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Abstract
We propose a novel GAN training scheme that can
handle any level of labeling in a unified manner.
Our scheme introduces a form of artificial label-
ing that can incorporate manually defined labels,
when available, and induce an alignment between
them. To define the artificial labels, we exploit the
assumption that neural network generators can be
trained more easily to map nearby latent vectors
to data with semantic similarities, than across sep-
arate categories. We use generated data samples
and their corresponding artificial conditioning la-
bels to train a classifier. The classifier is then used
to self-label real data. To boost the accuracy of
the self-labeling, we also use the exponential mov-
ing average of the classifier. However, because
the classifier might still make mistakes, especially
at the beginning of the training, we also refine
the labels through self-attention, by using the la-
beling of real data samples only when the classi-
fier outputs a high classification probability score.
We evaluate our approach on CIFAR-10, STL-10
and SVHN, and show that both self-labeling and
self-attention consistently improve the quality of
generated data. More surprisingly, we find that
the proposed scheme can even outperform class-
conditional GANs.

1. Introduction
Generative Adversarial Networks (GAN) (Goodfellow et al.,
2014; Brock et al., 2019; Karras et al., 2019) provide an
attractive approach to constructing generative models that
output samples of a target distribution. In their most basic
form, these models consist of two neural networks, a gen-
erator and a discriminator. The first network is trained to
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generate samples from some latent representation (typically
a sample from a Gaussian distribution), while the second
network is trained to distinguish real samples xr from the
generated samples xf (see network D in Figure 1 (a)). The
most effective GANs seem to benefit greatly from class
conditioning. The class information is provided as input to
the generator and either injected into the discriminator as
an input (Mirza & Osindero, 2014) or through intermedi-
ate layers (Reed et al., 2016) or via a projection (Miyato
& Koyama, 2018) or an auxiliary loss (Odena et al., 2017;
Kavalerov et al., 2019) (see e.g., Figure 1 (b)). The family
of these generators is generically called conditional GANs
(cGAN).

In particular, in AC-GAN (Odena et al., 2017) (see Fig-
ure 1 (b)) one uses a discriminator with two outputs, one
for the classification of input images into real or fake and
the other for classification into multiple categories (see the
label y in the green box in Figure 1 (b)). We hypothesize
that providing the class information helps the training of the
generator, because the neural network architecture of the
generator tends to map similar latent vectors to data samples
that are semantically related. Thus, we expect a gradient-
based training to converge more easily to a good set of
network parameters with class conditioning than without it.
This suggests that one might be able to train a generator in a
conditional manner even when manually defined labels are
not available. Based on this assumption, we train a generator
conditioned on an artificial set of labels and simultaneously
learn its inverse mapping through a classifier, which we call
teacher. The teacher is trained only on synthetic data (net-
works G-inference and C-training in Figure 1 (d)), and then
it is applied to real data samples to obtain their correspond-
ing artificial labels (network C-inference in Figure 1 (d)),
a process that we call self-labeling. Because the accuracy
of a trained classifier is limited, using all the artificially
labeled real data would not help the generator especially
at the beginning of the training, when all predicted labels
may be highly inaccurate. Hence, we introduce a way to
select data, where the label consistency is high. To do so
we introduce a self-attention mechanism that is based on
selecting samples xr whose estimated label probability is
above a given threshold ( blue box in Figure 1 (d)). The
selected samples and their corresponding synthetic labels
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Figure 1. Comparison of GAN variants and our GAN training scheme: (a) Unconditional GAN discriminates real samples xr and
fake samples xf ; (b) AC-GAN (Odena et al., 2017) learns to predict supervised labels y; (C) Top-k GAN (Sinha et al., 2020) updates the
discriminator D with fake samples where the discriminator D outputs high confidence, i.e., P (realjxf ) > Top-k; (d) Our proposed GAN
scheme learns to predict artificial labels ŷc defined by the teacher classifier C and updates the discriminator D on real samples, where the
teacher classifier C outputs high confidence, i.e., P (cjxr) � Th. We train the teacher classifier only on fake samples xf and conditional
labels c of the generator G.

ŷc are then used to train the discriminator (network D and
green box in Figure 1 (d)). This idea is similar to the one

exploited by Top-k GAN (Sinha et al., 2020), which uses the
output of the discriminator as the confidence for the labeling
of fake images (see Figure 1 (c)), while we apply it instead
to real images. Moreover, we use the EMA (exponential
moving average) of the teacher during inference to further
improve its labeling accuracy. This technique has been used
in semi-supervised and unsupervised learning methods to
improve the classification/clustering accuracy (Tarvainen &
Valpola, 2017; Sohn et al., 2020; He et al., 2020).

So far, we have described a GAN training method that ex-
ploits the same benefits that conditional GANs enjoy, but
without using manually labeled data. When data is partially
or fully labeled, it is desirable to take advantage of the avail-
able information. Our scheme can seamlessly integrate such
available labels and also indirectly transfer their categorical
information to the artificial labels. This is possible because
our artificial labels are defined relative to the generator and
the generator can adapt to a new reference during training.

We evaluate our method on CIFAR-10 (Krizhevsky & Hin-
ton, 2009), STL-10 (Coates et al., 2011), and SVHN (Netzer
et al., 2011) datasets using the BigGAN model (Brock et al.,
2019) and show that our method improves the quality of
the generated images in terms of the FID (Fréchet Inception
Distance) score (Heusel et al., 2017). Our method achieves
better FID scores than the state-of-the-art GAN and even
that of fully supervised cGAN methods on the CIFAR-10
dataset. Our contributions can be summarized as follows:
1) A unified GAN training that can handle any level of label-
ing in a unified manner by using: Self-labeling: a method
to automatically assign labels to real data samples, and Self-
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Figure 2. Overall architecture of our proposed unified GAN
training. The important components of our scheme are: 1) The
conditional training of the generator G, which is based on artifi-
cial labels c; 2) A classifier C, which is trained only on synthetic
data samples xf and their corresponding artificial labels c; 3) A
discriminator D that is trained on artificial labels c for fake data
xf , real labels y for real data xr when available, and generated
labels ŷc for real data xr that do not have manually defined labels.

attention: a method to select real data samples with highly
consistent synthetic labels;
2) Consistent improvement in the FID scores across several
datasets (evaluation on CIFAR-10, STL-10, and SVHN);
3) The ability to outperform class-conditional GANs (fully
labeled dataset).

2. Prior Work
Generative Adversarial Networks. The unconditional
GAN (Brock et al., 2019) consists of two networks, a gener-
ator G and a discriminator D. The generator outputs a fake
image from a (vector) noise instance and the discriminator
distinguishes input images as real or fake. The discriminator
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and the generator are trained by minimizing the following
adversarial loss terms

L U
D = � Ex r [logP(realjx r )]

� Ez [logP(fakejG(z))] ; (1)

L U
G = � Ez [logP(realjG(z))] ; (2)

wherex r is a random variable representing real images (and
is used also to indicate samples from the distribution of real
images) andz is a random variable with a �xed distribution,
typically the Normal distributionN (0; I d) (and is also used
to indicate instances from that distribution).P(classjinput)
indicates the probability thatinput belongs to the class
class . Class-conditional GANs (e.g., AC-GAN (Odena
et al., 2017)) are instead trained by minimizing the following
adversarial loss terms

L Y
D = � Ex r ;y [logP(real; yjx r )]

� Ez;c [logP(fake; cjG(z; c))] ; (3)

L C
G = � Ez;c [logP(real; cjG(z; c))] ; (4)

wherey andc are supervised labels and arti�cial conditional
labels respectively. The discriminator of cGAN does not
only classify images into real/false, but also estimates the
labels of the input images. The training requires supervised
labels for all real images. An alternative approach to using
real labels is proposed in self-conditional GANs, which
are cGANs trained with unlabeled samples, where arti�cial
labels are de�ned through some heuristic tasks. An example
of this approach is to use the orientation of rotated images
as a label for conditioning (Chen et al., 2019b; Tran et al.,
2019). In comparison to these methods, we obtain our labels
implicitly from the generator.

Semi-Supervised Learning. Semi-supervised learn-
ing (SSL) is a branch of machine learning where the training
data is a mix of labeled samples (typically, a small amount)
and of unlabeled samples (typically, in larger number com-
pared to the labeled samples) (van Engelen & Hoos, 2020).
Recent methods that work in the SSL regime are Remix-
Match (Berthelot et al., 2019) and FixMatch (Sohn et al.,
2020).

In particular, of interest to us is FixMatch (Sohn et al., 2020),
which trains a classi�erC by minimizing two cross-entropy
loss terms: a supervised loss on labeled samplesxL and an
unsupervised loss on unlabeled samplesxU as

L label = H [y; C(A(xL ))] + H [ŷ; C(A(xU ))] ; (5)

wherey andŷ are supervised labels and arti�cial labels re-
spectively, andA is an image augmentation function. As in
our approach, the arti�cial labels are assigned by a classi-
�er with the parameters�� C of the running average model
(Tarvainen & Valpola, 2017) via

ŷ = arg max
i

Ci (� (xU ); �� C ): (6)

where� is aweakimage augmentation function,i.e., with
image transformations close to the identity.

Other important recent SSL methods for GAN training are
the work of (Lucic et al., 2019; Noroozi, 2020). As in our
approach, they train a network for classi�cation/clustering,
which is then used to provide labels for conditioning. How-
ever, while they train the classi�er on real samples, we train
it only on fake samples, and, to the best of our knowledge,
are the �rst ones to do so.

3. A Uni�ed GAN Training

Our uni�ed GAN training uses a cGAN as backbone, where
the discriminator classi�es the input into real/fake and image
categories. cGANs require semantic labels for training.
While the labels of generated data are implicitly de�ned,
the labels of real data are either provided through manual
labeling or through our unsupervised self-labeling and self-
attention procedures.

3.1. Self-Labeling and Self-Attention

Our objective is to assign arti�cial labels to unlabeled real
images that are used in the conditional adversarial loss.
To this purpose, we train a classi�erC, which we call
teacher, on fake imagesx f = G(z; c), where the class-
correspondence is known. We train the teacher with the
cross-entropy loss

L C = H [c; C(A(x f ))] : (7)

whereH denotes the entropy, the fake image is obtained via
x f = G(z; c) with z � N (0; I d), andc is a random variable
(with a discrete Uniform distribution) and also denotes its
instance. Since the teacher may not be a perfect inverse of
G with respect to the conditional labelc, we introduce two
methods to ensure a high classi�cation accuracy.

First, we use the EMA parameters of the teacher to compute
the arti�cial labelsŷc of real images,i.e., we compute

ŷc = arg max
i

Ci (� (x r ); �� C ): (8)

Second, because the arti�cial labelsŷc are inaccurate espe-
cially during the early epochs of the training, we introduce
a selection mechanism called self-attention. We �rst de�ne
thereliability of the arti�cial labels via the softmax of the
classi�er output

pc =
exp(Cŷc (� (x r ); �� C ))

P K
i =1 exp(Ci (� (x r ); �� C ))

; (9)

whereK is the number of the arti�cial classes. As we show
in the experiments, the reliability yields a high value with
real images that are distinctively similar to generated fake
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Table 1.Ablation study on the unlabeled CIFAR-10. We show
that both self-labeling and self-attention are necessary to improve
the GAN training.

SELF- SELF- FID-5EP FIDLABELING ATTENTION

(A) - - 7:45 � 0:17 6:96 � 0:20
(B) X - 7:74 � 0:20 7:00 � 0:34
(C) X X 7:28 � 0:11 6:81 � 0:13

images, and when these fake images are well separated into
different clusters. Then, self-attention selects real images
x r such thatpc � Th, where the thresholdTh 2 [0; 1].

3.2. Training with Arti�cial (and Real) Labels

The conditional adversarial loss for conventional cGANs
uses the supervised class labelsy and arti�cial labelsc for
real images and fake images respectively as shown in Eq. (3).
With real images without supervised class labelsy, we use
instead the arti�cial labelŝyc.

The discriminator has 2 heads, one for the unconditional
fake/real adversarial loss and another for the conditional
adversarial loss. The losses for the discriminatorL D and
the generatorL G are simply the sum of the corresponding
conditional and unconditional losses

L D = L U
D + L C

D ; L G = L U
G + L C

G : (10)

The loss functionsL U
D , L U

G , andL C
G are shown in Eqs. (1),

(2) and (4). The loss functionL C
D instead is de�ned so that

it can be applied to a dataset with any degree of labeling
(from 0%to 100%) as

L C
D = � E f x r ;y jwith labelg[logP(real; yjx r )]

� E f x r ;ŷc j no label^ pc � T h g[logP(real; ŷcjx r )]

� Ex f ;c [logP(fake; cjx f )]: (11)

The loss function uses arti�cial labelŝyc obtained from the
teacher as shown in Eq. (8). As explained in subsection 3.1,
we calculate the loss only on images where the reliability
pc is higher than a thresholdTh, because unreliable labels
have an adverse effect on the training of the discriminator.
We update the teacher, the discriminator, and the generator
simultaneously via Eqs. (7), (9) and (10). We can train
cGAN on unlabeled dataset, because these loss terms are
well-de�ned even in the absence of real labels.

We show the network architecture of our method in Figure 2.
The components were already introduced in Figure 1 (d).

3.3. Implementation

Teacher: We employ Resnet18 (He et al., 2016) with a
head ofK outputs as the backbone of the teacher. We use

Algorithm 1 Uni�ed GAN Training

Input: Parameters of the generator� G , the discriminator
� D , the teacher� C , the number of arti�cial classesK ,
and the thresholdTh
for the number of training iterationsdo

Sample batchz � p(z), c � p(c), x r � preal (x r )
Step1. Update teacher: subsection 3.1
L C  SoftmaxCrossEntropy(c; C(A(x f )) Eq. (7)
� C  MomentumOptimizer(L C )
�� C  ExponentialMovingAverage(� C )
ŷc  arg max i Ci (� (x r ); �� C ) (self-labeling) Eq. (8)
pc  Softmax(Cŷc (� (x r ); �� C )) Eq. (9)
Step 2. Update cGAN: subsection 3.2
x f  G(c; z)
L U

D  Hinge(D U (x r ))+ Hinge(� D U (x f )) Eq. (1)
S  if pc � Th then 1 else0 (self-attention)
L C

D  S� MultiClassHinge(ŷc; D C (x r ))
+ MultiClassHinge(c + K; D C (x f )) Eq. (11)

� D  AdamOptimizer(L U
D + L C

D )
L U

G  Hinge(D U (G(c; z))) Eq. (2)
L C

G  MultiClassHinge(c; DC (G(c; z)) Eq. (4)
� G  AdamOptimizer(L U

G + L C
G )

end for

Table 2.Comparison on the unlabeled CIFAR-10.

METHOD FID

BIGGAN (BROCK ET AL., 2019) 14:73
SS-GAN (CHEN ET AL., 2019A) 15:60
MS-GAN (TRAN ET AL ., 2019) 11:40
TOP-K GAN (SINHA ET AL ., 2020) 13:34
ICR-GAN (ZHAO ET AL ., 2020C) 9:21
SLCGAN (NOROOZI, 2020) 8:95
TOP-K ICR-GAN (SINHA ET AL ., 2020) 8:57
OURS 6:81

the multi-class cross entropy loss for the classi�cation loss.
The strong image augmentation functionA is RandAug-
ment (Cubuk et al., 2020) and the weak image augmentation
function � consists of random horizontal-�ips and shifts
between� 4 pixels.

Conditional GAN: We employ BigGAN (Brock et al.,
2019) for the backbones of the generator (to which we add
the conditional label input) and the discriminator. We also
add a fully connected layer of2K outputs and a U-Net de-
coder (Scḧonfeld et al., 2020) ofW � H outputs,i.e., the
same size of the training image after the global pooling layer
of the discriminator, as the heads for conditional adversarial
loss and unconditional adversarial loss respectively. We use
the hinge loss for the unconditional adversarial loss and the
multi-class hinge loss for the conditional adversarial loss. To
stabilize the training, we apply the following GAN training
techniques: differentiable augmentation (Zhao et al., 2020a),




