Inferring serial correlation with dynamic backgrounds

A. Hyperparameter Tuning and Bootstrap Confidence Interval

Our proposed hyperparameter tuning procedure is: (i) Set an interval [d, d,] where we believe the best 4 lies in based
on prior knowledge; (ii) For any € > 0, to make sure the Euclidean distance between selected J and the optimal one
is less than ¢, we divide this interval into n = |(d,, — d¢)/e| parts with same length ¢ and denote the endpoints by
M., 60+ (i) For each 6(), we fit the proposed estimator as defined by (2) and construct the residual sequence
by r;, = x; — Z§:1 QT — ﬁ, 1 =1,...,T; (iv) Apply (Lag-p) LB test to the residual sequence to obtain a p-value
pj; (v) The e-optimal tuning parameter is & ) with j = argmax;e (i . n41} Pj- Further details on LB test can be found in
Section B.1 in Appendix B.

Next, we present how to construct a bootstrap confidence interval (CI). For our first method WB: (i) we first perform proposed
tuning procedure to obtain tuning parameter ¢ and the corresponding estimates &;’s and ﬁ’s; (i1) then we calculate the
residuals 7;’s as suggested in step 2.(i) in proposed tuning procedure; (iii) WB sample is constructed recursively by (1) with
a;’s, ﬁ’s and 7; = 7;v;, where v;’s are i.i.d. random numbers with zero mean and unit variance. As for LBB, we first
choose an integer block size b and local neighborhood size B. We partition 7" samples into M = [T'/b] blocks. Then, for
m =0,...,M — 1, the LBB sample iS Zmp4+; = 1,,4j—1,J = 1,...,b, where I,, is a uniform random integer drawn
from {max(1, mb — B),...,min(T — b+ 1, mb+ B)}. In Paparoditis & Politis (2002), it is required that (i) b/ B — 0 as
b — oo; (ii) when T' — oo, T/B — 0 but B — oo.

After obtaining the bootstrap sample, we apply proposed tuning procedure to this pseudo-series with 6, = & — ne and
0w = 0 + ne to obtain estimates a;;’s (we choose n = 2 in numerical simulation). Then, we repeat this procedure N times
to construct a CI by the empirical distribution of ¢;’s. For bootstrap samples, we only need to search around the -optimal &
for the optimal tuning parameter of the pseudo-series since it closely resembles the actual observation. This helps to reduce
the computational cost of bootstrapping.

B. Background Knowledge

B.1. Ljung-Box test and Durbin-Watson test

Ljung—Box (LB) test, sometimes known as the Ljung—Box Q test, is designed to test if there still exhibits serial correlation
in the residual sequence. The null hypothesis is Hj : The data are independently distributed. The test statistic is
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where T is the sample size, py, is the sample autocorrelation at lag k, and h is the number of lags being tested. For sequence
{z1,...,z7}, the sample autocorrelation py, is defined as
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Here, {x1,...,xr} is residual sequence if one wants to implement LB test. Under H, the test statistic asymptotically

follows a X%h) distribution. The p-value of LB test is pr(x%h) > Q).

Durbin-Watson (DW) test serves the same purpose. For residual e; = pe;_1 + 14, the test statistic is
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It tests null hypothesis: Hy : p = 0 against alternative hypothesis H; : p # 0.

B.2. Golden-section search

Golden-section search is a efficient and robust technique for finding an extremum (minimum or maximum) of a function
inside a specified interval. For any given 6, if we solve the convex program (2), calculate the residual sequence and perform
the hypothesis test on it as we mentioned in Section2.2, we will obtain a p-value. That is, we have a mapping that maps ¢ to
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Algorithm 1 Hyperparameter tuning procedure: a Golden-section search variant.

Input: Observations x4, ..., 2y, given history x_,41, ..., %o, a pre-specified interval [, d,] to search the best § and
tolerance € > 0.
Output: c-optimal hyperparameter §.

1 Determine two intermediate points 6; = &y + d and d5 = &, — d, where d = @(&L — )

2 For k = 1, 2: fit the proposed estimator as defined by (2) with hyperparameters Jy; construct the residual sequence by
rgk) =x; — Z?:l aj(k)zi—; — fi(k), i =1,...,T; apply (Lag-p) LB test to the residual sequence {r;(k)}~, to
obtain a p-value px, = f(Jk).

If f(61) > f(02), update dg, 01, 2, 0, as follows

§¢ =02, 62 = 01, b = 0u, 61 = 0 + YL (J, — 8¢) ;
Otherwise, update dy, d1, do, 0, as follows

8o =g, 8 =01, 01 = s, 02 = 0y — Y51 (8, — 0).

3 If 6, — 0p < &, set dmax = (0 + d¢)/2 and stop iterating; otherwise, go back to step 2.

p, which we denote as p = f(J). In our numerical experiment, we show that f is unimodal by Figure 4. Therefore, we can
speed up the parameter tuning procedure by Golden-section search. The detailed steps are provided below in Algorithm 1.

Compared to | (d,, — d¢)/e] + 1 searches in proposed tuning procedure, Golden-section search can achieve e-optimality
with just [log(e/(d, — d¢))/10og(0.618) | + 1 searches.

C. Proofs
C.1. Proof of Theorem 1

To begin with, we prove Theorem 1 by using Proposition 1:

Proof of Theorem 1. Denote estimation error by e = BT — (. By triangle inequality, we have

V@ —a)? + (- p? = flen |z < \/Q(G? +of + [ + p?) < 20, = 2y/vol(S)/m.

By definition (14), ¢min(2) is the smallest eigenvalue of XTX/T, where X = (x9.:7—-1,1) and 1 is vector of all ones.
Since ¢pin(2) = 0 if and only if zp.7_1 = al for some a € R, ¢, (2) will be of constant order with overwhelming
probability. Since k can be chosen arbitrarily small, x can be lower bounded by a positive constant with high probability.
Since [|7]|o = O ((log T)3/?/T*/?), for large enough T', we can simplify Proposition 1 into

ler, |2 < C1v/s max {so, 6},

where C; > 0 is a constant. Together with the naive upper bound by triangle inequality, we obtain

ler,|l2 < min {élﬁmax{sémd}72\/v01(8)/7r} .

Since |All2 < |Allx < 6 and ||Alls < /360, by triangle inequality, we have

lerurslla = 1A = Alla < |Allz + [All2 < &+ /560

Again, by triangle inequality, || 37 — 8|2 < |lez, |l2 + [lezyur, |- We complete the proof. O
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The proof of Proposition 1 is highly involved. We sketch its proof as follows:

Proof of Proposition 1. We first state four very useful lemmas.

Lemma 1 (High probability bounds for sub-Gaussian noise). For sub-Gaussian random noise €1, . ..,er - subG(ad)
and x1, ...,z generated by (5) (given xg), for all A; > 1, As > /A; and Az > 0, define events

A = {|€z| < \/24,02log(2T), i = 1,...,T},

and

T
Ay = | ei| < 24500VTl0g(2T), j=1,...,T 3,
i=j
we have )
pr(A;) >1—(27)""",  pr(Ag|Ay) >1— (2T) 4/,

Furthermore, if we assume there exists a constant C'; > 0 such that

Ifil < Ci/logT, i=1,...,T, (16)
As = { < 2v2A302(cy + 1) log(2T)\/T log(2T) /(1 — oq)} ,

T
Z €iTi—1
=1
where ¢; > 0 is a constant such that | f;| < ¢1/24;08 log(2T),i =1,...,T, then we will have

define event

pr(As|Ay) > 1 — 2(27)~43/41,

By Lemma 1, we will have
pr(A; N As N As) = pr(A;) (1 — pr(AS U A5 A1)
> 1— (7))~ — (27) 1~ A3/4 _ 9(27)~45/41,
This means event A = A; N Ay N Ajs holds with probability at least 1 — (27141 — (27)1=42/41 _ 2(27")~43/4%

Lemma 2 (Restricted ¢; estimation error). Under assumption (16), for our proposed estimator B\T, as defined in (7) or
equivalently (13), if we choose k € (0, 1) and tuning parameter A such that kA = O ((log T')3/2 /T"/2), then on event A,

the estimation error ¢ = S — (3 satisfies:

1_k||612||171_k _kHeIlHl'

1+k 256, k
Jer 1 < min {1 g

Lemma 3. Under assumption (16), on event .4, for any integer m < T + 1 — |Jy

,we have

el > (Vi@ — B ) e

(17)
2\/ ¢max(m) s—1 s—1
_<1—]€+ (8—2)(1— T >>850—\/(8—2)<1— T >5,
where ¢rin (+) and @nmax(-) are defined in (14).

For simplicity, in the following we denote £ = \/®min(2) — kv/20max(m)/(1 — k) and

(6,60, 5,m) M v \/(3—2) <1 _ STl>(sao+5).

We further denote Jy = I; U I, i.e. the set of indices for all non-zero coefficients.
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Lemma 4. Under assumption (16), on event .4, we have
(18)

IXell3/T < 2[nllscllesl /(1 — &),

Additionally, we have ||| = O ((log T')3/%/T1/?).
Here, we consider two cases: (i) |ler, [|[1 < |ler,||1 and (i) |ler, ||1 > |ler, ||1- In case (i), we have
lenllz <llenlly <llerlly = [|Ar, = Al < [Ap[l + [[Ally <6 + sdo

In case (ii), |lej, |1 = ller, |1 + llen |1 < 2|ler, |l1- By (17) and (18), we have

2
— Inllsslless s = (ller, [l2 = €(6, do, 5,m))

1
> R2||€I1 ||2||611 ||1/\[ - 2’{0(67 60a S?m)“ell ||2
> K2|ler, ll2lle,|11/2v/2 = 26C (5, 80, 5,m)||e g, ||1.-

Rearranging the terms in the above inequality and choosing m = 1, we have

4v2 7]
HQ(H:‘FKC((S,éo,S,l) .
. O

Denote Cs5,.s = C(9, 09, $,1). Since @max(1) = 1 — 1/T, combing the results above proves (15)

ler[l2 <

Proofs of Lemmas in the proof of Proposition 1

Proof of Lemma 1. For sub-Gaussian random noise €; ~ subG(c3), we will have:

2
pr(le)| <eg,i=1,...,T)>1— 2Texp{—622}.
204

Setting c2 = /2402 log(2T'), we prove the first inequality.
By the uniform upper bound on the dynamic background (16), we can find a constant ¢; such that dynamic background is
uniformly bounded by ¢ . Thus, on event 4; we will get

—(a+ e <z —oziy < (1 +1)ep, (i=1,...,T).

By the convergence of geometric series we have |x;| < (¢1 + 1)ca/(1 — 1) and thus we have

(cL+1)c3 _

|ziqgi] < T c3,
Since E[£i—1€i|$i—1] = l‘i_1E[€i] =0and
2
c1+1)c
Var(z;—16;|zi—1) = a:f_lag < <(ia)2) 0(2),
— o

{z;_1€;} is a bounded martingale difference sequence w.r.t. filtration {o(x1,...,z;—1)}.

By Azuma-Hoeffding inequality, we have

T
1 Tc?
pr <T ;l’i—l&i > C4> < 2exp {—205}~
Set
2v/202 1 log(2T
cs :Agmlog@T) og( )’
1-— a1 T

19)
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we prove the third inequality.

Similarly, on event A;, by Azuma—Hoeffding inequality, we will obtain

T
1 T2c2
P T ;5 o) = eXp{ 2(T—J)C§}
Tc?
<2 -5 Y j=1,...,T
xp { 4A 02 log(2T) } J
Therefore,
11Z T 11z
pr T Zsl <cs, j=1,...,T Zlepr T Zsl > c5
i=j Jj=2 1=]
Tc?
>1-2T -
P { 44102 log(2T) }
where the first inequality comes from union bound. Again, set
2As0¢ log(2T
cs = QU‘i/OTg( ), (20)
we prove the second inequality. [

Proof of Lemma 2. By definition (13), we have

1 N ~ 1
gpllzrr = XBrl3 + AlAlh < Zllzr = XBl5 + Al

Rearrange terms and we will get

~

PN ~ 1
o7 IXBr = Bz < AIAlL = 1A]) + FerrX(Br — B)-

If we choose k) as follows

kA

_ 2V2A30%(c1 +1) log(2T") (log T)3/?
_ . log(2T)\/ == = O (5 )

we have kA = ¢4 > c5 for T large enough, where ¢4 and c5 are defined in (19) and (20), respectively. Then on event A, we

have
1 1 T T T
T|ET:TX| =7 ( Z&ixi—l Z&' Zfi
i=1 i=1 i=2

where 1 € R is the vector of ones. Thus, we will obtain |||~ = ||eT.7X/T || < kX and

7 7

7"'a|€T|> < k)\]-a (21)

PN - .
o7 KB = B3 < AUAN = [All) + kB = Bll1.

By pulsing A(1 — k)||es,ur, |1 on both side of this equation, we will get

(I =HFllerurll < (1A = Al + llenur ) + Eller, [l (22)

Since A = Br,u1,, €1,u1; = A — A. By the sparse structure we know

Al = 1Al + llerunll < 2|A] < 25 (23)



Inferring serial correlation with dynamic backgrounds

Meanwhile, since || A|); takes value zero on index set 5, we have A 1, = ey, and thus 1A ;1 = |lers|l1. Therefore, we
have

Al = Al + llenunsll = [Anlly = 1ALl + llenllt < 2[ler]): (24)
Plugging (23) and (24) back into (22), we will get

. 1+ 28(50
ety < min { 5 llerl, 2% 1+ Kl .

We complete the proof. O

Proof of Lemma 3. By (7), we have
lerllz < llenlli = 1AL = Al < ALl + Al < 6+ sdo.

Partition index set Jo° into L disjoint sets: Jo¢ = UL, J,, where |J1| = -+ = |Jp_1] = m and |J;| < m, and
L L
D= llerllz < 220y el = lleoellr, we get

Xell2 > Xell2 - |Xe e 2

| |
VT VT
> Vbmin(2)llen |2 — Vémax(s — 2)[lenll2 — V/Pmax(m Z lle. ll2

—
VT

>\/¢>mm<2>||eh||2—\/<s—2>( >5+s60 VB e 1.

Since I3 = Jo%, v2|ler, |l2 > |ler, |1, by Lemma 2, we have

V%ﬂxdb2i<mem/ Vol Vfi)H@Jb

_<W+\/(s—2)( 1)>550—\/(s—2)<1—8;1)5.

Denote k = \/ Drmin (2 \/ Gmax(m and we complete the proof. O

Proof of Lemma 4. Since ﬁT is solution to VI[ XT
ﬁT is also solution to the strong VI. That is, ﬁT also satisfies

X1, the weak VI, and the vector field F,

%17 (+) is continuous, we have

(Fer (Br),w —Br) >0, YweX.

In particular, we have (Fy, . (Br), 3 — Br) > 0. Meanwhile, we have Fy, . (Br) = Fy,..(8) — A[xy.7](8 — Br)/T.
Therefore, we will have

(Fan9) = A8 - Br). 5= Br ) 20

Rearrange terms and recall that ) = Fy, ..(53), we will get

(8 — Br)* (Alx1.2)/T)(B — Br) < (n,8 — Br) < InllsollB — Brll1, (25)

where the last inequality comes from Holder’s inequality.
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Notice that A[x;.7] = X*X, we can re-express the inequality above as

nllcolleso 1,

1
ﬁHXd\% < lInllellells = llnlloo (leso llx + llesell) < 7=

where the last inequality comes from Lemma 2.

By (21) and the choice of kA, we get

log(2T)
T

log(27) -0 ((log T)3/2 /T1/2) .

2
Il < 220081 41

1—
We complete the proof. O

C.2. Proof of Theorem 2

Proof of Theorem 2. By Proposition 2, to make ¢ error lower bounded by Cs with probability greater than 1 — Cg, we need

Cy = % exp {— C3T + Cado(T) Zf:Q 3(2+ C585(T) Zf:z s*(t) +log 2 } ) (26)
6s(T)

Since s(t) < t, we will have a decreasing (w.r.t t) lower bound at approximately exponential rate. Thus, without any
condition, the naive bound will be tighter compared to the one we just derive if /s(¢)dp(t) goes to infinity. To make sure
the lower bound Cs we derive in (26) is of constant order, we need s(t) at least of order t, i.e. condition (9). However, this
makes ZtT=2 s2(t) = ©(T?) and we further need &y () small enough when t € {1,..., Ty}, i.e. condition (10). O

Proof of Proposition 2. First, we find a large enough e-packing by the following Lemma.

Lemma 5. Let (V, | - ||) be a normed space. For © C V' C R?, we have

(1) 2O < v 1oy < (2) 10

where B is the unit norm ball and
N(O, |- ||,e) = max{m : 3 e-packing of O of size m}

is the packing number.

Recall that the coefficient vector space is O = {5 : (a1, ) € S, A € B}. Since J; is constant, ©7 will have a constant
order volume, even though §y can be very small. Thus, by Lemma 5 we can find an e-packing N' = {f,...,8nx} C Or
such that

1 S
N> Cr <> ; (27
€
where C'; is some positive constant.

Lemma 6. For any e-packing N' = {34, ..., 8y} C Or, if the random noise is normally distributed, then the upper bound
on KL divergence between the joint distributions of z1.7 generated by (5) with coefficient chosen from A is

T T
ps,) < CsT + Cabo(T) S s(t) + Co02(T) S s (1),

t=2 t=2

KL(pg.
max (Ps;:

where pg is joint probability density function (p.d.f.) of z;. generated by (5) with coefficient 5 and C3, Cy and C; are
some positive constants dependent on d.
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Lemma 7 (Fano’s inequality). Let P = {Py, ..., Py}. For any random variable Z taking values in [V], we have
N 1
1 . 57 2ijen) KL(P[|Py) + log 2
ST P(Z4i)>1— : , 28
~ ; (Z #1i) > s N (28)

where K L(-||-) is the Kullback-Leibler (KL) divergence

By Fano’s inequality (28), we have for any r.v. Z

. ipf Z4i)>1 maxzje[N]KL(pZIIpJ)+log2
N Bi >

29
log N 29
For any estimator ET, define
) = ¢(Br) = argmin || B — Bi 2, (30)
1€[N]
which is the index for the element closest to ET (in £2 norm sense) in the e-packing .
Therefore, for any zZ = 1, we have
1B — Bill2 > ||51; — Bill2 = |1Br — 5@”2 > ||51; = Billa = 1Br — Bill2,
where the last inequality comes from (30).
Re-arrange terms in the inequality above and we will have
1Br — Billa > S185 — il > &
T 112 = 2 n 112 = 2 )
where the last inequality comes from the definition of e-packing, i.e.
min ||8; — Bjll2 > e.
7]
This means when 3 = f3;, event {¢) # i} is subset of event {||3 — B;||2 > £/2}. Therefore, we have
sup pry ([18r = Blla > £/2) > sup pry (11Br — Bll2 > </2)
BEOT BeEN
- 1 X -
> max pr <w i)z— prv<w 2)
i€[N] Bi 7& N z:zl Bi 7&
Taking Z = $ and € = 2C in (12), by (27) and (29), we complete the proof. O]
Proof of Lemma 6. For x1.7 generated by (5) with § = («a, p, As, ..., A7)T, we can derive that
1 _ 1— t+1—1 .
O‘M Z a A—f—Za e, t=1,....T, G1)

where for t = 1 the second term is zero. We further denote
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Therefore, if the random noise in (5) is Gaussian, then the joint distribution for z1.7 will be N(7,X), where 7 =
(MW, 7@ I = P,PT and

o
al al
2 1 0
P, = @ o o
al-1 T2 a0

By some simple algebra, we will obtain det(X) = det(P, PT) = det(P,)? = 1 and
a?+1 —a

- a?+1 —«
-« ?+1 —a

—a o?+1 —a

Arbitrarily choose two distinct coefficients from N. Without loss of generality, we denote them to be 3; (= 1, 2). Given
x1, denote the joint p.d.f. of z1.7 generated by (5) with coefficient 8 by p(z1.7|z1;3). For simplicity, we denote
p(zrr|z1;Bi) =pifor B e N,i=1,...,N.

By the derivation above, p; is joint p.d.f. of N(7;,3;). Then the KL divergence between these two (7" — 1)—dimensional
multivariate Gaussian distributions is

KL(N(71,51)||N (2, 55)) = /log pl(x)pl(x)dx
p2(x)
2 T —

/ [ :Ej| (x—m71) 211(1'—71)+(x—7'2) xrg]pl
1 |22| 1 -1 T 1
=3log s — g {F [ —m) - n)] s+ SB[ =) 55" (o~ m) (32)
1 by 1 1 T _

*51 Izj:QtI‘{IT}+2(T1T2) 221(T177'2)+§t1'{22121}
;|:1 IE : T+tr{22121}+ TQ—Tl) 221(7'2—7'1)].

Since det(3;) = det(X2) = 1, we have
1 —
KL(pillp2) = 5 [tr{E3'5} - T+ (—m)"S" (o —71)]. (33)

On one hand, by the explicit form of 3; as well as X5, we can derive that the explicit form of the diagnoal elements of
22_121. Fori=2,...,T — 1, we have

(Eglzl)i,i

T-1
> (32!
k=1
= —Q2 ((El)i_l i + (21)1‘4_1,1') =+ (oz% + 1) (El)i,i
27

1—0421'72 ; l-«a
_ 9 1 2i—2 2. 1
ala2< a2 +a + (a3 + )l—oﬁ
< a2 +2lajas| + 1 < 3534—1.
- 1—a? T 1-42
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Similarly, we can derive the expression for (22_ ! 21) ., and (22_ ! 21) -+ and upper bound them by some constant. This
means all diagonal elements are bounded uniformly by a constant. Thus, we have

tr {2551} — T < (6 — )T, (34)

where constant cg is the uniform upper bound the constant and we can show cg > 1.

On the other hand, for ¢ = 1, 2, we have

— t —
O] = 1—aj 1M_+Zl—a§“ A | < st s
i 1—a; " = 1—ay e I )

Therefore, we have

2 2
‘Tl — 7’2‘ < 7((55 + 8(1)50, ey 05+ S(T)(So)T = ((551 + (5081;T),

1—4ds 1—0s
where 1 € R” is the vector of ones, s1.7 = (s(1),...,s(T))" and the inequality is pointwise.
Denote
a5 +1  |agl
loz| a3 +1  agf
- oa] a3 +1 ozl
B = . 7
joa| a5 +1 asl
o[ 1

we can get

’(7'2 —7)" Z;l (12 — 7'1)|

<l =725t m — 1

2\’ < < <
— <1 — > (5§1TE;11 +28,6017%5 s + Sgsf:TEglsl:T) :

We can upper bound the last three terms above as follows (notice that s(1) = 0) :

17551 < (1 + |ow|)* T;
1755 bs1p < (14 |ag])?(s(2) + -+ - + s(T));

T-2

STpSy tsy = Z (Joz|(s(3) + s(i +2)) + (a + 1)s(i + 1)) s(i + 1)

+ (a3 +1)5(2)% + |aa|(s(2)s(3) + s(T — 1)s(T)) + s(T).

By (33), (34) and last four inequalities, we prove Lemma 6. O
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D. Extension of Theorem 1 to AR(p) Sequences

So far we have been focused on analysis for AR(1) sequences; now we discuss how to extend to general cases.
For the AR(p) case, we need to change several terms in (5) (defined by AR(1)): the design matrix becomes X =
(xo:r=1, -y Topy1.7—p, L) € RT*(T+P) where L € RT*T remains the lower triangular matrix of ones; the coefficient
vector becomes 3 = (af,,, i1, Ag, ..., Ar)™, where a1, = (a1,...,,)". We can solve a similar convex optimiza-
tion problem as that defined in (7) to estimate the parameters, except that the hypothesis class X is defined differently
X ={B: (o], n) €Sy AL < 6}, where S, = {(af.,, ) : lai,ll3 + p? < 62+!}. Moreover, we will redefine
I ={1,...,p+ 1}, while the definitions for I5 and I3 remain the same as defined in Section 3.5. The REs are also defined
as (14), except that the error e are restricted tobein Ry = {e: p+ 1 = |ler,]lo < |le]lo < u} when calculating ¢min (u).
With these definitions, we can show the following upper bound for the /5 recovery error:

Theorem 3 (Upper Bound on /5 estimation error for AR(p) case). For BT defined by (7) and for all A; > 1, Ay > /A3
and A3 > 0, for any selected tuning parameter &, with probability at least 1 — (277)1=41 — (27")1=43/41 _ 2p(2T)~45/47
we have

HB\T — fl2 < min {5’3\/§max {850,6},2\/F (L;S) Vol(Sp)/ﬂp;rl} + 0 + /560, (35)

where 5’3 is a positive constant dependent on A, Ay and A3 and T'(+) is the gamma function.

Since the expression (3) for the upper bound for AR(p) case is similar to that in Theorem 1, the discussion on e-recoverable
region, which solely depends on the upper error bound, will be similar too. For lower bounding the estimation error via
Fano’s method, we can use similar proof strategy as that in Proposition 2 or Lemma 6 (although the details are more tedious
to specify): (i) express x; w.r.t. 3, 1.¢+; (i) derive the joint distribution of x1.7 based on that expression and (iii) bound the
KL divergence.

E. Additional Experimental Results
E.1. Numerical simulation

Exact value of red dots in Figure 4.

Table 1. Summary of the information of red dots in Figure 4.

AVERAGE (STANDARD DEVIATION) MSE

SETTING (ou1, 8o, 03) €-OPTIMAL LB DW £-OPTIMAL LB DW

(0.05, 0.05, 0.10) 4.13%x1072(2.33x1072)  4.13x1072(2.33%x107%)  4.13x1072(2.33x107%)  6.19x107* 6.19x107* 6.19x107*
(0.05, 0.05, 0.20) 3.12x1072(1.60x1072)  3.12x1072(1.60x1072)  3.12x1072(1.60x107%) 6.09x10™* 6.09x107% 6.09x107*
(0.05, 0.10, 0.10) 3.91x1072(2.03x1072)  3.91x1072(2.03x1072) 5.04x1072(2.60x107%) 5.33x107* 5.33x107* 6.77x107*
(0.05, 0.10, 0.20) 3.69x1072(2.02x1072)  3.69x1072(2.02x1072%) 4.64x1072(2.44x107%) 5.81x107* 5.81x107* 6.09x10~*
(0.10, 0.05, 0.10) 8.47x1072(2.02x1072)  8.47x1072(2.02x1072) 8.47x1072(2.02x1072%) 6.42x107* 6.42x107* 6.42x107*
(0.10, 0.05, 0.20) 8.01x1072(1.65x1072) 8.01x1072(1.65x1072) 8.01x1072(1.65x107%) 6.68x107* 6.68x107* 6.68x107*
(0.10, 0.10, 0.10) 9.21x1072(2.66x1072) 8.14x1072(2.41x1072) 8.14x1072(2.41x107%) 7.68x10™* 9.30x10™* 9.30x107*
(0.10, 0.10, 0.20) 7.83x1072(2.64x1072)  8.64x1072(3.21x1072) 8.64x1072%(3.21x1072) 1.17x107% 1.21x107% 1.21x1073

Table 1 summarizes the optimal and the selected ’s (corresponding to the red dots) in Figure 4: (i) the average and the
standard deviation of &1 obtained by e-optimal (in the sense of accuracy) d, d selected by LB test and DW test and (ii) MSE
of a1 obtained by e-optimal (in the sense of MSE) 4, J selected by LB test and DW test.

Further validation of theoretical result. We set a; = 0.1, 03 = 0.1, §p = 0.1 and choose s € {20,200, 1000}. For each s,
we plot @; and 0 selected by LB test w.r.t. time 7'. The result is in Figure 13.
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s =20, 6o = 0.1, ||A]]s = 0.605 s =200, o = 0.1, ||A||s =4.82 s =1000, §o = 0.1, ||A||; = 24.9
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Figure 13. Algorithmic behavior w.r.t. T'. The red dashed line is the ground truth oy = 0.1. From the second row, we can observe that the
estimation error converges to a larger value with increasing s.

We have two main observations from Figure 13: (i) the estimate &; will converge to an e-optimal solution, but cannot
converge to the ground truth and (ii) for larger ||Al|;, which is equivalent to larger s and d, the estimation error after
convergence will grow larger. Apart from this, we can see the behavior of the estimation error are similar to that of the
tuning parameter ¢ selected by LB test — they converge at the same time. This validates our main theorem on the upper
bound of the estimation error (8). We also try more experimental settings (s € {1000, 2000, 3000} and &y € {0.05,0.1}).
We obtain similar results in Figure 14.

s = 1000, 6 = 0.05, ||All; = 11.9 s = 2000, 8, = 0.05, ||Al|; = 25.1 s = 3000, 0o = 0.1, ||A]|; = 74.4
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Figure 14. In each column: the experimental settings, rate for sparse changes, one-step changes’ magnitude and their total variation are
listed on the top and the rest of the experimental settings are the same with Figure 13; from top to the bottom, we plot a1, logarithm of £
estimation error log |@1 — a1 and logarithm of tuning parameter J selected by LB test w.r.t. T'. In the fist column, the red dashed line is
the ground truth ar; = 0.1. We can see that with increasing s and Jo, the estimation accuracy becomes lower.

Validation for AR(p) model. Here, we take AR(2) as an example. We fix oy = 0.1,02 = 0.1 and 6y = 0.1. We choose
s € {200, 1000, 2000, 3000}. Similarly, the dynamic background generating mechanism, estimation and parameter tuning
procedure is the same as what we did in last section. We also apply Golden-section search (tolerance ¢ is set to be 0.04) here.
For each s, we plot the same algorithmic w.r.t. time 7" in Figure 15. We can see the results are similar to that of Figures 13
and 14. Similarly to the analysis above, we validate our theoretical findings for AR(2) model.

Comparison with polynomial variant. Apart from piecewise constant function class, polynomial is another highly expressive
function class. Xu (2008) proposed to use nth order polynomials (n—-poly) to approximate the unstructured dynamics in
non-stationary AR time series. Then the AR coefficients and polynomial coefficients are estimated via ordinary least square
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Figure 15. In each column: the experimental settings, rate for sparse changes, one-step changes’ magnitude and their TV, are listed on the
top; from top to the bottom, we plot @; (i = 1, 2), logarithm of > estimation error log \/(al — a1)? + (@2 — a2)? and logarithm of
tuning parameter 0 selected by LB test w.r.t. T". In the fist column, the blue and red dashed line correspond to the ground truth a; = 0.1
and a1 = 0.2, respectively. We can see that with increasing s and Jo, the estimation accuracy becomes lower, which is the same with
AR(1) case.

(OLS). However, he did not give instructions on how to choose n in practice. Here, we choose n € {3,5,10} and compare
n-poly with our proposed TV-LSE under the setting: «; = 0.1, 0(2) = 0.1, s = 2000, §p = 0.05, ||A]l; = 24.9. The
results are plotted in Figure 16.

& = 1.99, &; = 0.0857 & = 0.0163, &1 = 0.0599 n=3,68, =824x10°7 n=>5d =712 x 10~% n =10,é&; = 6.65 x 10~°7
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Figure 16. Comparison to n—poly due to Xu (2008) with n € {3,5,10} . The corresponding hyperparameters and AR(1) estimate are
on the top of each column. We can see n—poly yields a very biased @1 (even though 3-poly faithfully captures the dynamics).

From the figure above, we can see that all three polynomial methods considered here do not yield accurate estimate for
AR(1) series with highly unstructured dynamics. This is not surprising since polynomials are less expressive compared to
piecewise constant function. Obviously, n—poly will perform better when the dynamics is smoother and more structured.
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E.2. Experimental results on RTs for all 28 subjects
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Figure 17. Experimental results on RTs for all 28 subjects. Subjects 1 to 28 are organized in the order of left to right and top to bottom.
The blue, red and yellow lines correspond to the raw RT values, fitted AR(1) model and fitted dynamic background, respectively. On the
top of each figure, we report § selected by LB test on the logarithm of residuals, estimated AR(1) coefficient and 90% and 95% CIs based
on WB and LBB samples. Overall, we observe the presence of substantial drift that varies significantly between subjects but is recovered

very well by TV-LSE.
E.3. Detailed estimation procedure in real data experiment

Here, we take subject 23 as an example to show why we choose to use logarithm transform in detail. First, we directly
apply our proposed estimator on the RT sequence with hyperparameter selected by LB test, as is detailed in proposed tuning
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procedure. Since we do not have the ground truth, we can only access the goodness-of-fit by assessing how close our
residual sequence resembles white noise. We plot the histogram as well as the QQ-plot of the fitted residual sequence. These
two plots are shown in the first row in Figure 18.
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Figure 18. Experimental results of applying our proposed estimator to subject 23 with hyperparameter d,,; (top), - (middle) and
010g (bottom). The first column plots raw observation (blue), fitted AR(1) model (red) and fitted dynamic background (yellow) with
hyperparameter § and estimated AR(1) coefficient &1 on the top; the second and third column plot the histogram and quantile-quantile
(QQ) plot of (original, cube root of and logarithm of) residuals (with por;, Per, Piog ON the top).

The histogram shows that the residuals are right-skewed — in fact this is true for nearly all subjects. Ljung—Box test is
commonly used in AR integrated moving average (ARIMA) modeling, which requires Gaussian random noise assumption,
and clearly this assumption breaks in this study. Therefore, the p-value of LB test directly applied to residual sequence may
not be a reasonable metric for the goodness-of-fit, which undermines the validity of § selected by LB test. Nevertheless,
testing for remaining serial correlation in the residual sequence is the ultimate goal of applying LB test. Thus, we can
transform the residuals to more closely approximate a Gaussian distribution and then apply the LB test on the transformed
residuals to check for serial correlation.

For right-skewed data, the most commonly used transforms are cube root and logarithm. We apply both transforms here.
The transforms are performed by first subtracting 1.1 x min residuals from the residual sequence (to make sure we obtain
meaningful values after logarithm), and then applying cube root or logarithm transform to this sequence.

We perform the aforementioned hyperparameter tuning procedure inn proposed tuning procedure for original and trans-
formed residuals. More precisely, the p-value in step 2.(ii) is obtained by applying LB test on original, cube root and
logarithm of residuals. For each method, we denote the selected hyperparameter § and the maximum of p-value to be
(Ooris Dori)s (Ocr, Per), (8109, Piog), respectively. We illustrate all these three methods on subject 23 by plotting the fitted
AR(1) model, fitted dynamic background, histogram and QQ-plot of the residual sequence in Figure 18.

Figure 18 shows that for subject 23 (i) from the first column, the first method clearly underfits the dynamic background; (ii)
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from the second column, the last histogram is much more symmetric and closely resembles p.d.f. of normal distribution; (iii)
from the third column, the last method has larger p-value, indicating less serial correlation remained in residual sequence.
This again shows that why we use p-value to select the hyperparameter — it is a easy-to-use metric which correctly indicates
whether the dynamic background is fitted properly. Moreover, we see that the third method, i.e. using logarithm transform,
is the best for subject 23. In fact, logarithm transform the best for almost all subjects in the sense that p;,, is the largest
among Pori, Per, Plog- We also observe that for those subjects that p;,4 is not the largest, the tuning parameter § selected by
all three methods are the same. Therefore, we adopt logarithm transform in our real data experiment.



