ vals+ : δ = up, γ ≥ γt}

Next, note that j 7→ (γd(j), up, 〈j〉) is a bijection from {j ∈ [k − 1] : d(j) ≤ t} to {(γ, δ, j′) ∈ vals+ : δ = up, γ ≥ γt}.
To see this, we view the permutation 〈1〉, 〈2〉, . . . viewed as a bijective mapping 〈·〉 : [k − 1]→ [k − 1] given by j 7→ 〈j〉.
Denote by 〉 · 〈 the inverse of 〈·〉. Then the (two-sided) inverse to j 7→ (γd(j), up, 〈j〉) is clearly given by (γ, up, j′) 7→〉j′〈.
This proves the first identity of the lemma.

The proof of the second identity is completely analogous.

Lemma A.22. The functions u and d : [k − 1] → [` + 1] are non-decreasing. Furthermore, for all j ∈ [k − 1], we have
u(j) < d(j).

Proof. Let j′, j′′ ∈ [k − 1] be such that j′ < j′′. By the sorting, we have v〈j′〉 ≥ v〈j′′〉. Now, suppose that d(j′) > d(j′′),
then by construction we have γd(j′) < γd(j′′). On the other hand, we have

γd(j′) = v〈j′〉 ≥ v〈j′′〉 = γd(j′′)

which is a contradiction.

For the “Furthermore” part, suppose the contrary that u(j) ≥ d(j). Then we have γu(j) ≤ γd(j). However, by definition,
we have γu(j) = v〈j〉 > v〈j〉 − C = γd(j). This is a contradiction.

Lemma A.23. Let t ∈ crit1(v). Then ntu = #{j ∈ [k − 1] : u(j) ≤ t}. Furthermore, [ntu] = {j ∈ [k − 1] : u(j) ≤ t}.
Equivalently, for each j ∈ [k − 1], we have j ≤ ntu if and only if u(j) ≤ t.

Proof. First, we note that

ntu = #{τ ∈ [t] : δτ = up} ∵ Subroutine 4-line 2
= #{j ∈ [k − 1] : u(j) ≤ t} ∵ Lemma A.21

This proves the first part. For the “Furthermore” part, let N := #{j ∈ [k − 1] : u(j) ≤ t}. Since u is monotonic
non-decreasing (Lemma A.22), we have {j ∈ [k− 1] : u(j) ≤ t} = [N]. Since N = ntu by the first part, we are done.

Lemma A.24. Let t̂, ť ∈ crit1(v) be such that there exists t ∈ [`] where

ntm = #{j ∈ [k − 1] : d(j) ≤ ť } −#{j ∈ [k − 1] : u(j) ≤ t̂ }. (41)

Then d(j) ≤ ť and t̂ < u(j) if and only if nt̂u < j ≤ nt̂u + ntm.

Weston-Watkins SVM subproblem

Proof. By Lemma A.23 and (41), we have #{j ∈ [k − 1] : d(j) ≤ ť } = nt̂u + ntm. By Lemma A.22, d is monotonic
non-decreasing and so [nt̂u + ntm] = {j ∈ [k − 1] : d(j) ≤ ť }. Now,

{j ∈ [k − 1] : d(j) ≤ ť, t̂ < u(j)}
= {j ∈ [k − 1] : d(j) ≤ ť } ∩ {j ∈ [k − 1] : t̂ < u(j)}
= {j ∈ [k − 1] : d(j) ≤ ť } \ {j ∈ [k − 1] : u(j) ≤ t̂ }

= [nt̂u + ntm] \ [nt̂u],

where in the last equality, we used Lemma A.23.

Corollary A.25. Let t ∈ crit1(v). Then d(j) ≤ t and t < u(j) if and only if ntu < j ≤ ntu + ntm.

Proof. We apply Lemma A.24 with t = t̂ = ť, which requires checking that

ntm = #{j ∈ [k − 1] : d(j) ≤ t} −#{j ∈ [k − 1] : u(j) ≤ t}.

This is true because from Subroutine 4-line 2 and 5, we have

ntm = #{τ ∈ [t] : δτ = dn} −#{τ ∈ [t] : δτ = up}.

Applying Lemma A.21, we are done.

Lemma A.26. Let t ∈ crit1(v). Let ε > 0 be such that for all τ, τ ′ ∈ crit1(v) where τ ′ < τ , we have γτ ′ − ε > γτ .
Then (ntm, n

t
u) = (nγt−εm , nγt−εu).

Proof. We claim that

v〈j〉 − γt + ε

< 0 : t < d(j)

∈ (0, C) : d(j) ≤ t < u(j)

> C : u(j) ≤ t.
(42)

To prove the t < d(j) case of (42), we have

v〈j〉 − γt + ε = γd(j) − γt + ε ∵ (40)
< −ε+ ε = 0 ∵ t < d(j) implies that γt − ε > γd(j).

To prove the d(j) ≤ t < u(j) case of (42), we note that

v〈j〉 − γt + ε = γd(j) − γt + ε (40)
≥ ε > 0 ∵ d(j) ≤ t implies γd(j) ≥ γt.

For the other inequality,

v〈j〉 − γt + ε = γu(j) + C − γt + ε ∵ (40)
< −ε+ C + ε = C ∵ t < u(j) implies γt − ε > γu(j).

Finally, we prove the u(j) ≤ t case of (42). Note that

v〈j〉 − γt + ε = γu(j) + C − γt + ε ∵ (40)
≥ C + ε > C ∵ u(j) ≤ t implies that γu(j) ≥ γt.

Thus, we have proven (42). By Lemma A.23 and Corollary A.25, (42) can be rewritten as

v〈j〉 − γt + ε

< 0 : ntu + ntm < j,

∈ (0, C) : ntu < j ≤ ntu + ntm,

> C : j ≤ ntu.
(43)

Thus, we have Iγt−εu = {〈1〉, . . . , 〈ntu〉} and Iγt−εm = {〈ntu + 1〉, . . . , 〈ntu + ntm〉}. By the definitions of nγt−εu and nγt−εm ,
we are done.

Weston-Watkins SVM subproblem

ť t t̂ d(9)
↓ ⇓ ↓ ↓

1 2 3 4 5 6 7 8 9 10 11 12 13 14
γt = 1.8 1.4 1.4 1.4 1.2 0.8 0.7 0.4 0.4 0.4 0.4 0.4 0.2 0.1
δt = dn dn dn dn dn up dn up up up dn dn up dn

Figure 3. Example of a critical iterate type 2. The first case that ť < d(j) where j = 9.

Lemma A.27. Let t ∈ crit2(v). Then (ntm, n
t
u) = (nγtm , n

γt
u).

Proof. Let t̂ ∈ crit1(v) be such that γt̂ = γt, and ť = max{τ ∈ crit1(v) : γτ > γt}. We claim that

v〈j〉 − γt̂

≤ 0 : ť < d(j),

∈ (0, C) : d(j) ≤ ť, t̂ < u(j),

≥ C : u(j) ≤ t̂.
(44)

Note that by definition, we have γť > γt̂, which implies that ť < t̂.

Consider the first case of (44) that ť < d(j). See the running example Figure 3. We have by construction that v〈j〉 = γd(j)
and so v〈j〉 − γt = γd(j) − γť ≤ 0.

Next, consider the case when d(j) ≤ ť and t̂ < u(j). Thus,

v〈j〉 − γt̂ > v〈j〉 − γť ∵ γť > γt

= γd(j) − γť ∵ definition of d(j)

≥ 0 ∵ d(j) ≤ ť =⇒ γd(j) ≥ γť.

On the other hand

v〈j〉 − γt̂ = γu(j) + C − γt̂ ∵ definition of u(j)

< C ∵ t̂ < u(j) =⇒ γt̂ > γu(j)

Thus, we’ve shown that in the second case, we have v〈j〉 − γt̂ ∈ (0, C).

We consider the final case that u(j) ≤ t̂. We have

v〈j〉 − γt̂ = γu(j) + C − γt̂ ∵ definition of t

≥ C ∵ u(j) ≤ t̂ =⇒ γu(j) ≥ γt̂.

Thus, we have proven (44).

Next, we claim that t, t̂, ť satisfy the condition (41) of Lemma A.24, i.e.,

ntm = #{j ∈ [k − 1] : d(j) ≤ ť } −#{j ∈ [k − 1] : u(j) ≤ t̂ }.

To this end, we first recall that

ntm = #{τ ∈ [t] : δτ = dn} −#{τ ∈ [t] : δτ = up}.

By assumption on t, for all τ such that ť < τ ≤ t, we have δτ = up. Thus,

#{τ ∈ [t] : δτ = dn} = #{τ ∈ [ť] : δτ = dn} = #{j ∈ [k − 1] : d(j) ≤ ť }

where for the last equality, we used Lemma A.21. Similarly, for all τ such that t < τ ≤ t̂, we have δτ = dn. Thus, we get
that analogous result

ntu = #{τ ∈ [t] : δτ = up} = #{τ ∈ [t̂] : δτ = up} = #{j ∈ [k − 1] : u(j) ≤ t̂ } = nt̂u. (45)

Weston-Watkins SVM subproblem

Thus, we have verified the condition (41) of Lemma A.24. Now, applying Lemma A.23 and Lemma A.24, we get

v〈j〉 − γt̂

≤ 0 : nt̂u + ntm < j,

∈ (0, C) : nt̂u < j ≤ nt̂u + ntm
≥ C : j ≤ nt̂u.

(46)

By (45) and that γt = γt̂, the above reduces to

v〈j〉 − γt

≤ 0 : ntu + ntm < j,

∈ (0, C) : ntu < j ≤ ntu + ntm
≥ C : j ≤ ntu.

(47)

Thus, Iγtu = {〈1〉, . . . , 〈ntu〉} and Iγtm = {〈ntu + 1〉, . . . , 〈ntu + ntm〉}. By the definitions of nγtu and nγtm , we are done.

A.5.5. PUTTING IT ALL TOGETHER

If vmax ≤ 0, then Algorithm 2 returns 0.

Otherwise, by Lemma A.9, we have γ̃ ∈ (0, vmax).

Lemma A.28. Let t ∈ [`] be such that (ntm, n
t
u) = (nγ̃m, n

γ̃
u). Then during the t-th loop of Algorithm 2 we have b̃ = b̂t and

KKT cond() returns true. Consequently, Algorithm 2 returns the optimizer b̃ on or before the t-th iteration.

Proof. We have

b̃ = b̂(n
γ̃
m,n

γ̃
u) ∵ Lemma A.15

= b̂(n
t
m,n

t
u) ∵ Assumption

= b̂t ∵ Lemma A.14.

Thus, by Corollary A.17 KKT cond() returns true on the t-th iteration. This means that Algorithm 2 halts on or before iter-
ation t. Let τ ∈ [`] be the iteration where Algorithm 2 halts and outputs b̂τ . Then τ ≤ t. Furthermore, by Corollary A.17,
b̂τ = b̃, which proves the “Consequently” part of the lemma.

By Lemma A.28, it suffices to show that (ntm, n
t
u) = (nγ̃m, n

γ̃
u) for some t ∈ [`].

We first consider the case when γ̃ 6= γt for any t ∈ crit1(v). Thus, there exists t ∈ crit1(v) such that γt+1 < γ̃ < γt,
where we recall that γ`+1 := 0.

Now, we return to the proof of Theorem 3.4.

(ntm, n
t
u) = (nγt−εm , nγt−εu) ∵ Lemma A.26

= (nγ̃m, n
γ̃
u) ∵ Lemma A.12, and that both γ̃ and γi − ε ∈ (γt+1, γt).

Thus, Lemma A.28 implies the result of Theorem 3.4 under the assumption that γ̃ 6= γt for any t ∈ crit1(v).

Next, we consider when γ̃ = γt for some t ∈ crit1(v). There are three possibilities:

1. There does not exist j ∈ [k − 1] such that v〈j〉 = γt,

2. There does not exist j ∈ [k − 1] such that v〈j〉 − C = γt,

3. There exist j1, j2 ∈ [k − 1] such that v〈j1〉 = γt and v〈j2〉 − C = γt.

First, we consider case 1. We claim that

(nγtm , n
γt
u) = (nγt−ε

′

m , nγt−ε
′

u) for all ε′ > 0 sufficiently small. (48)

Weston-Watkins SVM subproblem

We first note that nγtu = nγt−ε
′

u for all ε′ > 0 sufficiently small. To see this, let i ∈ [k − 1] be arbitrary. Note that

i ∈ Iγtu ⇐⇒ vi − γt ≥ C ⇐⇒ vi − γt + ε′ ≥ C, ∀ε′ > 0, sufficiently small

⇐⇒ i ∈ Iγt−ε
′

u ,∀ε′ > 0, sufficiently small.

Next, we show that nγtm = nγt−ε
′

m for all ε′ > 0 sufficiently small. To see this, let i ∈ [k − 1] be arbitrary. Note that

i ∈ Iγtm ⇐⇒ vi − γt ∈ (0, C)
†⇐⇒ vi − γt + ε′ ∈ (0, C), ∀ε′ > 0, sufficiently small

⇐⇒ i ∈ Iγt−ε
′

m ,∀ε′ > 0, sufficiently small

where at “
†⇐⇒ ”, we used the fact that vi− γt 6= 0 for any i ∈ [k− 1]. Thus, we have proven (48). Taking ε′ > 0 so small

so that both (48) and the condition in Lemma A.26 hold, we have

(ntm, n
t
u) = (nγt−ε

′

m , nγt−ε
′

u) = (nγtm , n
γt
u) = (nγ̃m, n

γ̃
u).

This proves Theorem 3.4 under case 1.

Next, we consider case 2. We claim that

(nγtm , n
γt
u) = (nγt+ε

′′

m , nγt+ε
′′

u) for all ε′′ > 0 sufficiently small. (49)

We first note that nγtu = nγt−ε
′′

u for all ε′′ > 0 sufficiently small. To see this, let i ∈ [k − 1] be arbitrary. Note that

i ∈ Iγtu ⇐⇒ vi − γt ≥ C
‡⇐⇒ vi − γt − ε′′ ≥ C, ∀ε′′ > 0, sufficiently small

⇐⇒ i ∈ Iγt+ε
′′

u ,∀ε′′ > 0, sufficiently small.

where at “
‡⇐⇒ ”, we used the fact that vi − γt 6= C for any i ∈ [k − 1]. Next, we show that nγtm = nγt−ε

′′

m for all ε′′ > 0
sufficiently small. To see this, let i ∈ [k − 1] be arbitrary. Note that

i ∈ Iγtm ⇐⇒ vi − γt ∈ (0, C)
‡⇐⇒ vi − γt − ε′′ ∈ (0, C), ∀ε′′ > 0, sufficiently small

⇐⇒ i ∈ Iγt+ε
′′

m ,∀ε′′ > 0, sufficiently small

where again at “
‡⇐⇒ ”, we used the fact that vi − γt 6= C for any i ∈ [k − 1]. Thus, we have proven (49). Since

γ̃ = γt ∈ (0, vmax) and γ1 = vmax, we have in particular that γt < γ1. Thus, there exists τ ∈ crit1(v) such that τ < t
and γt < γτ . Furthermore, we can choose τ such that for all γ ∈ (γt, γτ), γ 6∈ crit1(v). Let ε′′ > 0 be so small that
γt + ε′′, γτ − ε′′ ∈ (γt, γτ), and furthermore both (49) and the condition in Lemma A.26 hold. We have

(nτm, n
τ
u) = (nγτ−ε

′′

m , nγτ−ε
′′

u) ∵ Lemma A.26

= (nγt+ε
′′

m , nγt+ε
′′

u) ∵ Lemma A.12 and γt + ε′′, γτ − ε′′ ∈ (γt, γτ)

= (nγtm , n
γt
u) ∵ (49)

= (nγ̃m, n
γ̃
u) ∵ Assumption.

This proves Theorem 3.4 under case 2.

Finally, we consider the last case. Under the assumptions, we have t ∈ crit2(v). Then Lemma A.27 (ntm, n
t
u) =

(nγtm , n
γt
u) = (nγ̃m, n

γ̃
u). Thus, we have proven Theorem 3.4 under case 3.

A.6. Experiments

The Walrus solver is available at:

https://github.com/YutongWangUMich/liblinear

The actual implementation is in the file linear.cpp in the class Solver MCSVM WW.

https://github.com/YutongWangUMich/liblinear

Weston-Watkins SVM subproblem

All code for downloading the datasets used, generating the train/test split, running the experiments and generating the
figures are included. See the README.md file for more information.

All experiments are run on a single machine with the following specifications:

Operating system and kernel:

4.15.0-122-generic #124-Ubuntu SMP Thu Oct 15 13:03:05 UTC 2020 x86 64 GNU/Linux

Processor:

Intel(R) Core(TM) i7-6850K CPU @ 3.60GH

Memory:

31GiB System memory

A.6.1. ON SHARKS LINEAR WW-SVM SOLVER

Shark’s linear WW-SVM solver is publicly available in the GitHub repository https://github.com/Shark-ML.
Specifically, the C++ code is in Algorithms/QP/QpMcLinear.h in the class QpMcLinearWW. Our reimplementa-
tion follows their implementation with two major differences. In our implementations, neither Shark nor Walrus use the
shrinking heuristic. Furthermore, we use a stopping criterion based on duality gap, following (Steinwart et al., 2011).

We also remark that Shark solves the following variant of the WW-SVM which is equivalent to ours after a change of
variables. Let 0 < A ∈ R be a hyperparameter.

min
u∈Rd×k

FA(u) :=
1

2
‖u‖2F +A

n∑
i=1

∑
j∈[k]:
j 6=yi

hinge
(
(u′yixi − u

′
jxi)/2

)
. (50)

Recall the formulation (P) that we consider in this work, which we repeat here:

min
w∈Rd×k

GC(w) :=
1

2
‖w‖2F + C

n∑
i=1

∑
j∈[k]:
j 6=yi

hinge(w′yixi − w
′
jxi). (51)

The formulation (50) is used by Weston & Watkins (1999), while the formulation (51) is used by Vapnik (1998). These
two formulations are equivalent under the change of variables w = u/2 and A = 4C. To see this, note that

GC(w) = GC(u/2)

=
1

2
‖u/2‖2F + C

n∑
i=1

∑
j∈[k]:
j 6=yi

hinge((u′yixi − u
′
jxi)/2)

=
1

8
‖u‖2F + C

n∑
i=1

∑
j∈[k]:
j 6=yi

hinge((u′yixi − u
′
jxi)/2)

=
1

4

1

2
‖u‖2F + 4C

n∑
i=1

∑
j∈[k]:
j 6=yi

hinge((u′yixi − u
′
jxi)/2)

=

1

4
F4C(u) =

1

4
FA(u).

Thus, we have proven

Proposition A.29. Let C > 0 and u ∈ Rd×k. Then u is a minimizer of F4C if and only if u/2 is a minimizer of GC .

In our experiments, we use the above proposition to rescale the variant formulation to the standard formulation.

https://github.com/Shark-ML

	Introduction
	Related works
	Notations

	Weston-Watkins linear SVM
	Dual of the linear SVM
	Solving the dual with block coordinate descent

	Reparametrization of the dual problem
	Reparametrized subproblem
	BCD for the reparametrized dual problem
	Linear convergence

	Sketch of proof of main theorem
	Intuition
	A walk through of the solver

	Experiments
	Discussions and future works
	Appendix
	Regarding offsets
	Proof of reparametrization proposition
	Proof of reduction to generic form
	Global linear convergence
	Proof of main theorem
	The clipping map
	Recovering tilde gamma from discrete data
	Checking the KKT conditions
	The variables in the main algorithm
	Putting it all together

	Experiments
	On Sharks linear WW-SVM solver
	Data sets
	Classification accuracy results
	Comparison with convex program solvers

