
Decision-Making Under Selective Labels:
Optimal Finite-Domain Policies and Beyond

Dennis Wei 1

Abstract
Selective labels are a common feature of high-
stakes decision-making applications, referring to
the lack of observed outcomes under one of the
possible decisions. This paper studies the learning
of decision policies in the face of selective labels,
in an online setting that balances learning costs
against future utility. In the homogeneous case in
which individuals’ features are disregarded, the
optimal decision policy is shown to be a threshold
policy. The threshold becomes more stringent as
more labels are collected; the rate at which this
occurs is characterized. In the case of features
drawn from a finite domain, the optimal policy
consists of multiple homogeneous policies in par-
allel. For the general infinite-domain case, the
homogeneous policy is extended by using a prob-
abilistic classifier and bootstrapping to provide
its inputs. In experiments on synthetic and real
data, the proposed policies achieve consistently
superior utility with no parameter tuning in the
finite-domain case and lower parameter sensitivity
in the general case.

1. Introduction
The problem of selective labels is common to many high-
stakes decision-making scenarios affecting human subjects.
In these scenarios, individuals receive binary decisions,
which will be referred to generically as acceptance or re-
jection. If the decision is to accept, then an outcome label
is observed, which determines the utility of the decision.
However if the decision is to reject, no outcome is observed.
In lending for example, the decision is whether to offer or
deny the loan, and the outcome of repayment or default is
observed only if the loan is made. In pre-trial bail decisions,
the outcome is whether a defendant returns to court with-
out committing another offense, but there is no opportunity
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to observe it if bail is denied. In hiring, a candidate’s job
performance is observed only if they are hired.

The prevalence and challenges of selective labels were re-
cently emphasized by Lakkaraju et al. (2017), who studied
the evaluation of machine learning models in comparison to
human decision-makers using data labelled selectively by
the human decisions themselves. The subject of the present
paper is the learning of decision policies in the face of se-
lective labels. This problem was addressed indirectly by
De-Arteaga et al. (2018), who proposed label imputation
in regions of high human confidence, and more deeply by
Kilbertus et al. (2020). In the latter paper, the goal is to max-
imize expected utility (possibly including a fairness penalty)
over a held-out population, given data and labels collected
selectively by a suboptimal existing policy. Kilbertus et al.
(2020) showed that an existing policy that is deterministic,
commonly achieved by thresholding the output of a predic-
tive model, may condemn future policies to suboptimality.
However, if the existing policy is stochastic and “explor-
ing”, then the optimal policy can be learned and a stochastic
gradient ascent algorithm is proposed to do so.

This paper studies an online formulation of the selective
labels problem, presented in Section 2, that accounts for
the costs of decisions taken during learning and seeks to
maximize discounted total reward. This contrasts with Kil-
bertus et al. (2020) where learning costs do not enter into
the objective of held-out utility. Also unlike Kilbertus et al.
(2020), there is no need for labelled data from an existing
exploring policy. The online formulation brings the problem
closer to one of contextual bandits, with which comparisons
are made throughout the paper.

The approach taken herein is to first solve a simpler spe-
cial case and then explore the extent to which this solution
can generalize. Specifically, in Section 3, it is assumed
that individuals are drawn from a homogeneous population,
without features to distinguish them. By formulating the
problem as a partially observable Markov decision process
(POMDP) and applying dynamic programming, the opti-
mal acceptance policy is shown to be a threshold policy on
the estimated probability of success. Properties of the opti-
mal policy are derived. These show that the policy becomes
more stringent (i.e., the rejection set grows) as more observa-
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tions are collected, which is reminiscent of upper confidence
bound (UCB) policies (Auer et al., 2002; Chu et al., 2011;
Abbasi-Yadkori et al., 2011). The rate of convergence of the
decision threshold is characterized.

Generalizing from the homogeneous case to one with fea-
tures X , Section 4 shows that the optimal decision policy
for any finite feature domain X consists of multiple optimal
homogeneous policies in parallel, one for each x 2 X , and
each with an effective discount factor that depends on the
probability distribution of X . For infinite and continuous
domains, Section 5 proposes to leverage the optimal homo-
geneous policy, using a probabilistic classifier (e.g. logistic
regression) and bootstrap estimates of uncertainty to supply
the inputs required by the homogeneous policy.

The proposed policies are evaluated in experiments (re-
ported in Section 6) on synthetic data and two real-world
datasets featuring high-stakes decisions. Several conven-
tional, selective labels, and contextual bandit baselines are
used for comparison; efforts are made to re-implement or
adapt some of these. In the finite-domain case, while one
of the baselines can achieve optimal utility, the advantage
of the optimal policy of Section 4 is that it does so without
parameter tuning. In the general case, the extended homo-
geneous policy of Section 5 exhibits the highest utility and
lower parameter sensitivity than the next best alternatives.

Other related work In addition to contextual bandits
(Bietti et al., 2020; Foster et al., 2018; Agarwal et al., 2014;
Joseph et al., 2016), the selective labels problem is related
to policy learning (Dudı́k et al., 2011; Swaminathan &
Joachims, 2015; Athey & Wager, 2017; Kallus, 2018) and
causal inference (Hernán & Robins, 2020) in that only the
outcome resulting from the selected action is observed. It is
distinguished by there being no observation at all in the case
of rejection. Notwithstanding this difference, it is possible
to view the online formulation considered herein as a sim-
pler special kind of bandit problem, as noted in Section 2.
This simplicity makes it amenable to an optimal dynamic
programming approach as opted for in this paper.

Limited feedback phenomena similar to selective labels
have been considered in the literature on social aspects of
ML, specifically as they relate to fairness and performance
evaluation (Kallus & Zhou, 2018; Coston et al., 2020) and
applications such as predictive policing (Lum & Isaac, 2016;
Ensign et al., 2018). Notably, Bechavod et al. (2019) study
a similar selective labels problem and the effect of group
fairness constraints on regret. These problems, in which
algorithm-driven decisions affect subsequent data observa-
tion, fit into a larger and growing literature on dynamics
induced by the deployment of ML models (Liu et al., 2018;
Hashimoto et al., 2018; Hu & Chen, 2018; Mouzannar et al.,
2019; Heidari et al., 2019; Zhang et al., 2019; Perdomo
et al., 2020; Creager et al., 2020; Rosenfeld et al., 2020;

Tsirtsis & Gomez-Rodriguez, 2020; Zhang et al., 2020).
One distinction is that limited feedback problems such as
selective labels are present independent of whether and how
humans respond to ML decisions.

2. Problem Formulation
The selective labels problem studied in this paper is as fol-
lows: Individuals i = 0; 1; : : : arrive sequentially with
features xi 2 X . A decision of accept (ai = 1) or
reject (ai = 0) is made based on each individual’s xi
according to a decision policy � : X 7! [0; 1], where
�(x) = Pr(A = 1 j x) is the probability of acceptance.
The policy is thus permitted to be stochastic, although it
will be seen that this is not needed in some cases. If the
decision is to accept, then a binary outcome yi is observed,
with yi = 1 representing success and yi = 0 failure. If the
decision is to reject, then no outcome is observed, hence the
term selective labels. Individuals’ features and outcomes
are independently and identically distributed according to a
joint distribution p(x; y) = p(y j x)p(x).

Decisions and outcomes incur rewards according to ai(yi �
c) for c 2 (0; 1), following the formulation of Kilbertus et al.
(2020); Corbett-Davies et al. (2017), i.e., a reward of 1� c
if acceptance leads to success, �c if acceptance leads to
failure, and 0 if the individual is rejected. The assumptions
underlying this formulation deserve further comment. As
noted by Kilbertus et al. (2020), the cost of rejection, whose
general form is (1 � ai)g(yi), is unobservable due to the
lack of labels (although rejection is presumably negative for
the individual). It is assumed therefore that g is constant,
the reward from success is greater than g, and the reward
(i.e. cost) from failure is less than g. Domain knowledge
can inform the reward/cost of success/failure relative to
rejection. For example in lending, the decision-maker’s
(lender’s) rewards are fairly clear: interest earned in the case
of success (repayment), loss of principal (or some expected
fraction thereof) in the case of failure (default), and little to
no cost for rejection. The individual’s rewards may also be
taken into account although harder to quantify, for example
accomplishing the objective of the loan (e.g. owning a home)
or damage to creditworthiness from a default (Liu et al.,
2018). It might even be possible to learn the cost of rejection
through an alternative feedback mechanism. For example, a
lender could follow up with a subset of its rejected applicants
to understand the impact on their lives. In any case, once
the three reward values are determined, they can then be
linearly transformed to 1 � c, �c, and 0 without loss of
generality.

The objective of utility is quantified by the expectation of
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the discounted in�nite sum of rewards,

E

"
1X

i =0


 i ai (yi � c)

#

= E

"
1X

i =0


 i �( x i )( � (x i ) � c)

#

(1)
for some discount factor
 < 1, where we have de�ned the
conditionalsuccess probability� (x) := p(Y = 1 j x). The
right-hand side of(1) results from taking the conditional ex-
pectation givenx i , leaving an expectation overx i � p(x).
The right-hand expectation indicates that the problem of
determining policy�( x) can be decomposed (at least con-
ceptually) over values ofX . This is clearest in the case of
a discrete domainX , for which the expectation is a sum,
weighted byp(x). The decomposition motivates the study
of a simpler problem in whichx is �xed or dropped, re-
sulting in a homogeneous population. This “homogeneous”
problem is the subject of Section 3. We then consider how
to leverage the solution to the homogeneous problem in later
sections.

It is also possible to treat the selective labels problem as a
special contextual bandit problem with two possible actions
(accept/reject), where the reward from rejection is further-
more taken to be zero as discussed above. The following
sections show that the approach of starting with the homo-
geneous setting allows the optimal policy to be determined
in the case of �niteX . An empirical comparison with con-
textual bandit algorithms is reported in Section 6. It should
also be noted that while the cost of rejection is assumed to
be a constant, therelativeutility of rejection isc � � (x i )
from (1), which is not constant and requires estimation of
� (x).

Kilbertus et al. (2020) formulate a fairness objective in
addition to utility but this will not be considered herein.

3. The Homogeneous Case

In the homogeneous case with no featuresX , the success
probability reduces to a single parameter� := p(yi = 1) . If
� is known, then the policy that maximizes(1) is immediate:
� � (� ) = 1(� > c ), where1(�) is the indicator function that
yields1 when its argument is true. The optimal utility is

V � (�; 1 ) =
1X

i =0


 i maxf � � c;0g =
maxf � � c;0g

1 � 

:

(2)
As will be explained more fully below, the1 in V � (�; 1 )
denotes exact knowledge of� , i.e. from an in�nite sample.

The challenge of course is that� is not known but must be
learned as decisions are made. The approach taken herein is
to regard the case of known� as a Markov decision process
(MDP) with state� and no dynamics (i.e.� i +1 = � i ). The
case of unknown� is then treated as the corresponding
partially observable MDP (POMDP) using abelief statefor

� (Bertsekas, 2005, Sec. 5.4).

To de�ne the belief state, a beta distribution prior is placed
on � : � 0 � B (� 0; � 0 � � 0), where the shape parameters
� = � 0, � = � 0 � � 0 are expressed in terms of a num-
ber� 0 of “pseudo-successes” in� 0 “pseudo-observations”.
Since� is the parameter of a Bernoulli random variable,
the beta distribution is a conjugate prior. It follows that the
posterior distribution of� before individuali arrives, given
� 0

i =
P i � 1

j =0 aj outcomes and� 0
i =

P i � 1
j =0 aj yj successes

observed thus far, is also beta,� i � B (� i ; � i � � i ), with
� i = � 0 + � 0

i and� i = � 0 + � 0
i . Thus we de�ne the pair

� i := � i =� i = E [� i ] and� i as the belief state for� , equiv-
alently using the mean� i in place of� i . The acceptance
policy is also made a function of the belief state,�( � i ; � i ).

The initial state(� 0; � 0), i.e. the parameters of the prior, can
be chosen based on an initial belief about� . This choice is
clearer when outcome data has already been collected by
an existing policy, in which case� 0 can be the number of
outcomes observed and� 0 the empirical mean.

De�ne V � (�; � ) to be the value function at state(�; � ) un-
der policy� , i.e., the expected discounted sum of rewards
from following � starting from state(�; � ). The indexi
is dropped henceforth because the dependence is on(�; � ),
irrespective of the number of rounds needed to attain this
state. In Appendix A.1, the dynamic programming recursion
that governsV � (�; � ) is derived. By optimizing this recur-
sion with respect to the acceptance probabilities�( �; � ),
we obtain the following result.

Theorem 1. For the homogeneous selective labels prob-
lem, the optimal acceptance policy that maximizes dis-
counted total reward(1) is a threshold policy:� � (�; � ) =
1(V � (�; � ) > 0), where the optimal value function
V � (�; � ) satis�es the recursion

V � (�; � ) = max
�

� � c + 

�
�V �

�
�� + 1
� + 1

; � + 1
�

+ (1 � � )V �
�

��
� + 1

; � + 1
��

; 0
�

: (3)

Theorem 1 shows that the optimal homogeneous policy does
not require stochasticity. It also shows that the problem is
one of optimal stopping(Bertsekas, 2005, Sec. 4.4): in
each state(�; � ), there is the option (�( �; � ) = 0 ) to stop
accepting and thus stop observing, which freezes the state
at (�; � ) thereafter with zero reward. The optimal policy is
thus characterized by thestoppingor rejection set, the set
of (�; � ) at which it is optimal to stop because the expected
reward from continuing is negative.

In the limiting case as� ! 1 , V � (�; � ) and� � (�; � ) are
known explicitly. This is because the mean� converges to
the true success probability� , by the law of large numbers.
We therefore have� � (�; 1 ) = 1(� > c ) andV � (�; 1 ) as
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given in (2), explaining the previous notation. The corre-
sponding stopping set is the interval[0; c].

Connection to one-armed bandit The above formula-
tion and dynamic programming solution are related to the
“one-armed bandit” construction of Weber (1992) and its
corresponding Gittins index. Speci�cally, upon de�ning
belief state(�; � ), the homogeneous problem conforms to
the formulation of Weber (1992):(�; � ) is the state (x j (t)
in Weber's notation), rewards are a function of this state,
and(�; � ) evolve in a Markov fashion upon each accep-
tance. One might expect therefore that the optimal ho-
mogeneous policy of Theorem 1 is equivalent to the Git-
tins index policy, and indeed this is the case. For a “one-
armed bandit” where the cost of the “reject” arm is taken
to be zero, it suf�ces to determine whether the expected
discounted total reward that appears in the Gittins index,

sup� E
hP � � 1

t =0 
 t Rj (x j (t)) j x j (0) = x
i
, is positive. Here

the supremum is taken over stopping times� . The proposed
dynamic programming approach summarized by Theorem 1
can be seen as an explicit way of computing the supremum
(which Weber does not discuss): we either stop at� = 0 , or
continue so that� is at least1 and consider the same stop-
ping question for the possible next statesx j (1), weighted
appropriately.

Approximation of optimal policy For �nite � , a natural
way of approximatingV � (�; � ) is as follows: Choose a
large integerN , which will also index the approximation,
V N (�; � ), and setV N (�; N +1) = V � (�; 1 ), the in�nite-
sample value function(2). Then use(3) with V N in place of
V � to recursively computeV N (�; � ) for � = N; N � 1; : : : .
The corresponding policy is� N (�; � ) = 1(V N (�; � ) > 0).
Note that(3) is valid for all � 2 [0; 1], not just integer
multiples of1=� ; this can be seen by allowing the initial
parameter� 0 to range over real values.

Figure 1 plots the result of the above computation forN =
1000, c = 0 :8, and 
 = 0 :99 (a second example is in
Appendix B). The plot suggests thatV N (�; � ) � V N (�; � +
1) and thatV N (�; � ) is a non-decreasing convex function
of � for all � . It also shows thatV N (�; � ) is quite close to
V N (�; 1001) = V � (�; 1 ) for large� > 100.

Properties of optimal policy The properties suggested
by Figure 1 do in fact hold generally (all proofs in Appendix
A).

Proposition 2. The optimal value functionV � (�; � ) is non-
decreasing and convex in� for all � .

Proposition 3. The optimal value functionV � (�; � ) is non-
increasing in� , i.e.V � (�; � ) � V � (�; � + 1) 8 � 2 [0; 1].

Other optimal stopping problems are known to have similar
monotonicity and convexity properties (Bertsekas, 2005).

Monotonicity in both� and� implies that the stopping set at

Figure 1.Optimal value function approximationsV N (�; � ) for
N = 1000, c = 0 :8, and
 = 0 :99.

sample size� , f � : V � (�; � ) � 0g, is an interval[0; c� ] that
grows as� increases,c� � c� +1 � � � � � c. In other words,
the acceptance policy is more lenient in early stages and
gradually approaches the policy for known� . The following
result bounds the differencec � c� .

Proposition 4. The difference between the acceptance
thresholdc� for sample size� and the in�nite-sample thresh-
old c is bounded as follows:

c � c� �

 � 2F1(1; � ; � + 2; 
 )

� + 1 � 
 � 2F1(1; � ; � + 2; 
 )
(1 � c)

�

 minf 1=(1 � 
 ); � + 1g

� + 1 � 
 minf 1=(1 � 
 ); � + 1g
(1 � c);

where2F1(a; b; c; z) is the Gaussian hypergeometric func-
tion.

From the second, looser upper bound above, it can be seen
that for � > 1=(1 � 
 ), c � c� decays asO(1=� ). It is
interesting to compare this behaviour to UCB policies (Auer
et al., 2002; Chu et al., 2011; Abbasi-Yadkori et al., 2011;
Filippi et al., 2010; Li et al., 2017). An acceptance threshold
c� is equivalent to adding a marginc� c� to the mean� (i.e.,
yielding a UCB) and comparing withc. Typically however,
con�dence intervals are proportional to the standard devia-
tion and scale as1=

p
� , as is the case for a beta or binomial

distribution. The1=� rate implied by Proposition 4 for large
� is thus faster.

The analysis that leads to Proposition 4 can be extended to
also provide bounds on the approximationV N (�; � ).

Proposition 5. For � = N + 1 ; N; : : : and all � 2 [0; 1],

0 � V � (�; � ) � V N (�; � )

�

 N +2 � �

2F1(1; N + 1; N + 3; 
 )
N + 2

V � (1; � ):

Similar to Proposition 4, forN > 1=(1 � 
 ), the approxi-
mation error decays as1=N (
 N =N for �xed � ).
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In Appendix C, the case ofundiscounted averagereward
(in contrast to(1)) over an in�nite horizon is also analyzed.
There the optimal policy is found to have positive acceptance
probability regardless of the belief state. This is reminis-
cent of the exploring policies of Kilbertus et al. (2020) and
contrasts with the case of discounted total reward (1).

4. The Finite-Domain Case

In this section, we move from the homogeneous case to
one where featuresX are present and take a �nite number
of values. As discussed in Section 2, the decomposability
of (1) into a sum overx 2 X implies that the optimal
decision policy consists of multiple optimal homogeneous
policies in parallel, one for eachx 2 X . Accordingly, a
beta distribution is now posited for each conditional success
probability� (x), parametrized by state variables� (x) and
� (x): � (x) is the number of acceptances with feature value
x, plus pseudo-counts from the prior on� (x), while � (x)
is the fraction of successes among acceptances atx, again
accounting for prior pseudo-counts.

The difference with respect to the homogeneous case is that
theeffective discount factorseen at each valuex is not equal
to the
 in (1) but depends onx as follows:

�
 (x) =

p (x)

1 � 
 (1 � p(x))
: (4)

Intuitively, the effective discount factor�
 (x) arises because
successive arrivals of individuals with valuex are separated
not by one time unit but by a random, geometrically dis-
tributed time that depends onp(x).

Denote by� � (�; � ; 
 ) the optimal homogeneous policy that
uses discount factor
 in (3) and(2), andV � (�; � ; 
 ) the
corresponding optimal value function. Then the optimal
�nite-domain policy can be stated as follows.

Theorem 6. Assume that the featuresX have �nite cardi-
nality, jX j < 1 . Then the optimal acceptance policy is
to use optimal homogeneous policies� �

�
� (x); � (x); �
 (x)

�

independently for eachx 2 X , where�
 (x) is the effective
discount factor in(4).

Appendix A.5 provides a derivation of(4) to prove Theo-
rem 6.

Computing the effective discount factors(4) requires knowl-
edge of the distributionp(x). In the usual case wherep(x)
is not known,�
 (x) may be estimated empirically. Denoting
by I 1; I 2; : : : ; I m the inter-arrival times observed atx thus
far, the estimated effective discount factor is

�̂
 (x) =
1
m

mX

j =1


 I j : (5)

5. The General Case

We now consider the general case in which the features
X are continuous orX is still discrete but the cardinality
of X is large. In these cases, it is no longer possible or
statistically reliable to represent the state of knowledge by
counts of acceptances and successes.

In this paper, we investigate the extent to which the optimal
homogeneous policy can be successfully carried over to
the general setting. The development of more involved
policies is left to future work. The continued use of the
homogeneous policy is motivated by two reasons: �rst,
its optimality for �nite domains, which might be used to
approximate an in�nite or continuous domain, and second,
the ease of computing the approximationV N (�; � ) (taking
milliseconds on a MacBook Pro forN = 1000 in Figure 1).

The application of the homogeneous policy,
i.e. � � (� (x); � (x); �
 ), requires three inputs: (1) The
mean parameter� (x) of the beta distribution assumed for
the conditional success probability� (x); (2) The sample
size parameter� (x) of � (x); (3) The discount factor�

that determines the trade-off between exploration and
exploitation. These are discussed in turn below.

Conditional mean � (x) With � (x) assumed to be ran-
dom, we havePr(Y = 1 j x) = E [� (x)] = � (x). Estima-
tion of � (x) is equivalent therefore to the standard prob-
abilistic classi�cation problem of approximatingPr(Y =
1 j x). This may be accomplished by training a model�̂ (x)
to minimize log loss (e.g. logistic regression) on accepted
individuals, i.e., those for whichY labels are available.

Conditional sample size� (x) In the �nite case,� (x) is
the sample size parameter of the beta posterior for� (x). It
is thus equal (possibly with a constant offset) to the number
of labels observed forx and may be seen as a measure of
con�dence in the conditional mean� (x). This suggests
measuring con�dence in the predictions of the model�̂ (x)
used to approximate� (x) in the more general case.

The above idea is realized herein via bootstrap sampling.
For a givenx, let �̂ 1(x); : : : ; �̂ K (x) beK estimates of the
conditional mean fromK models trained on bootstrap re-
samples of the labelled population. (The “master” model
�̂ (x) from above, trained on the full labelled population, is
separately maintained.) This set ofK estimates is regarded
as an approximation to the posterior distribution of� (x), in
a similar spirit as in Eckles & Kaptein (2014); Osband &
Roy (2015). Fitting a beta distribution tô� 1(x); : : : ; �̂ K (x),
the parameter� (x) is estimated by the method of moments
as

�̂ (x) =
�̂� (x)(1 � �̂� (x))

var( �̂ (x))
� 1; (6)

where�̂� (x) andvar( �̂ (x)) are the sample mean and sample
variance of̂� 1(x); : : : ; �̂ K (x).
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Note that the above methods of estimating� (x) and� (x) do
not require speci�cation of prior parameters� 0(x), � 0(x),
unlike in the homogeneous and �nite-domain cases.

Discount factor �
 In the homogeneous and �nite-domain
cases, the effective discount factor�
 (x) used by the policy
is either equal to the given discount factor
 in (1) or can
be determined from the probability distribution ofX . For
the general case,�
 (x) � �
 is left as a single free parameter
of the policy (independent ofx), to be tuned to balance ex-
ploration and exploitation. The results in Section 6 indicate
that performance is relatively insensitive to�
 .

Intuitively, one expects good values for�
 to lie below
 ,
as they do in the �nite-domain case(4). The reason is that
when the conditional mean� (x) is estimated by a model,
accepting an individual and observing a label at one valuex
also decreases uncertainty in� (x) at other valuesx through
an update to the model. In contrast, in the �nite-domain case,
� (x) for x 2 X are modelled independently. This indirect
reduction of uncertainty (related to the intrinsic exploration
of greedy policies analyzed by Bastani et al. (2020); Kannan
et al. (2018)) reduces the need for exploration and favours
smaller�
 . Further analysis and the possibility of setting�

automatically are left for future work.

Practical aspects The quantitieŝ� (x) and�̂ (x) are ide-
ally updated after each new observation. For computational
ef�ciency, online learning and the online bootstrap (Eckles
& Kaptein, 2014; Osband & Roy, 2015) are used to per-
form these updates. Speci�cally, this work makes use of the
Vowpal Wabbit (VW) library1 for online learning and the
“double-or-nothing” bootstrap: for each of theK bootstrap
samples, a new observation is added twice with probability
1=2 or is not added. Other unit-mean distributions over non-
negative integers (e.g.Poisson(1) in Bietti et al. (2020))
could also be used.

The estimatê� (x) (6) is generally not an integer. In this
work, �̂ (x) is simply rounded to the nearest integer and
truncated if needed toN +1 , the largest value in the approx-
imationV N (�; N +1) = V � (�; 1 ). To handle real-valued
�̂ (x), recursion(3), which is valid for all� 2 [0; 1] as dis-
cussed in Section 3, is pre-computed on a dense grid of�
values and then linearly interpolated as needed.

6. Experiments

Experiments are conducted on synthetic data (Section 6.2)
to evaluate the optimal �nite-domain policy of Section 4,
as well as on two real-world datasets with high-stakes deci-
sions (Section 6.3) to evaluate the extended homogeneous
policy of Section 5. In all cases, a selective labels problem is
simulated from a labelled dataset of(x i ; yi ) pairs by present-

1https://vowpalwabbit.org

ing featuresx i of individuals one by one and only revealing
the outcomeyi to the algorithm if the decision is to accept.
In addition, to provide an initial training (i.e. exploration)
set, the �rstB0 individuals are always accepted and their
outcomes are observed. Notably, the rewards/costs incurred
from collecting this training data are counted toward the
total utility. The effects of varyingB0 are studied.

The proposed policies are compared to a conventional base-
line, the selective-labels-speci�c method of Kilbertus et al.
(2020), and contextual bandit algorithms, described in Sec-
tion 6.1. For both computational ef�ciency and fair compar-
ison, the supervised learning models upon which all of these
policies rely are trained online using VW. For the �nite-
domain experiments in which modelling is not necessary,
the Bayesian approach of Section 4 is used to update� (x),
� (x) for all policies. Appendix D.2 provides more details.

6.1. Baselines

Greedy (G) This baseline represents the conventional
approach of training a success probability model�̂ (x) on
the initial training set of sizeB0, and then accepting and
collecting labels from only individuals for whom the predic-
tion �̂ (x i ) exceeds the thresholdc. The labels of accepted
individuals are used to update the model. Since the policy
1(�̂ (x i ) > c ) maximizes the immediate expected reward,
this baseline will be referred to as the greedy policy.

Consequential Learning (CL, CLVW) The CL algo-
rithm (Kilbertus et al., 2020, Alg. 1) is re-implemented for
the case of no fairness penalty (� = 0 ) and policy updates
after every acceptance/observation (N = 1 ). These set-
tings bring it in line with other methods compared. Update
equations are given in Appendix D.1.1. While the paper
of Kilbertus et al. (2020) does link to a code repository,
no code was available as of this writing. Furthermore, CL
uses “plain” stochastic gradient updates, whereas VW uses a
more sophisticated algorithm. For this reason, a VW version
of CL (CL-VW) was also implemented, also described in
Appendix D.1.1.

Contextual bandit algorithms As noted in Section 2,
the selective labels problem can be treated as a contextual
bandit problem. Accordingly, four representative contextual
bandit algorithms are compared:� -greedy (� G) (Langford
& Zhang, 2008), bootstrap Thompson sampling/bagging
(Eckles & Kaptein, 2014; Osband & Roy, 2015), Online
Cover (Agarwal et al., 2014), and RegCB (Foster et al.,
2018), which is a generalization of LinUCB (Chu et al.,
2011; Abbasi-Yadkori et al., 2011). These are chosen be-
cause they are practical algorithms extensively evaluated in
a recent contextual bandit “bake-off” (Bietti et al., 2020)
and are implemented in VW. More speci�cally, based on the
recommendations of Bietti et al. (2020), the chosen variants
are greedy bagging (B-g), Online Cover with no uniform
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exploration (C-nu), and optimistic RegCB (R-o). Parameter
settings and tuning are discussed in Appendix D.3.

The selective labels problem herein differs from a two-arm
contextual bandit in that the cost of rejection is assumed
to be zero, an assumption that is not used by the four algo-
rithms above. In an attempt to mitigate this possible disad-
vantage, each algorithm was given the option of observing
one pass through the entire dataset in which all individuals
are rejected with a cost of zero. This did not appear to im-
prove performance appreciably, possibly because the reward
estimators in VW are already initialized at zero.

RegCB-Optimistic (R-o, R-osl) The R-o algorithm is
of particular interest for two reasons. First, it is a UCB
policy with similar structure to the optimal homogeneous
policy, as discussed in Section 3. Second, it performed
best overall in the bake-off of Bietti et al. (2020). In the
experiments herein however, the VW implementation of
R-o performed less well (see Appendix D.5). The likely
reason is that it does not take advantage of the zero-cost
assumption for rejection, despite the rejection pass through
the data mentioned above.

To improve the performance of R-o, a specialized version
that does exploit the zero-cost assumption was implemented,
referred to as R-osl. R-o makes the decision with the highest
UCB on its expected reward. Since rejection is assumed to
have zero cost while the expected reward of acceptance is
�̂ (x) � c, this reduces to determining whether the UCB on
�̂ (x) exceedsc. More details are in Appendix D.1.2.

6.2. Finite-Domain Experiments

The experiments on synthetic data address the �nite-domain
setting and focus on two questions: (1) the effect of having
to estimate the effective discount factors�
 (x) on the per-
formance of the optimal policy, and (2) comparison of the
optimal policy to various baselines.

Synthetic data generation Given a cardinalityjX j , the
probability distributionp(x) is sampled from the �at Dirich-
let (i.e. uniform) distribution over thejX j � 1-dimensional
simplex. Success probabilities� (x) = Pr( Y = 1 j x)
are sampled from the uniform distribution over[0; 1], inde-
pendently forx = 0 ; : : : ; jX j � 1. ThenT pairs(x i ; yi ),
i = 0 ; : : : ; T � 1 are drawn from the joint distribution of
(X; Y ). This generation procedure is repeated1000times
for each cardinalityjX j and thresholdc. Means and standard
errors in the means are computed from these repetitions.

For evaluation, rewards are summed using the discount
factor
 = 0 :999. The number of roundsT is set to5=(1� 
 )
so that the sum of truncated discount weights,

P 1
t = T 
 t , is

less than1%of the total sum
P 1

t =0 
 t .

Homogeneous policy variants Three variants of the op-

Figure 2.Discounted total rewards (discount factor
 = 0 :999) on
�nite domainsX .

timal/homogeneous policy are compared. The �rst (abbrevi-
ated O-t, `t' for “true”) is given access top(x) and computes
the effective discount factors�
 (x) using(4). The second,
more realistic variant (O-e, “estimate”) is not givenp(x)
and instead estimates�
 (x) using(5). The third (O-u, “uni-
form”) does not estimate�
 (x), instead assuming a uniform
distributionp(x) = 1 =jX j and using that in (4).

Modi�cations to baselines The most noteworthy change
is to bagging, which is an approximation of Thompson
sampling (TS). The latter can be implemented directly in the
�nite-domain case. TS chooses acceptance with probability
Pr( � i (x) > c ), i.e., the probability that the reward from
acceptance is greater than zero. Other modi�cations are
described in Appendix D.1.

Results Figure 2 shows the discounted total rewards
achieved forjX j 2 f 3; 10g andc 2 f 0:6; 0:8g. Plots for
additional(jX j ; c) pairs are in Appendix D.5. In general,
greater differences are seen asc varies compared tojX j .

In the �rst two rows of Figure 2, the total reward is plotted
as a function of the sizeB0 of the initial training batch. For


