Decision-Making Under Selective Labels: Optimal Finite-Domain Policies and Beyond

Dennis Wei

Abstract
Selective labels are a common feature of high-stakes decision-making applications, referring to the lack of observed outcomes under one of the possible decisions. This paper studies the learning of decision policies in the face of selective labels, in an online setting that balances learning costs against future utility. In the homogeneous case in which individuals’ features are disregarded, the optimal decision policy is shown to be a threshold policy. The threshold becomes more stringent as more labels are collected; the rate at which this occurs is characterized. In the case of features drawn from a finite domain, the optimal policy consists of multiple homogeneous policies in parallel. For the general infinite-domain case, the homogeneous policy is extended by using a probabilistic classifier and bootstrapping to provide its inputs. In experiments on synthetic and real data, the proposed policies achieve consistently superior utility with no parameter tuning in the finite-domain case and lower parameter sensitivity in the general case.

1. Introduction
The problem of selective labels is common to many high-stakes decision-making scenarios affecting human subjects. In these scenarios, individuals receive binary decisions, which will be referred to generically as acceptance or rejection. If the decision is to accept, then an outcome label is observed, which determines the utility of the decision. However if the decision is to reject, no outcome is observed. In lending for example, the decision is whether to offer or deny the loan, and the outcome of repayment or default is observed only if the loan is made. In pre-trial bail decisions, the outcome is whether a defendant returns to court without committing another offense, but there is no opportunity to observe it if bail is denied. In hiring, a candidate’s job performance is observed only if they are hired.

The prevalence and challenges of selective labels were recently emphasized by Lakkaraju et al. (2017), who studied the evaluation of machine learning models in comparison to human decision-makers using data labelled selectively by the human decisions themselves. The subject of the present paper is the learning of decision policies in the face of selective labels. This problem was addressed indirectly by De-Arteaga et al. (2018), who proposed label imputation in regions of high human confidence, and more deeply by Kilbertus et al. (2020). In the latter paper, the goal is to maximize expected utility (possibly including a fairness penalty) over a held-out population, given data and labels collected selectively by a suboptimal existing policy. Kilbertus et al. (2020) showed that an existing policy that is deterministic, commonly achieved by thresholding the output of a predictive model, may condemn future policies to suboptimality. However, if the existing policy is stochastic and “exploring”, then the optimal policy can be learned and a stochastic gradient ascent algorithm is proposed to do so.

This paper studies an online formulation of the selective labels problem, presented in Section 2, that accounts for the costs of decisions taken during learning and seeks to maximize discounted total reward. This contrasts with Kilbertus et al. (2020) where learning costs do not enter into the objective of held-out utility. Also unlike Kilbertus et al. (2020), there is no need for labelled data from an existing exploring policy. The online formulation brings the problem closer to one of contextual bandits, with which comparisons are made throughout the paper.

The approach taken herein is to first solve a simpler special case and then explore the extent to which this solution can generalize. Specifically, in Section 3, it is assumed that individuals are drawn from a homogeneous population, without features to distinguish them. By formulating the problem as a partially observable Markov decision process (POMDP) and applying dynamic programming, the optimal acceptance policy is shown to be a threshold policy on the estimated probability of success. Properties of the optimal policy are derived. These show that the policy becomes more stringent (i.e., the rejection set grows) as more observa-
tions are collected, which is reminiscent of upper confidence bound (UCB) policies (Auer et al., 2002; Chu et al., 2011; Abbasi-Yadkori et al., 2011). The rate of convergence of the decision threshold is characterized.

Generalizing from the homogeneous case to one with features \(X \), Section 4 shows that the optimal decision policy for any finite feature domain \(\mathcal{X} \) consists of multiple optimal homogeneous policies in parallel, one for each \(x \in \mathcal{X} \), and each with an effective discount factor that depends on the probability distribution of \(X \). For infinite and continuous domains, Section 5 proposes to leverage the optimal homogeneous policy, using a probabilistic classifier (e.g. logistic regression) and bootstrap estimates of uncertainty to supply the inputs required by the homogeneous policy.

The proposed policies are evaluated in experiments (reported in Section 6) on synthetic data and two real-world datasets featuring high-stakes decisions. Several conventional, selective labels, and contextual bandit baselines are used for comparison; efforts are made to re-implement or adapt some of these. In the finite-domain case, while one of the baselines can achieve optimal utility, the advantage of the optimal policy of Section 4 is that it does so without parameter tuning. In the general case, the extended homogeneous policy of Section 5 exhibits the highest utility and lower parameter sensitivity than the next best alternatives.

Other related work In addition to contextual bandits (Bietti et al., 2020; Foster et al., 2018; Agarwal et al., 2014; Joseph et al., 2016), the selective labels problem is related to policy learning (Dudík et al., 2011; Swaminathan & Joachims, 2015; Athey & Wager, 2017; Kallus, 2018) and causal inference (Hernán & Robins, 2020) in that only the outcome resulting from the selected action is observed. It is distinguished by there being no observation at all in the case of rejection. Notwithstanding this difference, it is possible to view the online formulation considered herein as a simpler special kind of bandit problem, as noted in Section 2. This simplicity makes it amenable to an optimal dynamic programming approach as opted for in this paper.

Limited feedback phenomena similar to selective labels have been considered in the literature on social aspects of ML, specifically as they relate to fairness and performance evaluation (Kallus & Zhou, 2018; Coston et al., 2020) and applications such as predictive policing (Lum & Isaac, 2016; Ensign et al., 2018). Notably, Bechavod et al. (2019) study a similar selective labels problem and the effect of group fairness constraints on regret. These problems, in which algorithm-driven decisions affect subsequent data observation, fit into a larger and growing literature on dynamics induced by the deployment of ML models (Liu et al., 2018; Hashimoto et al., 2018; Hu & Chen, 2018; Mouzannar et al., 2019; Heidari et al., 2019; Zhang et al., 2019; Perdomo et al., 2020; Creager et al., 2020; Rosenfeld et al., 2020; Tsirtsis & Gomez-Rodriguez, 2020; Zhang et al., 2020). One distinction is that limited feedback problems such as selective labels are present independent of whether and how humans respond to ML decisions.

2. Problem Formulation

The selective labels problem studied in this paper is as follows: Individuals \(i = 0, 1, \ldots \) arrive sequentially with features \(x_i \in \mathcal{X} \). A decision of accept \((a_i = 1) \) or reject \((a_i = 0) \) is made based on each individual’s \(x_i \), according to a decision policy \(\Pi : \mathcal{X} \rightarrow [0, 1] \), where \(\Pi(x) = \Pr(A = 1 \mid x) \) is the probability of acceptance. The policy is thus permitted to be stochastic, although it will be seen that this is not needed in some cases. If the decision is to accept, then a binary outcome \(y_i \) is observed, with \(y_i = 1 \) representing success and \(y_i = 0 \) failure. If the decision is to reject, then no outcome is observed, hence the term selective labels. Individuals’ features and outcomes are independently and identically distributed according to a joint distribution \(p(x, y) = p(y \mid x)p(x) \).

Decisions and outcomes incur rewards according to \(a_i(y_i - c) \) for \(c \in (0, 1) \), following the formulation of Kilbertus et al. (2020); Corbett-Davies et al. (2017), i.e., a reward of \(1 - c \) if acceptance leads to success, \(-c \) if acceptance leads to failure, and \(0 \) if the individual is rejected. The assumptions underlying this formulation deserve further comment. As noted by Kilbertus et al. (2020), the cost of rejection, whose general form is \((1 - a_i)g(y_i)\), is unobservable due to the lack of labels (although rejection is presumably negative for the individual). It is assumed therefore that \(g \) is constant, the reward from success is greater than \(g \), and the reward (i.e. cost) from failure is less than \(g \). Domain knowledge can inform the reward/cost of success/failure relative to rejection. For example in lending, the decision-maker’s (lender’s) rewards are fairly clear: interest earned in the case of success (repayment), loss of principal (or some expected fraction thereof) in the case of failure (default), and little to no cost for rejection. The individual’s rewards may also be taken into account although harder to quantify, for example accomplishing the objective of the loan (e.g. owning a home) or damage to creditworthiness from a default (Liu et al., 2018). It might even be possible to learn the cost of rejection through an alternative feedback mechanism. For example, a lender could follow up with a subset of its rejected applicants to understand the impact on their lives. In any case, once the three reward values are determined, they can then be linearly transformed to \(1 - c, -c, \) and \(0 \) without loss of generality.

The objective of utility is quantified by the expectation of
the discounted infinite sum of rewards,
\[
E \left[\sum_{i=0}^{\infty} \gamma^i a_i(y_i - c) \right] = E \left[\sum_{i=0}^{\infty} \gamma^i \Pi(x_i)(\rho(x_i) - c) \right] \tag{1}
\]
for some discount factor \(\gamma < 1 \), where we have defined the conditional success probability \(\rho(x) := p(Y = 1 \mid x) \). The right-hand side of (1) results from taking the conditional expectation given \(x_i \), leaving an expectation over \(x_i \sim \rho(x) \). The right-hand expectation indicates that the problem of determining policy \(\Pi(x) \) can be decomposed (at least conceptually) over values of \(X \). This is clearest in the case of a discrete domain \(X \), for which the expectation is a sum, weighted by \(p(x) \). The decomposition motivates the study of a simpler problem in which \(x \) is fixed or dropped, resulting in a homogeneous population. This “homogeneous” problem is the subject of Section 3. We then consider how to leverage the solution to the homogeneous problem in later sections.

It is also possible to treat the selective labels problem as a special contextual bandit problem with two possible actions (accept/reject), where the reward from rejection is further-weighted by \(\rho \). The challenge of course is that \(\rho \) partially observable MDP (POMDP) using a belief state \(\rho \) to regard the case of known learned as decisions are made. The approach taken herein is to regard the case of known \(\rho \) as a Markov decision process (MDP) with state \(\rho \) and no dynamics (i.e. \(\rho_{i+1} = \rho_i \)). The case of unknown \(\rho \) is then treated as the corresponding partially observable MDP (POMDP) using a belief state for \(\rho \) (Bertsekas, 2005, Sec. 5.4).

To define the belief state, a beta distribution prior is placed on \(\rho \): \(\rho_0 \sim B(\alpha_0, \beta_0) \), where the shape parameters \(\alpha = \alpha_0, \beta = \beta_0 - \alpha_0 \) are expressed in terms of a number \(\alpha_0 \) of “pseudo-successes” in \(\beta_0 \) “pseudo-observations”. Since \(\rho \) is the parameter of a Bernoulli random variable, the beta distribution is a conjugate prior. It follows that the posterior distribution of \(\rho \) before individual \(i \) arrives, given \(V_i = \sum_{j=0}^{i-1} a_j \) outcomes and \(V_i' = \sum_{j=0}^{i-1} a_j y_j \) successes observed thus far, is also beta, \(\rho_i \sim B(\alpha_i, \beta_i) \), with \(\alpha_i = \alpha_0 + \alpha_i' \) and \(\beta_i = \beta_0 + \beta_i' \). Thus we define the pair \(\mu_i := \frac{\alpha_i}{\beta_i} \) and \(\nu_i \) as the belief state for \(\rho \), equivalently using the mean \(\mu_i \) in place of \(\alpha_i \). The acceptance policy is also made a function of the belief state, \(\Pi(\mu_i, \nu_i) \).

The initial state \((\mu_0, \nu_0) \), i.e. the parameters of the prior, can be chosen based on an initial belief about \(\rho \). This choice is clearer when outcome data has already been collected by an existing policy, in which case \(\nu_0 \) can be the number of outcomes observed and \(\mu_0 \) the empirical mean.

Define \(V^{\Pi}(\mu, \nu) \) to be the value function at state \((\mu, \nu)\) under policy \(\Pi \), i.e., the expected discounted sum of rewards from following \(\Pi \) starting from state \((\mu, \nu)\). The index \(i \) is dropped henceforth because the dependence is on \((\mu, \nu)\), irrespective of the number of rounds needed to attain this state. In Appendix A.1, the dynamic programming recursion that governs \(V^{\Pi}(\mu, \nu) \) is derived. By optimizing this recursion with respect to the acceptance probabilities \(\Pi(\mu, \nu) \), we obtain the following result.

Theorem 1. For the homogeneous selective labels problem, the optimal acceptance policy that maximizes discounted total reward (1) is a threshold policy: \(\Pi^*(\mu, \nu) = 1(V^*(\mu, \nu) > 0) \), where the optimal value function \(V^*(\mu, \nu) \) satisfies the recursion
\[
V^*(\mu, \nu) = \max \left\{ \mu - c + \gamma \left[\mu V^* \left(\frac{\mu \nu + 1}{\nu + 1}, \nu + 1 \right) \right] + (1 - \mu) V^* \left(\frac{\mu \nu}{\nu + 1}, \nu + 1 \right) \right\}, \tag{3}
\]

Theorem 1 shows that the optimal homogeneous policy does not require stochasticity. It also shows that the problem is one of optimal stopping (Bertsekas, 2005, Sec. 4.4): in each state \((\mu, \nu)\), there is the option \((\Pi(\mu, \nu) = 0)\) to stop accepting and thus stop observing, which freezes the state at \((\mu, \nu)\) thereafter with zero reward. The optimal policy is thus characterized by the stopping or rejection set, the set of \((\mu, \nu)\) at which it is optimal to stop because the expected reward from continuing is negative.

In the limiting case as \(\nu \to \infty \), \(V^*(\mu, \nu) \) and \(\Pi^*(\mu, \nu) \) are known explicitly. This is because the mean \(\mu \) converges to the true success probability \(\rho \), by the law of large numbers. We therefore have \(\Pi^*(\mu, \infty) = 1(\mu > c) \) and \(V^*(\mu, \infty) \) as
given in (2), explaining the previous notation. The corresponding stopping set is the interval $[0, c]$.

Connection to one-armed bandit The above formulation and dynamic programming solution are related to the “one-armed bandit” construction of Weber (1992) and its corresponding Gittins index. Specifically, upon defining belief state (μ, ν), the homogeneous problem conforms to the formulation of Weber (1992): (μ, ν) is the state $(x_j(t)$ in Weber’s notation), rewards are a function of this state, and (μ, ν) evolve in a Markov fashion upon each acceptance. One might expect therefore that the optimal homogeneous policy of Theorem 1 is equivalent to the Gittins index policy, and indeed this is the case. For a “one-armed bandit” where the cost of the “reject” arm is taken to be zero, it suffices to determine whether the expected discounted total reward that appears in the Gittins index, $\sup_{x} E \left[\sum_{t=0}^{\tau-1} \gamma^t R_t(x_j(t)) \mid x_j(0) = x \right]$, is positive. Here the supremum is taken over stopping times τ. The proposed dynamic programming approach summarized by Theorem 1 can be seen as an explicit way of computing the supremum (which Weber does not discuss): we either stop at $\tau = 0$, or continue so that τ is at least 1 and consider the same stopping question for the possible next states $x_j(1)$, weighted appropriately.

Approximation of optimal policy For finite ν, a natural way of approximating $V^*(\mu, \nu)$ is as follows: Choose a large integer N, which will also index the approximation, $V^N(\mu, \nu)$, and set $V^N(\mu, N+1) = V^*(\mu, \infty)$, the infinite-sample value function (2). Then use (3) with V^N in place of V^* to recursively compute $V^N(\mu, \nu)$ for $\nu = N, N-1, \ldots$. The corresponding policy is $\Pi^N(\mu, \nu) = 1(V^N(\mu, \nu) > 0)$. Note that (3) is valid for all $\mu \in [0, 1]$, not just integer multiples of 1/ν; this can be seen by allowing the initial parameter σ_0 to range over real values.

Figure 1 plots the result of the above computation for $N = 1000$, $c = 0.8$, and $\gamma = 0.99$ (a second example is in Appendix B). The plot suggests that $V^N(\mu, \nu) \geq V^N(\mu, \nu+1)$ and that $V^N(\mu, \nu)$ is a non-decreasing convex function of μ for all ν. It also shows that $V^N(\mu, \nu)$ is quite close to $V^N(\mu, 1001) = V^*(\mu, \infty)$ for large $\nu > 100$.

Properties of optimal policy The properties suggested by Figure 1 do in fact hold generally (all proofs in Appendix A).

Proposition 2. The optimal value function $V^*(\mu, \nu)$ is non-decreasing and convex in μ for all ν.

Proposition 3. The optimal value function $V^*(\mu, \nu)$ is non-increasing in ν, i.e. $V^*(\mu, \nu) \geq V^*(\mu, \nu+1) \forall \mu \in [0, 1]$.

Other optimal stopping problems are known to have similar monotonicity and convexity properties (Bertsekas, 2005). Monotonicity in both μ and ν implies that the stopping set at sample size ν, $\{\mu : V^*(\mu, \nu) \leq 0\}$, is an interval $[0, c_\nu]$ that grows as ν increases, $c_\nu \leq c_{\nu+1} \leq \cdots \leq c$. In other words, the acceptance policy is more lenient in early stages and gradually approaches the policy for known ρ. The following result bounds the difference $c - c_\nu$.

Proposition 4. The difference between the acceptance threshold c_ν for sample size ν and the infinite-sample threshold c is bounded as follows:

$$c - c_\nu \leq \frac{\gamma \cdot 2F_1(1, \nu; \nu + 2; \gamma)}{\nu + 1 - \gamma \cdot 2F_1(1, \nu; \nu + 2; \gamma)} (1 - c) \leq \frac{\gamma \min\{1/(1 - \gamma), \nu + 1\}}{\nu + 1 - \gamma \min\{1/(1 - \gamma), \nu + 1\}} (1 - c),$$

where $2F_1(a, b; c; z)$ is the Gaussian hypergeometric function.

From the second, looser upper bound above, it can be seen that for $\nu > 1/(1 - \gamma)$, $c - c_\nu$ decays as $O(1/\nu)$. It is interesting to compare this behaviour to UCB policies (Auer et al., 2002; Chu et al., 2011; Abbasi-Yadkori et al., 2011; Filippi et al., 2010; Li et al., 2017). An acceptance threshold c_ν is equivalent to adding a margin $c - c_\nu$ to the mean μ (i.e., yielding a UCB) and comparing with c. Typically however, confidence intervals are proportional to the standard deviation and scale as $1/\sqrt{\nu}$, as is the case for a beta or binomial distribution. The $1/\nu$ rate implied by Proposition 4 for large ν is thus faster.

The analysis that leads to Proposition 4 can be extended to also provide bounds on the approximation $V^N(\mu, \nu)$.

Proposition 5. For $\nu = N + 1, N, \ldots$ and all $\mu \in [0, 1]$,

$$0 \leq V^*(\mu, \nu) - V^N(\mu, \nu) \leq \frac{\gamma^{N+2-\nu} \cdot 2F_1(1, N + 1; N + 3; \gamma)}{N + 2} V^*(1, \nu).$$

Similar to Proposition 4, for $N > 1/(1 - \gamma)$, the approximation error decays as $1/N (\gamma N/N$ for fixed $\nu)$.
In Appendix A.5, the case of undiscounted average reward (in contrast to (1)) over an infinite horizon is also analyzed. There the optimal policy is found to have positive acceptance probability regardless of the belief state. This is reminiscent of the exploring policies of Kilbertus et al. (2020) and contrasts with the case of discounted total reward (1).

4. The Finite-Domain Case

In this section, we move from the homogeneous case to one where features X are present and take a finite number of values. As discussed in Section 2, the decomposability of (1) into a sum over $x \in X$ implies that the optimal decision policy consists of multiple optimal homogeneous policies in parallel, one for each $x \in X$. Accordingly, a beta distribution is now posited for each conditional success probability $p(x)$, parametrized by state variables $\mu(x)$ and $\nu(x)$; $\nu(x)$ is the number of successes with feature value x, plus pseudo-counts from the prior on $p(x)$, while $\mu(x)$ is the fraction of successes among successes at x, again accounting for prior pseudo-counts.

The difference with respect to the homogeneous case is that the \textit{effective discount factor} seen at each value x is not equal to the γ in (1) but depends on x as follows:

$$\bar{\gamma}(x) = \frac{\gamma p(x)}{1 - \gamma (1 - p(x))}. \tag{4}$$

Intuitively, the effective discount factor $\bar{\gamma}(x)$ arises because successive arrivals of individuals with value x are separated not by one time unit but by a random, geometrically distributed time that depends on $p(x)$.

Denote by $\Pi^*(\mu, v; \gamma)$ the optimal homogeneous policy that uses discount factor γ in (3) and (2), and $V^*(\mu, \nu; \gamma)$ the corresponding optimal value function. Then the optimal finite-domain policy can be stated as follows.

Theorem 6. Assume that the features X have finite cardinality, $|X| < \infty$. Then the optimal acceptance policy is to use optimal homogeneous policies $\Pi^*(\mu(x), \nu(x); \bar{\gamma}(x))$ independently for each $x \in X$, where $\bar{\gamma}(x)$ is the \textit{effective discount factor} in (4).

Appendix A.5 provides a derivation of (4) to prove Theorem 6.

Computing the effective discount factors (4) requires knowledge of the distribution $p(x)$. In the usual case where $p(x)$ is not known, $\bar{\gamma}(x)$ may be estimated empirically. Denoting by I_1, I_2, \ldots, I_m the inter-arrival times observed at x thus far, the estimated effective discount factor is

$$\hat{\bar{\gamma}}(x) = \frac{1}{m} \sum_{j=1}^{m} \gamma^I_j. \tag{5}$$

5. The General Case

We now consider the general case in which the features X are continuous or X is still discrete but the cardinality of X is large. In these cases, it is no longer possible or statistically reliable to represent the state of knowledge by counts of acceptances and successes.

In this paper, we investigate the extent to which the optimal homogeneous policy can be successfully carried over to the general setting. The development of more involved policies is left to future work. The continued use of the homogeneous policy is motivated by two reasons: first, its optimality for finite domains, which might be used to approximate an infinite or continuous domain, and second, the ease of computing the approximation $V^N(\mu, \nu)$ (taking milliseconds on a MacBook Pro for $N = 1000$ in Figure 1).

The application of the homogeneous policy, i.e. $\Pi^*(\mu(x), \nu(x); \bar{\gamma})$, requires three inputs: (1) The mean parameter $\mu(x)$ of the beta distribution assumed for the conditional success probability $p(x)$; (2) The sample size parameter $\nu(x)$ of $p(x)$; (3) The discount factor $\bar{\gamma}$ that determines the trade-off between exploration and exploitation. These are discussed in turn below.

Conditional mean $\mu(x)$ With $p(x)$ assumed to be random, we have $\Pr(Y = 1 \mid x) = \mathbb{E}[p(x)] = \mu(x)$. Estimation of $\mu(x)$ is equivalent therefore to the standard probabilistic classification problem of approximating $\Pr(Y = 1 \mid x)$. This may be accomplished by training a model $\hat{\mu}(x)$ to minimize log loss (e.g. logistic regression) on accepted individuals, i.e., those for which Y labels are available.

Conditional sample size $\nu(x)$ In the finite case, $\nu(x)$ is the sample size parameter of the beta posterior for $p(x)$. It is thus equal (possibly with a constant offset) to the number of labels observed for x and may be seen as a measure of confidence in the conditional mean $\mu(x)$. This suggests measuring confidence in the predictions of the model $\hat{\mu}(x)$ used to approximate $\mu(x)$ in the more general case.

The above idea is realized herein via bootstrap sampling. For a given x, let $\hat{\mu}_1(x), \ldots, \hat{\mu}_K(x)$ be K estimates of the conditional mean from K models trained on bootstrap re-samples of the labelled population. (The “master” model $\hat{\mu}(x)$, from above, trained on the full labelled population, is separately maintained.) This set of K estimates is regarded as an approximation to the posterior distribution of $p(x)$, in a similar spirit as in Eckles & Kaptein (2014); Osband & Roy (2015). Fitting a beta distribution to $\hat{\mu}_1(x), \ldots, \hat{\mu}_K(x)$, the parameter $\nu(x)$ is estimated by the method of moments as

$$\hat{\nu}(x) = \frac{\bar{\hat{\mu}}(x)(1 - \bar{\hat{\mu}}(x))}{\text{var}(\hat{\mu}(x))} - 1, \tag{6}$$

where $\bar{\hat{\mu}}(x)$ and $\text{var}(\hat{\mu}(x))$ are the sample mean and sample variance of $\hat{\mu}_1(x), \ldots, \hat{\mu}_K(x)$.

Note that the above methods of estimating $\mu(x)$ and $\nu(x)$ do not require specification of prior parameters $\mu_0(x)$, $\nu_0(x)$, unlike in the homogeneous and finite-domain cases.

Discount factor $\bar{\gamma}$ In the homogeneous and finite-domain cases, the effective discount factor $\bar{\gamma}(x)$ used by the policy is either equal to the given discount factor γ in (1) or can be determined from the probability distribution of X. For the general case, $\bar{\gamma}(x) \equiv \bar{\gamma}$ is left as a single free parameter of the policy (independent of x), to be tuned to balance exploitation and exploration. The results in Section 6 indicate that performance is relatively insensitive to $\bar{\gamma}$.

Intuitively, one expects good values for $\bar{\gamma}$ to lie below γ, as they do in the finite-domain case (4). The reason is that when the conditional mean $\mu(x)$ is estimated by a model, accepting an individual and observing a label at one value x also decreases uncertainty in $\mu(x)$ at other values x through an update to the model. In contrast, in the finite-domain case, $\rho(x)$ for $x \in \mathcal{X}$ are modeled independently. This indirect reduction of uncertainty (related to the intrinsic exploration of greedy policies analyzed by Bastani et al. (2020); Kannan et al. (2018)) reduces the need for exploration and favors smaller $\bar{\gamma}$. Further analysis and the possibility of setting $\bar{\gamma}$ automatically are left for future work.

Practical aspects The quantities $\hat{\mu}(x)$ and $\hat{\nu}(x)$ are ideally updated after each new observation. For computational efficiency, online learning and the bootstrap (Eckles & Kaptein, 2014; Osband & Roy, 2015) are used to perform these updates. Specifically, this work makes use of the Vowpal Wabbit (VW) library\(^1\) for online learning and the “double-or-nothing” bootstrap: for each of the K bootstrap samples, a new observation is added twice with probability 1/2 or is not added. Other unit-mean distributions over non-negative integers (e.g. Poisson(1) in Bietti et al. (2020)) could also be used.

The estimate $\hat{\nu}(x)$ (6) is generally not an integer. In this work, $\hat{\nu}(x)$ is simply rounded to the nearest integer and truncated if needed to $N+1$, the largest value in the approximation $V^N(\mu, N+1) = V^\ast(\mu, \infty)$. To handle real-valued $\hat{\mu}(x)$, recursion (3), which is valid for all $\mu \in [0, 1]$ as discussed in Section 3, is pre-computed on a dense grid of μ values and then linearly interpolated as needed.

6. Experiments

Experiments are conducted on synthetic data (Section 6.2) to evaluate the optimal finite-domain policy of Section 4, as well as on two real-world datasets with high-stakes decisions (Section 6.3) to evaluate the extended homogeneous policy of Section 5. In all cases, a selective labels problem is simulated from a labelled dataset of (x_i, y_i) pairs by present-

\(^1\)https://vowpalwabbit.org

ing features x_i of individuals one by one and only revealing the outcome y_i to the algorithm if the decision is to accept. In addition, to provide an initial training (i.e. exploration) set, the first B_0 individuals are always accepted and their outcomes are observed. Notably, the rewards/costs incurred from collecting this training data are counted toward the total utility. The effects of varying B_0 are studied.

The proposed policies are compared to a conventional baseline, the selective-labels-specific method of Kilbertus et al. (2020), and contextual bandit algorithms, described in Section 6.1. For both computational efficiency and fair comparison, the supervised learning models upon which all of these policies rely are trained online using VW. For the finite-domain experiments in which modeling is not necessary, the Bayesian approach of Section 4 is used to update $\mu(x), \nu(x)$ for all policies. Appendix D.2 provides more details.

6.1. Baselines

Greedy (G) This baseline represents the conventional approach of training a success probability model $\hat{\mu}(x)$ on the initial training set of size B_0, and then accepting and collecting labels from only individuals for whom the prediction $\hat{\mu}(x_i)$ exceeds the threshold c. The labels of accepted individuals are used to update the model. Since the policy $\mathbb{1}(\hat{\mu}(x_i) > c)$ maximizes the immediate expected reward, this baseline will be referred to as the greedy policy.

Consequential Learning (CL, CLVW) The CL algorithm (Kilbertus et al., 2020, Alg. 1) is re-implemented for the case of no fairness penalty ($\lambda = 0$) and policy updates after every acceptance/observation ($N = 1$). These settings bring it in line with other methods compared. Update equations are given in Appendix D.1.1. While the paper of Kilbertus et al. (2020) does link to a code repository, no code was available as of this writing. Furthermore, CL uses “plain” stochastic gradient updates, whereas VW uses a more sophisticated algorithm. For this reason, a VW version of CL (CL-VW) was also implemented, also described in Appendix D.1.1.

Contextual bandit algorithms As noted in Section 2, the selective labels problem can be treated as a contextual bandit problem. Accordingly, four representative contextual bandit algorithms are compared: ϵ-greedy (ϵG) (Langford & Zhang, 2008), bootstrap Thompson sampling/bagging (Eckles & Kaptein, 2014; Osband & Roy, 2015), Online Cover (Agarwal et al., 2014), and RegCB (Foster et al., 2018), which is a generalization of LinUCB (Chu et al., 2011; Abbasi-Yadkori et al., 2011). These are chosen because they are practical algorithms extensively evaluated in a recent contextual bandit “bake-off” (Bietti et al., 2020) and are implemented in VW. More specifically, based on the recommendations of Bietti et al. (2020), the chosen variants are greedy bagging (B-g), Online Cover with no uniform
exploration (C-nu), and optimistic RegCB (R-o). Parameter settings and tuning are discussed in Appendix D.3.

The selective labels problem herein differs from a two-arm contextual bandit in that the cost of rejection is assumed to be zero, an assumption that is not used by the four algorithms above. In an attempt to mitigate this possible disadvantage, each algorithm was given the option of observing one pass through the entire dataset in which all individuals are rejected with a cost of zero. This did not appear to improve performance appreciably, possibly because the reward estimators in VW are already initialized at zero.

RegCB-Optimistic (R-o, R-osl) The R-o algorithm is of particular interest for two reasons. First, it is a UCB policy with similar structure to the optimal homogeneous policy, as discussed in Section 3. Second, it performed best overall in the bake-off of Bietti et al. (2020). In the experiments herein however, the VW implementation of R-o performed less well (see Appendix D.5). The likely reason is that it does not take advantage of the zero-cost assumption for rejection, despite the rejection pass through the data mentioned above.

To improve the performance of R-o, a specialized version that does exploit the zero-cost assumption was implemented, referred to as R-osl. R-o makes the decision with the highest UCB on its expected reward. Since rejection is assumed to have zero cost while the expected reward of acceptance is $\hat{\mu}(x) - c$, this reduces to determining whether the UCB on $\hat{\mu}(x)$ exceeds c. More details are in Appendix D.1.2.

6.2. Finite-Domain Experiments

The experiments on synthetic data address the finite-domain setting and focus on two questions: (1) the effect of having to estimate the effective discount factors $\hat{\gamma}(x)$ on the performance of the optimal policy, and (2) comparison of the optimal policy to various baselines.

Synthetic data generation Given a cardinality $|\mathcal{X}|$, the probability distribution $p(x)$ is sampled from the flat Dirichlet (i.e. uniform) distribution over the $|\mathcal{X}| - 1$-dimensional simplex. Success probabilities $\rho(x) = \Pr(Y = 1 \mid x)$ are sampled from the uniform distribution over $[0, 1]$, independently for $x = 0, \ldots, |\mathcal{X}| - 1$. Then T pairs (x_i, y_i), $i = 0, \ldots, T - 1$ are drawn from the joint distribution of (X, Y). This generation procedure is repeated 1000 times for each cardinality $|\mathcal{X}|$ and threshold c. Means and standard errors in the means are computed from these repetitions.

For evaluation, rewards are summed using the discount factor $\gamma = 0.999$. The number of rounds T is set to $5/(1-\gamma)$ so that the sum of truncated discount weights, $\sum_{t=0}^{\infty} \gamma^t$, is less than 1% of the total sum $\sum_{t=0}^{\infty} \gamma^t$.

Homogeneous policy variants Three variants of the optimal/homogeneous policy are compared. The first (abbreviated O-t, ‘t’ for “true”) is given access to $p(x)$ and computes the effective discount factors $\hat{\gamma}(x)$ using (4). The second, more realistic variant (O-e, “estimate”) is not given $p(x)$ and instead estimates $\hat{\gamma}(x)$ using (5). The third (O-u, “uniform”) does not estimate $\hat{\gamma}(x)$, instead assuming a uniform distribution $p(x) = 1/|\mathcal{X}|$ and using that in (4).

Modifications to baselines The most noteworthy change is to bagging, which is an approximation of Thompson sampling (TS). The latter can be implemented directly in the finite-domain case. TS chooses acceptance with probability $\Pr(\rho_i(x) > c)$, i.e., the probability that the reward from acceptance is greater than zero. Other modifications are described in Appendix D.1.

Results Figure 2 shows the discounted total rewards achieved for $|\mathcal{X}| \in \{3, 10\}$ and $c \in \{0.6, 0.8\}$. Plots for additional $(|\mathcal{X}|, c)$ pairs are in Appendix D.5. In general, greater differences are seen as c varies compared to $|\mathcal{X}|$.

In the first two rows of Figure 2, the total reward is plotted as a function of the size B_0 of the initial training batch. For...
As expected, the optimal/homogeneous policies perform the best. Among them, there is no discernible difference between O-e and O-t, and thus no apparent cost due to estimating $\tilde{\gamma}(x)$. Surprisingly, O-u, which assumes a uniform distribution, is hardly worse.

R-osl attains essentially optimal performance in many cases, provided that its confidence parameter C_0 is tuned. The last row in Figure 2 shows that total rewards can be significantly worse if C_0 is not well chosen. The high potential of R-osl is explained by its similarity to the optimal policy, as discussed earlier. The difference is that the optimal policy does not require parameter tuning.

CL and TS both outperform G and are similar to each other because they are both stochastic policies, choosing acceptance with the probability that they believe it is better than rejection. CL however requires tuning of its learning rate parameter whereas TS does not. ϵG slightly outperforms G at lower B_0 values that are insufficient for G.

6.3. Real Data Experiments

We now turn to two real-world datasets, the FICO Challenge dataset (FICO, 2018) and the COMPAS recidivism dataset (Angwin et al., 2016), for evaluating the policy of Section 5. The former comes from home equity line of credit (HELOC) applications together with an outcome variable indicating whether the borrower satisfactorily repaid the line of credit. Acceptance corresponds to approving the borrower for the HELOC. The COMPAS dataset, also used by Kilbertus et al. (2020), contains demographics and criminal histories of offenders, a recidivism risk score produced by the COMPAS tool, and an outcome variable indicating whether the offender was re-arrested within two years. Acceptance corresponds to releasing an offender on bail.

Each dataset is randomly permuted 1000 times and means and standard errors are computed from these permutations. Pre-processing steps are detailed in Appendix D.4.

Results Figure 3 plots the total rewards attained on the FICO and COMPAS datasets with $c = 0.8$ and $c = 0.6$ respectively (the latter choice conforms with Kilbertus et al. (2020)). Total rewards are computed without discounting ($\gamma = 1$); Appendix D.5 provides similar plots for $\gamma = 0.9995$. The shapes of the curves as functions of the initial training size B_0 are generally the same as in Figure 2, although there are some additional algorithms that benefit from having $B_0 > 0$.

The highest utility is again achieved by a policy in the homogeneous family, namely the policy of Section 5 (labelled H). Next in line are R-osl and C-nu. All three policies have at least one algorithm-specific parameter (discount factor γ for H, C_0 for R-osl, (N_p, ψ) for C-nu) as well as the online learning rate α that are tuned. The middle panels in Figures 3a and 3b show that H is less sensitive to its parameter, achieving good performance over a relatively wide range of $\tilde{\gamma}$. In contrast for R-osl, the utility is much lower for C_0 grid values not equal to the best one. C-nu can display extreme sensitivity: In Figure 3b, $\psi = 1$ drops the total reward to
A major difference compared to the finite-domain case is that the greedy policy \((G) \) is more competitive.\(^2\) Indeed, in Figure 3, \(H \) is the only policy that consistently exceeds the largest total reward achieved by \(G \) (dashed black line) as \(B_0 \) is allowed to increase. Conversely, \(CL, CL-VW, \) and \(\epsilon G \) never exceed the maximum reward of \(G \), suggesting that they over-explore using an acceptance rate that is too high. The VW variant \(CL-VW \) outperforms \(CL \) on FICO (Figure 3a) except at \(B_0 = 1 \), justifying the alternative implementation.

7. Discussion

Optimal decision policies were presented for homogeneous and finite-domain cases of the selective labels problem. An extension of these policies was proposed for the general infinite-domain case and was shown to outperform several baselines with less parameter sensitivity. The policies account for the cost of learning as they seek to maximize utility. In doing so, they make deterministic decisions and become more stringent as more labels are observed, similar to UCB policies. They thus avoid potential objections to making consequential decisions non-deterministically, as noted by Kilbertus et al. (2020). On the other hand, Proposition 4 suggests a kind of “sequence unfairness”: early-arriving individuals are subject to a more lenient policy, enjoying the “benefit of the doubt” in their true success probability.

Limitations

The experiments in Section 6 have the following limitations:

1. The FICO and COMPAS datasets are treated as samples from the uncensored joint distribution of \(X, Y \). However, as noted by Kilbertus et al. (2020), these datasets likely suffer themselves from selective labels and the true joint distribution can only be inferred from real-world exploration. This limitation highlights the need for datasets that are realistic and that ideally do not suffer from selective labels, or suffer only mildly in a correctable way, to support further research.

2. For COMPAS in particular, the present work does not consider fairness, or the possibility of finer-grained decisions such as supervised/unconditional release. Given the history of the COMPAS dataset in particular and high-stakes decision-making domains in general, some may argue that fairness should always be a consideration.

3. It may not be feasible to update policies after every observation.

4. More seriously, it is assumed that outcomes are observed immediately following an acceptance decision. In reality, there is often a long delay (two years in the cases of FICO and COMPAS).

5. The results in Figure 3 and for some of the baselines in Figure 2 are optimized over each policy’s parameter and the online learning rate. This optimistically represents the potential of each policy. It appears to be common practice in contextual bandit papers (Bietti et al., 2020; Foster et al., 2018), where parameter selection appears to be a common challenge. In their “bake-off”, Bietti et al. (2020) took advantage of having a large number (200) of datasets to select good parameter values for use on unseen datasets.

Future work

Some of the limitations above may be more readily addressable. Notably, incorporation of fairness (limitation 2) would be an important extension to the problem formulation herein, possibly along the lines of Kilbertus et al. (2020); Bechavod et al. (2019). Non-binary decisions (e.g. supervised/unconditional release) as well as non-binary outcomes are also of interest. The effect of limitation 3 could be simulated in future experiments. In addition, Section 5 leaves open the development of decision policies that more directly tackle the infinite-domain case where the conditional success probability must be modelled. One goal would be to avoid having to select the parameter \(\bar{\gamma} \), which would partly address limitation 5.

Acknowledgements

I would like to thank Eric Mibuari for sparking my interest in the problem and for multiple interesting discussions (particularly on limitation 3), Blossom Metevier for a very useful pointer to Bietti et al. (2020) and the contextual bandit literature, Jiri Navratil and Prasanna Sattigeri for a discussion on confidence estimation, Andrea Simonetto for a discussion leading to the “sequence unfairness” point, and Kush Varshney for a discussion on datasets and general encouragement. I would also like to thank the anonymous reviewers for their thoughtful feedback, in particular contributions to the discussion in Section 7 and the connection to the “one-armed bandit” of Weber (1992).

References

