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A. Additional Details for Methodology
A.1. Architectural details for TNP

We show the architectural details of TNP in Figure 1, which is adapted from ANP (Kim et al., 2019). The MLPs for the
encoder, the decoder, and the embedding function g for attention are all linear in the final layer and have ReLU as the
non-linearity function in the previous layers. The encoder embeds observations of the target dataset (shown in purple)
and those from historical datasets (in green) into the resulting hidden representations, each of which is a r-dimensional
vector. Subsequently, the attention unit attentively aggregates all these hidden representations into r∗ which characterizes the
underlying hyperparameter distribution. Note that the two layer MLP g first projects target configurations x̂j and historical
configurations as the query and the value for attention, respectively. The attention unit, based on the basic multihead
cross-attention (Vaswani et al., 2017), consists of 8 heads here. Specifically, s1, · · · , sM , representing the similarity of the
learned target dataset with the first and the M -th historical meta-dataset, modulate the dot products of keys and values. In
the end, the decoder outputs the prediction µ̂j and uncertainty σ̂j for a target configuration x̂j .

A.2. The similarity for the dataset-aware attention

The similarity sm between the target dataset and the m-th historical dataset, as introduced in Section 4.2, is calculated as,
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The intuition behind is that the learned hidden representations of observations characterize the latent distribution of
hyperparameter performances, so that the similarity between datasets is conditioned on the hidden representations. For
each t′(1 ≤ t′ ≤ nI + t) configuration of the target dataset, we look up the Q-nearest neighbour configurations in the m-th
dataset. If the mean hidden representation of these Q observations, i.e., 1

Q

∑Q
t′′ r

m
t′′ , is very close to the hidden representation

rt′ of the t′-th target observation, it implies that the performances of hyperparameter configurations of the two datasets bear
striking similarity, at least locally in the t′-th configuration. By averaging over all nI + t observations in the target dataset,
we obtain the similarity between the target dataset and the m-th dataset. Empirically, we have demonstrated Q ∈ [2, 5] leads
to a stable and superior similarity.

We also argue the advantages of the learned similarity over previous works. As mentioned in Section 2, a line of works
exploits hand-crafted meta-features of a dataset to measure the similarity. Besides being hand-crafted, the resulting similarity
is loosely connected to hyperparameter performances – it is likely that those hyperparameters outperforming on a previous
dataset fail at the target, despite the high correlation between meta-features of the two datasets. More recently, Law
et al. (Law et al., 2019) proposed to learn a neural network to obtain the embedding of a dataset and measure the similarity
with the learned embedding. The major downside, obviously, is that the proposed fails to deal with datasets in heterogeneous
feature spaces, e.g., the 100 OpenML datasets we investigate in this paper.
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Figure 1: : The model architecture of the proposed TNP.

B. Baselines and Evaluation Metrics
B.1. Hyperparameter setting

First of all, we would claim that for all baselines we use the default hyperparameters for all datasets, just similar to our
proposed TNP, since it is impractical to optimize the hyperparameters for every single dataset of 100 OpenML datasets.

As introduced in the experimental section, according to the surrogate model used, the baselines in our paper are categorized
into three groups:

• RS: randomly search with no surrogate.

• SMAC: random forests are used as the surrogate.

• GP, GP LI, MTGP, EFFICIENT, RGPE: the surrogate model in this case is Gaussian Processes. To deal with the
hyperparameters of GP, e.g., those for the Matèrn-5/2 kernel, a widely accepted practice is to estimate them with
MCMC sampling. The chain length and the number of burn-in steps for MCMC sampling are set to 200 and 100,
respectively. Especially, for multitask GPs (MTGP) (Swersky et al., 2013), the kernel modelling dataset similarities is
learned by simply encoding the dataset index. For EFFICIENT (Yogatama & Mann, 2014), the similarity between
datasets is calculated based on meta-features. The kernel modelling the similarity between cross-dataset observations
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is linearly combined with the kernel modelling the similarity between in-dataset observations, where the convex
combination coefficient for the first kernel is set to 0.3.

• DNGO, BOHAMIANN: a fully connected neural network is taken as the surrogate model for these two baselines. The
default network structure for DNGO and BOHAMIANN is a four-layer neural network with the number of hidden
units being 50, i.e., [50, 50, 50, 1]. The tahn function is applied on the first three layers for non-linearity. Note that we
have tried to increase the network capacity to align with TNP; nevertheless, the computational costs are prohibitively
expensive, especially considering the huge number of OpenML datasets we work on. Moreover, the hyperparameter
sensitive analysis in Figure 2 proves that TNP is not sensitive against the number of hidden units: it still outperforms
even when the number of hidden units downgrades to 64. The default batch size for DNGO and BOHAMIANN is 10
and 20, respectively. The optimizer of Adam with a learning rate of 0.01 is used for DNGO, while the Momentum
with a learning rate of 1e-5 and a decay rate of 0.05 is adopted in BOHAMIANN. By default, the hyperparameters
for DNGO, i.e., the α and β for the Bayesian linear regression, are sampled via MCMC from the marginal log
likelihood, where the chain length and the number of burn-in steps are 200 and 100, respectively. The similar applies
to BOHAMIANN which directly samples network parameters via MCMC. We follow the implementation of the
Bayesian neural network package1.

B.2. Additional details for evaluation metrics

In this paper, we consider classification, so that we evaluate the performance of a HPO algorithm on a dataset via the best
classification accuracy achieved so far at the t-th trial. However, to comprehensively evaluate an algorithm on all datasets,
the classification accuracy is invalid as the classification difficulty varies from dataset and dataset – the mean classification
accuracy over all datasets speaks nothing. As a result, we adopt the following metrics to eliminate the influence of the
variation across datasets.

• Average rank At the t-th trial, each HPO algorithm gets a rank in terms of the best classification accuracy achieved so
far. The best performing algorithm gets a rank of 1 and the worst algorithm gets the largest rank. By averaging the
ranks of an algorithm over all datasets, we obtain the average rank of the algorithm along all trials.

• Average distance to the maximum At the t-th trial, the scaled distance between the classification accuracy achieved
so far by an algorithm and the maximum accuracy across all algorithms and all trials is calculated for each algorithm,
i.e.,

dmt,a =
(maxTt=1 maxa y

m
t,a)− ymt,a

(maxTt=1 maxa ymt,a)− (minTt=1 mina ymt,a)
, (2)

where ymt,a denotes the accuracy for the m-th dataset at the t-th trial by the algorithm a. By averaging the scaled
distance over all datasets, i.e., dt,a =

∑M
m=1 d

m
t,a, we obtain the resulting average distance to the maximum for the

algorithm a at the t-th trial.

• ECDF We also investigate the empirical cumulative distribution of the number of datasets that have achieved the
maximum accuracy at the t-th trial, where the maximum accuracy is again the highest among all trials and all algorithms.
For example, if the value of ECDF at the t-th trial by an algorithm equals 0.3, it indicates that the algorithm achieved
the maximum accuracy on 30% of all datasets at the t-th trial.

C. Experiments
C.1. Hyperparameter setting and sensitivity

We summarize the hyperparameters in Table 1. TNP is implemented using Tensorflow (Abadi et al., 2016), and the codes
will be released upon acceptance. Based on the following two observations, we conclude that TNP is not that sensitive
against its hyperparameters.

• First, the fact that TNP with the default hyperparameters summarized in Table 1 consistently works well across all
datasets sheds light on the insensitivity. As we mentioned above, we did not meticulously tune the hyperparameters,
since tuning for each of the 100 OpenML datasets is impractical.

1https://github.com/automl/pybnn



Meta-learning Hyperparameter Performance Prediction with Neural Processes: Appendix

0 20 40 60 80 100

0.75

0.8

0.85

0.9

0.95

1

1.05

TNP_bs32
TNP_bs128
TNP_r64
TNP_r256
TNP_alpha1e-5
TNP_alpha1e-3
TNP_epsilon0.001
TNP_epsilon0.1
TNP_k10
TNP
GP_LI

trials

be
st

 im
pr

ov
em

en
t s

o 
fa

r

(a) : wine + oh5.wc → kr-vs-kp

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

TNP_bs32
TNP_bs128
TNP_r64
TNP_r256
TNP_alpha1e-5
TNP_alpha1e-3
TNP_epsilon0.001
TNP_epsilon0.1
TNP_k10
TNP
GP_LI

trials

be
st

 im
pr

ov
em

en
t s

o 
fa

r

(b) : fruitfly + BNG(lymph) → iris

0 20 40 60 80 100

1

1.5

2

2.5

3 TNP_bs32
TNP_bs128
TNP_r64
TNP_r256
TNP_alpha1e-5
TNP_alpha1e-3
TNP_epsilon0.001
TNP_epsilon0.1
TNP_k10
TNP
GP_LI

trials

be
st

 im
pr

ov
em

en
t s

o 
fa

r

(c) : new3s.wc + mammography → vowel

0 20 40 60 80 100

0.8

0.85

0.9

0.95

1

TNP_bs32
TNP_bs128
TNP_r64
TNP_r256
TNP_alpha1e-5
TNP_alpha1e-3
TNP_epsilon0.001
TNP_epsilon0.1
TNP_k10
TNP
GP_LI

trials

be
st

 im
pr

ov
em

en
t s

o 
fa

r

(d) : monks-problems-2 + tr12.wc → wap.wc

Figure 2: Comparing the improvement of all TNPs with different hyperparameters over GP LI on four randomly sampled
OpenML datasets.

Table 1: Hyperparameter summary

Hyperparameters Value
Number of hidden units (r) 128
Batch size (bs) 64
Learning rate (α) 0.0001
Meta update rate (ε) 0.01
Number of steps for inner learning (k) 5
Number of initial configurations (nI ) 3
Acquisition function (a) EI
The number of neighbours for calculating dataset similarity (Q) 2
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• Second, we have studied the hyperparameter sensitivity in Figure 3 in the main text, while here we also randomly select
four datasets and demonstrate the hyperparameter sensitivity on them. Particularly, in Figure 2c and 2d, TNP with the
default hyperparameters even does not rank high, compared to TNPs with the other hyperparameters.

C.2. Additional ablation studies

Here we extend the ablation study in Section 5.2 in the main text. First of all, we further investigate the four ablations
of TNP investigated in Section 5.2, i.e., removing different components, in Figure 4 by comparing the ECDF. Again, the
conclusions remain consistent with the comparison in terms of average rank in Section 5.2 – learning initial configurations
is of particular significance in the beginning. Secondly, we also investigate the ablations by adding the components one
by one to the vanilla conditional Neural Processes, as shown in Figure 3. Transferring parameters (CNP + parameters)
mainly contributes to the fitting capability of neural processes as the surrogate after sufficient hyperparameter performances
are observed, while leveraging observations (CNP + parameters + observations) also improves the early HPO process.
Learning the initial configurations (CNP + parameters + observations + initial configurations) is the most contributory to
warm-start HPO. The results strongly advocate that all the components are contributory and even mutually reinforcing, and
further corroborate our contribution, i.e., empowering the simultaneous transfer of parameters, initial configurations, and
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Figure 3: Comparison of all four ablations of TNP in terms of (a) average rank and (b) ECDF.
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Figure 4: Comparison of four ablations of TNP in terms of ECDF.

observations via Neural Processes.

C.3. Additional results for varying the number of meta-datasets

In the experimental section, we have demonstrated that when the number of meta-datasets increases to 50, TNP is still
qualified to transfer the knowledge from similar tasks and outperforms other transfer baselines. Here we would like to
present more results of varying the number of meta-datasets.

• We compare all transfer algorithms that transfer knowledge from previous datasets by varying the number of meta
datasets to be M = 2, M = 10 and M = 20 in Figure 5a, 5b, and 5c, respectively. Note that the comparison result
on M = 50 has been reported in the main text. When the number of meta-datasets increases, some algorithms such
as RGPE tend to deteriorate. The reason possibly lies in that more meta-datasets also bring more noisy or irrelevant
datasets, which requires more accurate estimation of the similarity between datasets. However, TNP learns a robust
similarity between datasets and consistently outperforms the other transfer baselines regardless of the number of
meta-datasets.

• In Figure 5d, we also compare the TNPs with different numbers of meta-datasets. Generally speaking, as the number of
meta-datasets increases, TNP is capable of effectively transferring more knowledge from more meta-datasets, thereby
improving HPO for the target dataset. This empirical result lays the foundation for implementation of TNP in real-world
applications where more and more historical datasets are accessible over time.

• We also randomly sample four datasets from OpenML and compare the best classification accuracies achieved by TNPs
when different numbers of meta-datasets are leveraged . Figure 6 further supports the conclusion that TNP is qualified
to harness the diversified knowledge contributed by more meta-datasets.

C.4. Results for varying the number of initialization configurations

In Figure 7, we comprehensively investigate the influence of the number of initial configurations.

• We compare all algorithms in terms of the average rank by varying the number of initial configurations to be nI = 1,
nI = 5, and nI = 10 in Figure 7a, Figure 7b, and Figure 7c, respectively. Note that we do not report the results on
nI = 3, which is the default setting and has been extensively studied and reported in the main text. Besides, we do
not consider too many initial configurations, i.e., nI > 10, since the objective of TNP is exactly to expedite HPO
in as few as trials as possible and get rid of the computationally exhaustive evaluation of a configuration required in
a trial. When nI = 1, the algorithms without learned initial configurations (e.g., GP) are almost as competitive as
those that learn initial configurations (e.g., RGPE LI) at the beginning of HPO. It is challenging to learn an effective
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(b) : M=10
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(d) : comparison of TNPs with different M

Figure 5: Comparing the average rank of all transfer baselines as well as TNP by varying the number of meta-datasets, e.g.,
(a) M=2, (b) M=10, and (c) M=20. (d) compares the TNPs with different numbers of meta-datasets.

initial configuration in a single trial. However, when nI increases to 5, the algorithms learning initial configurations
(e.g., RGPE LI) greatly outperform the others, especially in the first few trials. Further, more initial configurations
with nI = 10 again reduce the difference between the algorithms with the initial configurations learned and those
without – the random initial configurations in sufficient trials (i.e., 10) have a higher chance to be as good as the learned
configurations. In either case, TNP demonstrates its robustness and superiority over other baselines.

• Figure 7d compares the TNPs with different numbers of initial configurations. As expected, more initial configurations
contribute better HPO performances. TNP with nI = 1 is the worst, as single observation hinders the reliability of
the learned similarity between datasets and impairs the effectiveness of knowledge transfer. While considering the
additional evaluation costs taken by more initial configurations, we argue that nI = 3 or nI = 5 is enough for TNP.

C.5. Additional results for the influence of random seeds

Based on the following two perspectives, we conclude that TNP is robust against random seeds.
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Figure 6: Further investigating the influence of the number of meta-datasets via four randomly sampled OpenML datasets,
in terms of the best classification accuracy achieved so far.

• For each dataset, we repeatedly perform all algorithms 10 times under 10 different random seeds. For fair comparison,
we apply the same seed to all algorithms each time, both for initial configuration and dataset splitting, so that the
influence of the seed on different algorithms is eliminated. Besides Figure 4 and Figure 8 in the experimental section,
here we present more classification accuracy comparison on another four randomly sampled datasets from OpenML in
Figure 8. Remarkably, TNP consistently outperforms with a comparative small variance.

• More importantly, the average performance over all 100 OpenML datasets shown in Figure 3 in the experimental
section in the main text is actually averaged over 100× 10 different seeds – the superiority of TNP consolidates the
robustness.

C.6. Additional results for comparison of CPU runtime overhead

In Figure 9, we further investigate the CPU time overhead taken by different algorithms along trials, when the number of
meta-datasets varies. TNP is almost as efficient as GP and GP LI, both of which yet do not transfer observations from past
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Figure 7: Comparing the average rank of all baselines well as TNP by varying the number of initial configurations, e.g., (a)
nI = 1, (b) nI = 5, and (c) nI = 10. (d) compares the TNPs with different numbers of initial configurations.

HPO experiences. In contrast, MTGP and EFFICIENT that leverage HPO observations on other datasets are computationally
prohibitive, even at the beginning of HPO. RGPE which transfers GP models does not suffer the intensive computational cost
at the beginning of HPO, while it scales almost exponentially as the number of trials increases. It is because the observations
(say 90 observations at the 90-th trial) are expected to be considered by all M transferred GP models. We highlight that TNP
is an effecitve HPO algorithm by transferring the joint of observations, parameters, initial configurations, but meanwhile
remains as efficient as non-transfer baselines such as GP.

C.7. Effectiveness of the learned similarity

As detailed above in A.2, the learned similarity is based on hidden representations of all observations in a dataset, which is
not only free from manually defined meta-features but also more descriptive and pertinent to HPO behaviours. Here we
verify the superiority of the learned similarity over that computed according to hand-crafted meta-features, by replacing the
similarity in the dataset-aware attention unit with the similarity calculated with meta-features. Figure 10a demonstrates
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(a) : mfeat-pixel + waveform-5000 → letter
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(b) : monks-problems-3 + pol → page-blocks
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(c) : ailerons + mfeat-fourier → ecoli
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Figure 8: Comparison of the best accuracies achieved so far on four additional randomly sampled OpenML datasets, where
each algorithm is performed 10 times.

the effectiveness of the learned similarity, in terms of the average rank over all 100 OpenML datasets. We also show the
superiority of the learned similarity over the similarity calculated with meta-features on two randomly sampled datasets in
Figure 10b and 10c.
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M=10 and (b) M=20.
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(b) : fruitfly + BNG(lymph) → iris
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(c) : pwLinear + monks-problems-1 → elec-
tricity

Figure 10: The average ranks of our TNP and the TNP with the dataset similarity calculated from hand-crafted meta-features,
as well as the best classification accuracies achieved by them on two randomly sampled OpenML datasets.
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