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A. Proof of Lemma 1
Proof of Lemma 1. We first list two properties of max norm as follows. (i) As shown in Srebro & Shraibman (2005),
‖B‖∗ ≤

√
n1n2‖B‖max. (ii) By an equivalent definition of max norm due to Lee et al. (2008) (also see equation (8) in

Jalali & Srebro (2012)), we have ‖C ◦B‖ ≤ ‖C‖‖B‖max. Together with the duality of nuclear norm, we can show that

|〈C ◦B,B〉| ≤ ‖C ◦B‖‖B‖∗ ≤ ‖C‖‖B‖max‖B‖∗ (S1)

≤
√
n1n2‖C‖‖B‖2max.

B. Proofs of Theorems 1, 2 and 3
Let ei(n) ∈ Rn be the canonical basis vector, i.e., the i-th element of ei(n) is 1 and the remaining elements are 0. We can
define similar standard basis elements for n1-by-n2 matrices: Jij = ei(n1)eᵀj (n2), which will be used in the applications
of matrix Bernstein inequality in our proofs. For any β ≥ 0, define the class of matrices Bmax(β) to be the max-norm ball
with radius β, i.e.,

Bmax(β) = {A ∈ Rn1×n2 : ‖A‖max ≤ β}.

We also define
F = {uvT : u ∈ {−1,+1}n1 ,v ∈ {−1,+1}n2},

the set of rank-one sign matrices. Denote by KG ∈ (1.67, 1.79) the Grothendieck’s constant. From Srebro & Shraibman
(2005),

convF ⊆ Bmax(1) ⊆ KGconvF . (S2)

Moreover, the cardinality of F is |F| = 2n1+n2−1.

Lemma S1. Suppose Assumption 1 hold. Let W� = (w�,i,j) ∈ Rn1,n2 where W�,i,j = π−1i,j . There exists a constant
C1 ≥ 0 such that with probability at least 1− 1/(n1 + n2),

1

n1n2
‖T ◦W� − J‖ ≤ C1 min

{
log1/2(n1 + n2)√
πL(n1 ∧ n2)n1n2

,

√
n1 + n2
πLn1n2

}
.

Proof of Lemma S1. We use two different proof techniques to show the bounds. Depending on the rate of πL, one of these
two bounds is faster.

First, we show the proof for deriving the second bound. As {Tij} are Bernoulli random variables, each entry TijW�,i,j − 1
of matrix T ◦W� − J is sub-Gaussian random variable. Thus according to the definition of the ψ2 norm, we have

E exp{log(2) · (TijW�,i,j − 1)2/(π−1ij − 1)2} ≤ 2,

which implies that ‖TijW�,i,j − 1‖ψ2
≤ log−1/2 2 · (π−1ij − 1) ≤ 2(π−1ij − 1).

By Theorem S2 in Section D , taking K = maxi,j ‖TijW�,i,j − 1‖ψ2
≤ 2π−1L and t = (n1 + n2)1/2 in Theorem S2, there

exists an absolute constant C1 > 0 such that

‖T ◦W� − J‖ ≤
C1
√
n1 + n2
πL

,
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with probability at least 1− 2 · exp(−(n1 + n2)).

Next, we consider applying the Matrix Bernstein inequality to derive the first bound. For (n1n2)−1‖T ◦W� − J‖ =
‖
∑
i,j(TijW�,i,j−1)Jij/(n1n2)‖, where Jij has 1 for (i, j)−th, but 0 for all the remaining entries, letMi,j = (TijW�,i,j−

1)Jij , i = 1, . . . , n1, j = 1, . . . , n2, then (n1n2)−1‖T ◦W� − J‖ = ‖(n1n2)−1
∑
i,jMi,j‖. We can easily verify that

E(Mi,j) = 0 and ‖Mi,j‖ ≤ max{π−1L − 1, 1} for each i, j by Assumption 1.

Since E(TijW�,i,j − 1)2 = π−1ij − 1, we can show that∥∥∥∥∥∥ 1

n1n2

∑
i,j

E
(
Mi,jM

ᵀ
i,j

)∥∥∥∥∥∥ =

∥∥∥∥∥∥ 1

n1n2

∑
i,j

E
(
Mᵀ

i,jMi,j

)∥∥∥∥∥∥
≤ 1

n1n2
max

 max
1≤i≤n1

n2∑
j=1

|1/πij − 1| , max
1≤j≤n2

n1∑
i=1

|1/πij − 1|


≤ 1

n1 ∧ n2
|1/πL − 1|,

where the first inequality comes from Corollary 2.3.2 in Golub & Van Loan (1996).

By Theorem S3 in Section D , with probability at least 1− 1/(n1 + n2), we have

1

n1n2
‖T ◦W� − J‖ ≤ 2 max

{√
2 |1/πL − 1| log (n1 + n2)

(n1 ∧ n2)n1n2
, 2 max

{
1

πL
− 1, 1

}
log3/2 (n1 + n2)

n1n2

}
.

Overall, the conclusion follows.

Lemma S2. Suppose Assumption 1 holds. With probability at least 1− exp{−2−1(log 2)π2
L

∑
i,j π

−1
ij },

‖T ◦W�‖2F ≤ 2
∑
i,j

π−1ij .

In particular, the probability is lower bounded by 1− exp{−2−1(log 2)n1n2π
2
Lπ
−1
U }.

Proof of Lemma S2. Note that ‖T ◦W�‖2F =
∑
i,j Tijπ

−2
ij . Let ξ > 0. By Markov inequality, for any t ≥ 0,

Pr
(
‖T ◦W�‖2F ≥ t

)
= Pr

{
exp(ξ‖T ◦W�‖2F ) ≥ exp(ξt)

}
≤ exp(−ξt)E exp

ξ∑
i,j

Tijπ
−2
ij


= exp(−ξt)

∏
i,j

E exp(ξTijπ
−2
ij ).

For each (i, j), due to the inequality 1 + x ≤ exp(x) for x ≥ 0,

E exp(ξTijπ
−2
ij ) = 1 + {exp(ξπ−2ij )− 1}πij ≤ exp[{exp(ξπ−2ij )− 1}πij ].

Combining with the above result and taking t = 2
∑
i,j π

−1
ij ,

Pr

‖T ◦W�‖2F ≥ 2
∑
i,j

π−1ij

 ≤ exp

−2ξ
∑
i,j

π−1ij +
∑
i,j

{exp(ξπ−2ij )− 1}πij


= exp

−∑
i,j

πij
{

1 + 2ξπ−2ij − exp(ξπ−2ij )
} .
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Note the above inequality holds for any ξ > 0.

Next, we focus on the term g(ξπ−2ij ) where g(x) = 1 + 2x− exp(x) for x ≥ 0. It is easy to show that g attains its maximum
at x = log 2, and g(log 2) = 2 log 2− 1 > 0. Also, g(x) is increasing for 0 ≤ x ≤ log 2.

Take ξ = (log 2)π2
L. Then 0 ≤ ξπ−2ij ≤ log 2, and hence g(ξπ−2ij ) > 0, for all i, j. The lower bound of g(ξπ−2ij ) is crucial

in determining the order of the probability bound. Since g(x) ≥ x/2 for 0 ≤ x ≤ log 2,

g(ξπ−2ij ) = g(π2
Lπ
−2
ij log 2) ≥ log 2

2
π2
Lπ
−2
ij , ∀i, j

We conclude that ∑
i,j

πij
{

1 + 2ξπ−2ij − exp(ξπ−2ij )
}
≥ log 2

2
π2
L

∑
i,j

π−1ij ≥
log 2

2
n2n2π

2
Lπ
−1
U ,

which leads to the desired result.

With these two lemmas, we are posed to prove Theorem 1.

Proof of Theorem 1. By Lemma S2, we can show that with probability at least 1− exp{−2−1(log 2)π2
L

∑
i,j π

−1
ij }, ‖T ◦

W�‖F ≤ (2
∑
i,j π

−1
ij )1/2 and henceW� is feasible for the constrained optimization (5).

Based on the definition of the proposed estimator Ŵ , we have

S
(
Ŵ ,∆

)
=

1

n1n2

∣∣∣〈∆,
(
T ◦ Ŵ − J

)
◦∆

〉∣∣∣
≤ 1
√
n1n2

‖T ◦W� − J‖ ‖∆‖2max

≤ β′2
√
n1n2

‖T ◦W� − J‖ .

The desired result then follows from Lemma S1.

Our theoretical result of the final estimator Â will be based on a key lemma (Lemma S4), which establishes the dual of max
norm of random matrix ε with general entry-wise scaling. Before we prove Lemma S4, we now show a comparison theorem
between sub-Gaussian complexity and Gaussian complexity. This result (Lemma S3) extends Theorem 8 in Banerjee et al.
(2014) to allow arbitrary entrywise scaling.

Define the Gaussian width and Gaussian complexity of the set A respectively as

w(A) = EG

[
sup
A∈A

〈A,G〉
]

and w̃(A) = EG

[
sup
A∈A

| 〈A,G〉 |
]
,

whereG = (Gij) and each {Gij} are independent standard Gaussian random variables. In our study, A is a max-norm ball,
and so is symmetric. Therefore Gaussian width and Gaussian complexity are equivalent.

Lemma S3 (Extension of Theorem 8 in Banerjee et al. (2014)). Suppose Assumption 2 holds. LetB = (Bij) ∈ Rn1×n2 be
a fixed matrix such that Bij ≥ 0 for each i, j. Then

E [‖B ◦ ε‖∗max] ≤ η0τE [‖B ◦G‖∗max] ,

where ‖ · ‖∗max is the dual norm of max norm, G = (Gij) has independent standard Gaussian entries which are also
independent of the random errors {εij}, and η0 > 0 is an absolute constant.

Proof of Lemma S3. Since the desired result obviously holds if B = 0, we assume B 6= 0 in the rest of this proof. By
definition, ‖C‖∗max = sup‖X‖max≤1〈X,C〉 for any C ∈ Rn1×n2 . Therefore our goal is to bound a scaled sub-Gaussian
complexity via the corresponding scaled Gaussian complexity. We now extend the proof of Theorem 8 of Banerjee
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et al. (2014) to allow an additional entrywise scaling parameter B. We start with considering the sub-Gaussian process
YX = 〈X,B◦ε〉 and the Gaussian processZX = 〈X,B◦G〉, both indexed byX ∈ Bmax(1). For anyX1,X2 ∈ Bmax(1),
by the general Hoeffding’s inequality given in Theorem 2.6.3 of Vershynin (2018), we have

Pr (|YX1
− YX2

| ≥ t) ≤ 2 · exp

(
− C1t

2

τ2 ‖B ◦ (X1 −X2)‖2F

)
, t > 0, (S3)

where C1 > 0 is an absolute constant. One can show that E(ZX1 − ZX2)2 = ‖B ◦ (X1 −X2)‖2F . According to Theorem
2.1.5 of Talagrand (2006), we can apply the generic chaining argument for upper bounds on the empirical processes

√
cYX/τ

and ZX . This yields

Eε

[
sup

X1,X2∈Bmax(1)

|YX1
− YX2

|

]
≤ η1τEG

[
sup

X1∈Bmax(1)

ZX1

]
= η1τw(Bmax(1)), (S4)

where η1 is an absolute constant. Further, we can see that ifX ∈ Bmax(1), then −X ∈ Bmax(1). Then we have

sup
X1,X2∈Bmax(1)

|YX1 − YX2 | = sup
X1,X2∈Bmax(1)

(YX1 − YX2) = sup
X1∈Bmax(1)

YX1 + sup
X2∈Bmax(1)

(−YX2)

= sup
X1∈Bmax(1)

YX1
+ sup
−X2∈Bmax(1)

(〈−X2,B ◦ ε〉) = 2 sup
X1∈Bmax(1)

YX1
.

By taking the expectation on ε on both side, we have

Eε

[
sup

X1,X2∈Bmax(1)

|YX1
− YX2

|

]
= 2Eε

[
sup

X1∈Bmax(1)

YX1

]
. (S5)

As a result, with η0 = η1/2, we have

Eε

[
sup

X∈Bmax(1)

〈B ◦ ε,X〉

]
= Eε

[
sup

X∈Bmax(1)

YX

]
≤ η0τw(Bmax(1)). (S6)

That completes the proof.

Lemma S4. Suppose Assumption 2 holds. Let B = (Bij) ∈ Rn1×n2 be a fixed matrix such that Bij ≥ 0 for each i, j.
There exists an absolute constant C2 > 0 such that, with probability at least 1− 2 exp{−(n1 + n2)},

‖B ◦ ε‖∗max ≤ C2τ‖B‖F
√
n1 + n2.

Proof of Lemma S4. Define the set

B̃max(β) = {B ◦X : X ∈ Bmax(β)} ⊂ Rn1×n2 .

Note that we have

EG

[
sup

X∈Bmax(1)

〈B ◦G,X〉

]
= EG

[
sup

X∈Bmax(1)

〈G,B ◦X〉

]
= w(B̃max(1)).

Write F̃ = {B ◦X : X ∈ F}. By the the relationship (S2), we have

F̃ ⊆ B̃max(1) ⊆ {B ◦X : X ∈ KG conv (F)} = KG{B ◦X : X ∈ conv(F)} = KG conv(F̃).

Due to the properties of Gaussian width (see, e.g., Appendix A.1 of Banerjee et al., 2014), we have

w(B̃max(1)) ≤ w(KG conv(F̃)) = KGw(conv(F̃)) = KGw(F̃).

As for anyX ∈ F , we have
‖B ◦X‖F = ‖B‖F ,
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and so 〈G,B ◦X〉 ∼ N (0, ‖B‖2F ). Recall that the |F| = 2n1+n2−1. By Proposition 3.1(ii) of Koltchinskii (2011), we
have

w(F̃) ≤ C3‖B‖F
√
n1 + n2.

where C3 is a absolute constant. By Lemma S3, we conclude that

Eε

[
sup

X∈Bmax(1)

〈B ◦ ε,X〉

]
≤ η0τEG

[
sup

X∈Bmax(1)

〈B ◦G,X〉

]
= η0τw(B̃max(1)) ≤ KGη0τw(F̃)

≤ C3KGη0τ‖B‖F
√
n1 + n2. (S7)

Let ϕ(Z) = sup‖X‖max≤1〈B ◦Z,X〉 for anyZ ∈ Rn1×n2 . We aim to provide the concentration of ϕ(ε) to its expectation.
For notational simplicity, we will focus on the setting with Bij > 0 for all i, j; otherwise, one can reduce the support of
ϕ to those entries corresponding to non-zero Bij . Due to the possibly unbounded support of ε, we adopt an extension of
McDiarmid’s inequality Kontorovich (2014) with unbounded diameter. For any Z1 = (Z1,ij),Z2 = (Z2,ij) ∈ Rn1×n2 ,

|ϕ(Z1)− ϕ(Z2)| ≤ sup
‖X‖max≤1

|〈B ◦Z1,X〉 − 〈B ◦Z2,X〉|

≤ sup
‖X‖max≤1

∑
i,j

Bij |Xij ||Z1,ij − Z2,ij |

≤ sup
X∈KGconv(F)

∑
i,j

Bij |Xij ||Z1,ij − Z2,ij |

≤ q(Z1,Z2),

where q(Z1,Z2) =:
∑
i,j qij(Z1,ij , Z2,ij) =:

∑
i,j KGBij |Z1,ij − Z2,ij | is a metric. Therefore ϕ is 1-Lipschitz with

respect to the metric q. Let ε′ij be an independent copy of εij , and γij be an independent Rademacher random variable.
We can show that the subgaussian norm of γijqij(εij , ε′ij) is bounded by C4τbij for some absolute constant C4 > 0. By
Theorem 1 of Kontorovich (2014), we conclude that

P(|ϕ(ε)− Eϕ(ε)| > t) ≤ 2 exp

(
− t2

2C4τ2‖B‖2F

)
, t ≥ 0.

Combining with (S7), we achieve the desired result.

Lemma S5. Suppose Assumptions 1 and 2 hold. There exists an absolute constant C2 > 0 such that with probability at
least 1− 2 exp{−(n1 + n2)}, ∥∥∥T ◦ Ŵ ◦ ε

∥∥∥∗
max
≤ C2τκ

√
n1 + n2.

Proof of Lemma S5. Notice that ε is independent of T , and Ŵ is a function of T . By Lemma S4, conditioned on T , we
have ∥∥∥T ◦ Ŵ ◦ ε

∥∥∥∗
max
≤ C2τ‖T ◦ Ŵ ‖F

√
n1 + n2, (S8)

with conditional probability at least 1− 2 exp{−(n1 + n2)}. Since the probability bound does not depend on T , (S8) holds
with the same probability bound unconditionally. By construction, ‖T ◦ Ŵ ‖F ≤ κ, we have the desired result.

Proof of Theorem 2. It follows from the definition of Â that forA? ∈ Rn1×n2 with ‖A?‖max ≤ β,

1

n1n2

∥∥∥T ◦ Ŵ ◦1/2 ◦
(
Â− Y

)∥∥∥2
F
≤ 1

n1n2

∥∥∥T ◦ Ŵ ◦1/2 ◦ (A? − Y )
∥∥∥2
F

+ µ(‖A?‖∗ − ‖Â‖∗). (S9)

Since we can rewrite the first term in the left hand side of (S9) as

1

n1n2

∥∥∥T ◦ Ŵ ◦1/2 ◦
(
Â− Y

)∥∥∥2
F

=
1

n1n2

∥∥∥T ◦ Ŵ ◦1/2 ◦
(
Â−A? +A? − Y

)∥∥∥2
F
,
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the inequality (S9) leads to

1

n1n2

∥∥∥T ◦ Ŵ ◦1/2 ◦
(
Â−A?

)∥∥∥2
F
≤ 2

n1n2

〈
T ◦ Ŵ ◦1/2 ◦

(
Â−A?

)
,T ◦ Ŵ ◦1/2 ◦ (Y −A?)

〉
+ µ(‖A?‖∗ − ‖Â‖∗)

=
2

n1n2

〈
Â−A?,T ◦ Ŵ ◦ ε

〉
+ µ(‖A?‖∗ − ‖Â‖∗).

Therefore, due to Theorem 1, Lemma S5 and condition of µ, with the property that ‖A?‖∗ ≤
√
n1n2‖A?‖max, we have

1

n1n2

∥∥∥Â−A?

∥∥∥2
F
≤ 1

n1n2

〈
Â−A?,

(
T ◦ Ŵ − J

)
◦
(
A? − Â

)〉
+

1

n1n2
‖T ◦ Ŵ ◦(1/2) ◦ (Â−A?)‖2F

≤ S(Ŵ , Â−A?) +

∣∣∣∣ 2

n1n2
〈Â−A?,T ◦ Ŵ ◦ ε〉

∣∣∣∣+ µ(‖A?‖∗ − ‖Â‖∗)

≤ S(Ŵ , Â−A?) +
2

n1n2

∥∥∥Â−A?

∥∥∥
max

∥∥∥T ◦ Ŵ ◦ ε
∥∥∥∗
max

+ µ‖A?‖∗

≤ C1(β2 + β) min

{
log1/2(n1 + n2)√
πL(n1 ∧ n2)

,

√
n1 + n2

πL
√
n1n2

}
+

4C2βτκ
√
n1 + n2

n1n2
(S10)

≤ C1(β2) min

{
log1/2(n1 + n2)√
πL(n1 ∧ n2)

,

√
n1 + n2

πL
√
n1n2

}
+

4C2βτκ
√
n1 + n2

n1n2
. (S11)

with probability at least 1− exp{−2−1(log 2)π2
L

∑
i,j π

−1
ij } − 2 exp{−(n1 + n2)} − 1/(n1 + n2).

Proof of Theorem 3. Without loss of generality, we assume that n1 ≥ n2. For some constant 0 ≤ γ ≤ 1 such that
B = σ−2(σ ∧ β)2/(γ2) is an integer and B ≤ n2, define

C1 =
{
Ã = (Aij) ∈ Rn1×B : Aij ∈ {0, γβ} ,∀1 ≤ i ≤ n1, 1 ≤ j ≤ B

}
,

and consider the associated set of block matrices

A (C1) =
{
A =

(
Ã| . . . |Ã|0

)
∈ Rn1×n2 : Ã ∈ C1

}
,

where 0 denotes the n1 × (n2 −Bbn2/Bc) zero matrix.

It is easy to see that for anyA ∈ A(C1), we have that ‖A‖max ≤
√
B‖A‖∞ ≤ β. Due to Lemma 2.9 in Tsybakov (2009),

there exists a subset A0 ⊂ A(C1) containing the zero n1 × n2 matrix 0 where Card(A0) ≥ 2Bn1/8 + 1 and for any two
distinct elementsA1 andA2 of A0,

‖A1 −A2‖2F ≥
n1B

8

{
γ2β2

⌊n2
B

⌋}
≥ n1n2γ

2β2

16
. (S12)

For any A ∈ A0, from the noisy observed model in section 2.2, the probability distribution PA =
Πi,j [(2πσ

2)−1/2 exp{−(Yij −Aij)2/(2σ2)}]Tij . Take P0 = Πi,j [(2πσ
2)−1/2 exp{−Y 2

ij/(2σ
2)}]Tij . Thus the Kullback-

Leibler divergence K(P0,PA)= EP0(log(P0/PA)) between P0 and PA satisfies

K (P0,PA) = EP0

∑
ij

Tij
A2
ij − 2AijYij

2σ2

 =

∥∥Π◦1/2 ◦A∥∥2
F

2σ2
≤
γ2β2

∑n1

i=1

∑n2

j=1 πij

2σ2
≤ C5

γ2β2n1n2πL
2σ2

,

for some positive constant C5. The last inequality is due to the condition that n1n2πL �
∑n1

i=1

∑n2

j=1 πij .

From above we deduce the condition

1

Card(A0)− 1

∑
A∈A0

K (P0,PA) ≤ λ log
(
Card(A0)− 1

)
, (S13)



Matrix Completion with Model-free Weighting

The above condition is valid when we take

γ2 = C6

(
(σ ∧ β)2

β2n2πL

)1/2

for some constant C6 that depends on λ. Also, one can verify that under the conditions π−1L = O(β2(n1 ∧ n2)/(σ ∧ β)2)

and π1/2
L = O((n1 ∧ n2)1/2σ2/[β(σ ∧ β))], γ ≤ 1 and B ≤ n2. Then we subsitute γ2 in the bound of S12 and we achieve

the final bound as the one showed in the Theorem.

Together with the similar argument when n2 ≥ n1, the result now follows by application of Theorem 2.5 in Tsybakov
(2009). This completes the proof.

Lemma S6. Suppose Assumption 2 hold. For a fixed matrixB = (Bij) ∈ Rn1×n2 where Bij ≥ 0, there exists an absolute
constant C5 > 0 such that, with probability at least 1− 2 exp(−(n1 + n2)),

‖B ◦ ε‖ ≤ C5‖B‖∞τ(
√
n1 +

√
n2).

Proof. By the definition of ‖ · ‖ψ2
,

max
i,j
‖Bijεij‖ψ2 ≤ ‖B‖∞τ.

Apply Theorem S2 in Section D , and take t =
√
n1 +

√
n2 in Theorem S2. Then conclusion follows.

C. Non-asymptotic Error Bound under Low-rank Settings and Asymptotically Homogeneous
Missingness

Theorem S1. Suppose Assumption 2 hold and πL�πU�π. Assume ‖A?‖max≤β andA? has rank R. If κ′ = κ−‖T ‖F is
bounded and µ�

√
{τ2π log (n1+n2)}{(n1∧n2)n1n2}−1, then there exists a constant C6 > 0, such that with probability

at least 1−3(n1+n2)−1,

d2(Â,A?) ≤
C6R(τ2∨‖A?‖2∞) log(n1 + n2)

[π(n1∧n2)]−1
.

Proof outline. From the basic inequality, we have

1

n1n2
‖T ◦ Ŵ 1/2 ◦ (Â−A?)‖2F ≤

2

n1n2
〈Â−A?,T ◦ Ŵ ◦ ε〉+ µ‖A?‖∗ − µ‖Â‖∗.

Note that weights are restricted to be greater than 1. We then have

1

n1n2
‖T ◦ (Â−A?)‖2F ≤

1

n1n2
‖T ◦ Ŵ 1/2 ◦ (Â−A?)‖2F ≤

2

n1n2
‖Â−A?‖∗‖T ◦ Ŵ ◦ ε‖+ µ(‖A?‖∗ − ‖Â‖∗).

Due to the constraint of κ′, ‖Ŵ ‖∞ is bounded, we can use Lemma S7 to derive the bound of ‖T ◦ Ŵ ◦ ε‖. The remaining
argument is rather standard and the same as the proof for No-weighted estimators with nuclear norm regularization (Klopp,
2014).

Lemma S7. Suppose assumptions in Corollary S1 hold. Then there exists a constant C7 > 0 such that, with probability at
least 1− (n1 + n2),

1

n1n2
‖T ◦ Ŵ ◦ ε‖ ≤ C7

√
τ2π log (n1 + n2)

(n1 ∧ n2)n1n2

Proof. The proof is very similar as the proof in Lemma S1.

We consider applying the Matrix Berinstein inequality for random matrices with bounded sub-exponential norm.

Due to the constraint of κ′, there exists a constant C8 such that ‖Ŵ ‖∞ ≤ C8.
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For (n1n2)−1‖T ◦ Ŵ ◦ ε‖ = ‖
∑
i,j(TijŴi,jεij)Jij/(n1n2)‖, where Jij has 1 for (i, j)−th, but 0 for all the remaining

entries, let Mi,j = (TijŴi,jεij)Jij , then (n1n2)−1‖T ◦ Ŵ ◦ ε‖ = ‖(n1n2)−1
∑
i,jMi,j‖. We can easily verify that

E(Mi,j) = 0. Note that εij are sub-Gaussian random variables and therefore sub-exponential random variables. Then
maxi,j ‖‖Mi,j‖‖ψ1

≤ maxi,j ‖TijŴi,jεij‖ψ1
≤ C9τ , where ‖ · ‖ψ1

is the sub-exponential norm of a random variable and
C9 is some constant depending on the C8.

Since E(TijŴi,jεij)
2 ≤ cC2

8πijτ
2 for some absolute constant c, we can show that∥∥∥∥∥∥ 1

n1n2

∑
i,j

E
(
Mi,jM

ᵀ
i,j

)∥∥∥∥∥∥ =

∥∥∥∥∥∥ 1

n1n2

∑
i,j

E
(
Mᵀ

i,jMi,j

)∥∥∥∥∥∥
≤ 1

n1n2
max

 max
1≤i≤n1

n2∑
j=1

c2πijτ
2, max

1≤j≤n2

n1∑
i=1

c2πijτ
2


≤ c3τ

2

n1 ∧ n2
π,

for some constant c3.

By Proposition 11 in Klopp (2014), there exsits a constant C7, such that with probability at least 1− 1/(n1 + n2),

1

n1n2

∥∥∥T ◦ Ŵ ◦ ε
∥∥∥ ≤ C7 max

{√
τ2π log (n1 + n2)

(n1 ∧ n2)n1n2
, τ log(1/

√
π)

log3/2(n1 + n2)

n1n2

}
.

Overall, the conclusion follows.

D. Useful Results
Theorem S2 (Theorem 4.4.5 of Vershynin (2018)). LetA be an n1×n2 random matrix whose entries Aij are independent,
mean zero, sub-gaussian random variables. Then, for any t > 0 we have

‖A‖ ≤ CK(
√
n1 +

√
n2 + t)

with probability at least 1− 2 exp(−t2). Here K = maxij ‖Aij‖ψ2 and C is an absolute constant.

Proof. The proof can be found on Page 91 in Vershynin (2018).

Theorem S3 (Proposition 1 of Koltchinskii et al. (2011)). LetZ1, . . . ,ZN be independent random matrices with dimensions
n1 × n2 that satisfy EZi = 0 and ‖Zi‖ ≤ U almost surely for some constant U and all i = 1, . . . , n. Define

σZ = max


∥∥∥∥∥ 1

N

N∑
i=1

E(ZiZ
ᵀ
i )

∥∥∥∥∥
1/2

,

∥∥∥∥∥ 1

N

N∑
i=1

E(Zᵀ
i Zi)

∥∥∥∥∥
1/2
 .

Then, for all t > 0, with probability at least 1− exp(−t) we have

∥∥∥∥Z1 + · · ·+ZN
N

∥∥∥∥ ≤ 2 max

{
σZ

√
t+ log(n1 + n2)

N
,U

t+ log(n1 + n2)

N

}
,

Proof. The proof can be found on Page 2325 in Koltchinskii et al. (2011).
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E. Algorithm
E.1. Convex Algorithm for Solving (7)

Follow Fang et al. (2018) and Cai & Zhou (2016), we consider an equivalent form objective function in (7) below.

min
X,Z

1

n1n2
‖T ◦ Ŵ ◦(1/2) ◦ (Y −Z12)‖2F + µ〈I,X〉,

Subject toX < 0, X = Z, Z ∈ Pβ

where Z,X ∈ R(n1+n2)×(n1+n2), S is the class of all symmetric matrices in R(n1+n2)×(n1+n2), Pβ := {C ∈ S :
diag(C) ≥ 0, ‖C‖∞ ≤ β}, I is an identity matrix and

Z =

[
Z11 Z12

Zᵀ
12 Z22

]
,Z11 ∈ Rn1×n1 ,Z22 ∈ Rn2×n2

The derivation of above representation mainly comes from two facts: 1. The nuclear norm of Z12 is the the smallest possible
sum of elements on the diagonal of Z given Z < 0 (Fazel et al., 2001); 2. The max norm of matrix Z12 is the smallest
possible maximum element on the diagonal of Z given Z < 0 (Srebro et al., 2005).

The augmented Lagrangian function can be written as

L(X,Z,V ) =
1

n1n2
‖T ◦ Ŵ ◦(1/2) ◦ (Y −Z12)‖2F + µ〈I,X〉+ 〈V ,X −Z〉+

ρ

2
‖X −Z‖2F ,

Subject X<0, Z ∈ Pβ ,

where V ∈ R(n1+n2)×(n1+n2) is the dual variable and ρ > 0 is a hyper-parameter.

Then the alternating direction method of multipliers (ADMM) algorithm solves this optimization problem by minimizing
the augmented Lagrangian with respect to different variables alternatingly. More explicitly, at the (t+ 1)-th iteration, the
following updates are implemented:

Xt+1 = Π{Zt + ρ−1(V t + µI)},

Z(t+1) = arg min
Z∈Pβ

1

n1n2
‖T ◦ Ŵ ◦(1/2) ◦ (Y −Z12)‖2F +

ρ

2
‖Z −Xt+1 − ρ−1V t‖2F = Φ

T ,Y ,Ŵ ,β
{Xt+1 + ρ−1V t},

V t+1 = V t + τρ(Xt+1 −Zt+1),

where Π(·) is the projection to the space {C ∈ S : C < 0}, and Φ
T ,Y ,Ŵ ,β

is defined in Definition S1. Detailed derivation
can be found in Fang et al. (2018) and Cai & Zhou (2016).

Definition S1. We use C(i, j) to represent the element on the i-th row and j-th column of a matrix C. For the matrix
C ∈ R(n1+n2)×(n1+n2), it can be partitioned into

C =

[
C11 C12

Cᵀ
12 C22

]
,C11 ∈ Rn1×n1 ,C22 ∈ Rn2×n2

Then

Φ
T ,Y ,Ŵ ,β

(C) =

[
Φ
T ,Y ,Ŵ ,β

(C)11 Φ
T ,Y ,Ŵ ,β

(C)12
Φ
T ,Y ,Ŵ ,β

(C)ᵀ12 Φ
T ,Y ,Ŵ ,β

(C)22

]
,
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where

Φ
T ,Y ,Ŵ ,β

(C)11(i, j) = min{β,max{C11(i, j),−β}} if i 6= j,

Φ
T ,Y ,Ŵ ,β

(C)11(i, j) = min{β,max{C11(i, j), 0}} if i = j,

Φ
T ,Y ,Ŵ ,β

(C)22(i, j) = min{β,max{C22(i, j),−β}}, if i 6= j,

Φ
T ,Y ,Ŵ ,β

(C)22(i, j) = min{β,max{C22(i, j), 0}} if i = j,

Φ
T ,Y ,Ŵ ,β

(C)12(i, j) = min

{
β,max

{
Y (i, j)Ŵ (i, j) + ρC(i, j)

Ŵ (i, j) + ρ
,−β

}}
if T (i, j) = 1,

Φ
T ,Y ,Ŵ ,β

(C)12(i, j) = min{β,max{C12(i, j),−β}} if i 6= j if T (i, j) = 0.

We summarize the algorithm in Algorithm 1. Some piratical implementations to adaptively tune ρ and accelerate the
computation can be found in Section 3.3 and 3.4 in Fang et al. (2018).

Algorithm 1 ADMM algorithm

Input: Y , T , β, µ, Ŵ , ρ = 0.1, τ = 1.618, K
InitializeX0, Z0, V 0, R
for t = 1 to K − 1 do
Xt+1 ← Π{Zt + ρ−1(V t + µI)}
Z(t+1) ← Φ

T ,Y ,Ŵ ,β
{Xt+1 + ρ−1V t}

V t+1 ← V t + τρ(Xt+1 −Zt+1)
Stop if objective value changes less than tolerance

end for

E.2. Nonconvex Algorithm for Solving (7)

The nonconvex algorithm for max-norm regularization developed in Lee et al. (2010) base on the equivalent definition of
max-norm via matrix factorizations:

‖C‖max := inf {‖U‖2,∞‖V ‖2,∞ : C = UV ᵀ} ,

where ‖ · ‖2,∞ denotes the maximum l2 row norm of a matrix.

To incorporate the nuclear norm regularization, we also notice an equivalent definition of the nuclear norm:

‖C‖∗ := inf
1

2

{
‖U‖2F + ‖V ‖2F : C = UV ᵀ

}
.

Then we have the following relaxation of the objective function in (7). Take

f(L,R) =
1

n1n2
‖T ◦ Ŵ ◦(1/2) ◦ (Y −LRᵀ)‖2F +

µ

2
(‖L‖2F + ‖R‖2F ),

and we obtain

min
L,R

f(L,R),

Subject to max {‖L‖2,∞, ‖R‖2,∞} ≤ β.

This optimization form is exactly the one in Lee et al. (2010) except that we add another nuclear penalty in the objective
function f .

Like what Lee et al. (2010) considered, the projected gradient descent method can be applied to iteratively solve this problem.
We define the project PB as the Euclidean projection onto the set {M : ‖M‖2,∞ ≤ B}. This projection can be computed
by re-scaling the rows of current input matrix whose norms exceed B so their norms equal B. Rows with norms less than B
are unchanged by the projection. We summarize the algorithm in Algorithm 2.
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Algorithm 2 Projected gradient descent algorithm

Input: Y , T , β, µ, Ŵ , step size τ , K
Initialize L0,R0,
for t = 1 to K − 1 do
Lt+1 ← Pβ

(
L− τ ∂f∂L

)
Rt+1 ← Pβ

(
R− τ ∂f∂R

)
Stop if objective value changes less than tolerance

end for

F. Additional Simulation Results
The simulation results for SNR = 1 and SNR = 10 are shown in Table S1 and S2 respectively.

Table S1. Similar to Table 1, but for SNR = 1.
Setting 1

Method RMSE TE r̄
Proposed 1.901(0.004) 1.918(0.004) 13.69(0.097)
SoftImpute 1.944(0.004) 1.961(0.004) 19.55(0.092

CZ 2.052(0.004) 2.044(0.004) 27.695(0.128)
FLT 1.927(0.004) 1.946(0.004) 15.265(0.105)
NW 2.012(0.004) 2.01(0.004) 25.61(0.069)
KLT 2.439(0.005) 2.492(0.005) 10.175(0.063)

Setting 2
Method RMSE TE r̄

Proposed 1.716(0.004) 1.669(0.004) 14.73(0.113)
SoftImpute 1.721(0.004) 1.685(0.004) 16.335(0.107)

CZ 1.86(0.004) 1.799(0.004) 25.965(0.115)
FLT 1.711(0.004) 1.674(0.004) 14.565(0.102)
NW 1.805(0.005) 1.747(0.005) 37.82(0.422)
KLT 2.16(0.005) 2.093(0.005) 2.065(0.110)

Setting 3
Method RMSE TE r̄

Proposed 2.412(0.006) 2.586(0.007) 12.495(0.098)
SoftImpute 2.923(0.007) 3.113(0.007) 29.15(0.112)

CZ 2.641(0.006) 2.812(0.006) 28.695(0.109)
FLT 2.878(0.007) 3.097(0.007) 20.105(0.105)
NW 2.668(0.006) 2.779(0.007) 33.115(0.066)
KLT 3.667(0.007) 3.969(0.007) 9.765(0.067)

G. Code
The code for implementing the proposed method can be found in https://github.com/jiayiwang1017/
MC-weighting-code.
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