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S1 Overview diagram and notation

1. Generate regressor. 2. Add mutations with MUE.
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Figure S1: MuE observation model. Overview of the generative process in MuE observation
models. First, the latent regressor sequence X; is sampled. Then, the MuE distribution adds
mutations to generate Y;. A latent variable W; controls the pattern of insertions and deletions.
Global parameters that must be inferred are highlighted in yellow.
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Table S1: Notation for MuE observation models A summary of the notation used in the main
text, for convenient reference. Space refers to the space the variable lives in, i.e. N € N, the set of
positive non-zero integers.

Variable Space Generation Description
N N Observed Number of observed sequences.
B finite set Hyperparameter Alphabet (e.g. {A,T,G,C} for DNA).
B N B = |B| Alphabet size.
M N Hyperparameter Length of latent regressor sequence.

(Typically set to be somewhat larger
than max; L;.)

D N Hyperparameter Size of latent regressor sequence’s al-
phabet. (Typically set to be some-
what larger than B.)

Vi RMx*D Vi ~ pg Output of the initial continuous-space
generative model.

Xi (Ap)M X, := softmax(V;) Latent regressor sequence, intuitively
the “precursor” or “ancestor” to Y;.

al® Ag Parameter Controls the probability of insertion
and deletion mutations occurring in
X;.

a®) (Ag)E Parameter Controls the probability of insertion

and deletion mutations occurring in
X;. Must satisfy Condition 2.2.

W; {1,...,K}*  W; ~ MarkovModel(a(®,a(®) The hidden Markov model state vari-
able, which defines a latent alignment
between X; and Y;. (W; is marginal-
ized out during inference.)

c (Ap)M+1 Parameter Controls the probability of the inser-
tion sequence letters (but not the pres-
ence or absence of the insertion).

l (Ap)P Parameter Substitution matrix.

Y; BLi Y; ~ MuE(X;, ¢, a®, a®) Observed sequence, intuitively gener-
ated by mutating X; with substitu-
tions, insertions and deletions.

L; N L; = |Yi| Length of observed sequence Y;.
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S2 Theory

S2.1 Illustrating MSA pathologies
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Figure S2: MSA width can diverge with dataset size. MSA width J as a function of sequences
N in the dataset. BCR is a B cell receptor dataset, TCR a T cell receptor dataset.

To illustrate the problems described in Section 4.1 of the main text, we examined a B cell receptor
dataset and a T cell receptor dataset (the 10x Genomics datasets described in Section S6). Se-
quences were subsampled and aligned using MUSCLE (Edgar, 2004), a standard MSA algorithm.
Figure S2 shows the growth in MSA width J as a function of the subsampled dataset size.

S2.2 Proof of Proposition 4.4

To prove the result, we will examine each existing model individually; exact specifications and
assumptions for each model are provided in their corresponding section. The probability of the
Markov chain terminating given that it is at a state k£ is denoted t,(:), and the probability of the
Markov chain terminating initially (that is, of the Markov chain taking zero steps) is denoted £0),
Without loss of generality, we will write transition probabilities a(¥ and a(®) without conditioning

on the Markov chain not terminating, i.e. >, a,(f)k, +t§€t) = 1. The conditional transition probability
(t)

can of course be computed as ay / (l—t,(f)). In general, we will also index latent states k of the MuE
by their corresponding (m, g) value where (in line with the definition of g; and m;) g = I(k > M)
and m = k — Mg; we will use k and (m, g) interchangeably for any given state.

It is useful for understanding the following results to have in mind a particular example to
illustrate the definitions in the main text.

Sequences  Pairwise alignment A j and g representation

Y = ATG AW = p--TG- (1,.-.,j1) = (1,4,5)
X = TCTG A®) = -TCT-G (91,---,91) = (1,0,1)
It is also useful to define m; := W; — Mg;, which indexes the position within the first or second

block of states. For the example we have, (m1,...,mp) = (1, 3,4).

Remark S2.1. Given sequences X andY of length M and L respectively, (ji,...,jr) and (g1,...,91)
uniquely define a pairwise alignment A.

Proof. Applying Definition 4.2 and the definitions of (ji,...,7z) and (g1, .., gr) iteratively to each
column of the alignment leads to the construction of A in Algorithm 1. O

S4



Algorithm 1: Pairwise alignment construction
input : (ji,...,jz) and (g1,...,9r) and X and Y

output: A
n=0 (indexes position in overall alignment. );
m =0 (indezes position in sequence X );

Iterate until each letter in both X and Y has been placed in A,
while m < M orn < j; do

n=n+1;
if Al : n = j; then
AW = Y, (by definition of j;);
if g =1 then
‘ @ _ - (by definition of g;);
else
m=m+1;
AS‘) =Xm (by definitions of g; and A®); letters of X must be in order);
end
else
AS’) =- (by definition of j;);
m=m-+1;
A%m) = X,,  (by definition of A; each column of A must have at least one letter);
end
end

S2.2.1 Thorne-Kishino-Felsenstein

The Thorne-Kishino-Felsenstein (TKF) model is a continuous-time stochastic process model of
sequence evolution that satisfies detailed balance (Thorne et al., 1991).

Statement Let X be a one-hot encoding of the initial sequence. Let D = B and let w be the
TKF parameter corresponding to the equilibrium probability of each letter. For all m € {1,..., M}
and b € {1, ..., B}, assign

Cmb = Tp. (S1)
Let A > 0 and p > 0 be the TKF indel rate parameters, with A < u, and let 7 > 0 be the divergence
time parameter. Define

1 — e (=7
B(r) == e (52)
Define the transition matrix and termination probability as
[uB(r)]™ ~m=149e=1T[1 — \B(7)] ifm—-—g<m' <M+1landg =0
(t) AB(7) ifm—-—g=m'—landg¢g =1
Bk [uB(T)]™ —m=2+9[1 — e M — uB(1)][L = AB(1)] ifm—g<m/—landg =1
0 otherwise.
(S3)
) = [1 = AB() [uB(r)) M~ (s4)
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x x

A TACGC B TACGC
T=0 7=1 7=10 7 =100 s=0.01 s=01 s=1 s =10
TACGC  TAACG  CGC GTTC TACGC TACGC TACGT TGTTG
TACGC  TACGC  ATAACCGC TG TACAGC ~ TACGC TACGC GACAT
TACGC TACGC = TCGC CATATCACT TACGC AACGC CACGA CGEGC
TACGC  TACGC ~ TTCGC C TACGC TACGC GCTGT TTCCG
TACGC  TACGC  TCGC CAA TCGC TACGC GACGC CTCAT
TACGC TACGC = TAGC TCG TACGC TACGC TCAC GAAAG
TACGC  ACGC AGC GAC TACGC TGCGC TGGGT CGTGC
TACGC  TACGGC  TACGC AA TACGC TACGC TACCA ATATC
TACGC TACGC = GGCGC TAAGC TACGC GATGC TACAA
TACGC TACGC = CTACC T TACGC TACGC TTCGC GATAG

Figure S3: Samples from the Thorne-Kishino-Felsenstein model. Initial sequence TACGC,
u=0.02, and A =0.01. A. s =0.01 and varying 7. B. 7 = 1 and varying s.

The initial transition vector follows the same form, and can be written as a,(cﬂ) = a(()tzc, and the

initial termination probability can be written ¢ := tét) (i.e. they match Equations S3 and S4

with (m,g) = (0,0) plugged in). Let s > 0 be the TKF substitution rate parameter and define the

substitution matrix

_ . (S5)
Wb/(l—e ST) lfb#b/

With these definitions, ¥ ~ MuE(X, ¢, £,a(®,a®) is the distribution of the Thorne-Kishino-
Felsenstein model after the sequence X evolves for time 7. Note that the limit 7 — 0 is the
no-mutation limit. Figure S3 illustrates samples from the TKF model with changing parameters.

Proof We will show that the joint probability of W and Y under the MuE distribution is
identical to the joint probability of the corresponding alignment pairwise alignment and Y under the
TKF model. To start, we systematically enumerate state transitions in the MuE model and compute
the corresponding probability factor under the TKF alignment scoring system. Our alignment
notation in this section follows the original paper. “X” represents a residue and “-” a gap. “.”
represents the “immortal link” in the model, the start of the sequence. We use “$” as a termination
symbol. Following the original paper, we define, for v € {1,2,...},

pu(7) = e FT[L = AB(N)][AB(7)]" !

po(7) = up(7)

po(7) = [ = e — pB())[1 = AB(m)]AB(7)]"

pi(r) = [1 = ABOIAB(r)
The TKF model assigns probabilities to a pairwise alignment based on the pattern of residues and
gaps; we will break down possible pairwise alignments into chunks corresponding to state transitions
under the MuE and compute the probability factor that they contribute under the TKF scoring

system. When enumerating transitions in the Markov model we put a “|” symbol to the right of
the residue we are transitioning from.

e T +my(l—e®7) ifb=0V
by =

(S6)

1. Transitioning from a state (m, 0) to a state (m’ > m, 0) gives the probability factor [pj(7)]
(B (7)) ~m—Le=HT[1 — AB(7)] according to the TKF scoring system.
X X ... XX
X -...-X

m'—m~—1

p1(7)

2. Transitioning from (m, 1) to (m’ > m,0) gives the factor [ph(7)]™ ~™p1(7) = [uB(T)]™ ~™e 7 [1—

AB(7)]-
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10.

11.

- X

. Transitioning from (m, 1) to (m, 1), situation 1. This gives a factor z‘:—fgg = \3(7).
X - ...-1-
XX ... X | X

. Transitioning from (m, 1) to (m, 1), situation 2. This gives a factor i’/*—QE:; = A\GB(7)

v+1

X-...-1-
-X ...X[|X

. Transitioning from (m,0) to (m + 1,1). This gives a factor p2(r) AB(T).

pi(T)
X | -
X | X

. Transitioning from (m,0) to (m’ > m + 1,1). This gives a factor [ph(7)]™ "™ 2p} (1) =

[B(T)]™ =21 — e7HT — pB(7)][1 — AB(T)].

X1 X ... X-
X |

- ... - X

. Transitioning from (m, 1) to (m’ > m, 1). This gives a factor [p}(7)]"™ ~"1p} (1) = [uB(T)]™ ~" 11—

e M = pB(T)][1 = AB(7)].

. Terminating after (m,0). This gives a factor [p) (7)™~ = [uB(7)|M ™.

. Terminating after (m, 1). This gives a factor [py(7)]M 1= = [uB(r)]M+1-m,

| X ... X$
X | -

. -3

Initial transition to (1,1). This gives a factor pi(7) = p{(7)A\B(7) = [1 — A\B(7)][A\B(7)].
| -
| X
Initial transition to (m,0). This gives a factor p} (7)[ph(7)]™ 1p1(7) = [L=AB(T)][uB(T)|™Le #T[1—

AB(7)].

ST



12. Initial transition to (m > 1,1). This gives a factor p(7)[ph (7)™ 2p}(7) = [1=AB(7)|[uB (7)™ 2[1—
e T = pB(T)][1 = AB(7)].

/

13. Terminating in the first step. This gives a factor [p}(7)]M = [uB8(T)]M.

| X ... X$
| - -8

Compiling these results yields the probability factors associated with each transition between states

(@)™ =91 — AB(1)]
ifm—g<m'<M+1land g =0

AB(t) ifm—g=m'—1and ¢ =1

[uB()™ =291 — et — uB()][1 — AB(1)] (S7)
ifm—g<m'—land g =1

(m,g) = (m',g') :

\ 0 otherwise

(m, g) — termination : [pB(t))M—m+9

And with each initial transition

[1— ABO][uB)]™ e M1 — A\B(t)] fo<m<M+1land g=0
initial — (m., g) - [1— AB(t)]AB(t) ifm=1landg=1
’ [1 = AB@][uBE)] ™21 — e — uB®)][1 = AB(H)] 1 <mandg=1
0 otherwise

initial — termination : [1 — A\B(t)][uB(t)]M
(S8)

However, these are unnormalized probability factors, not complete probabilities. Note that every
alignment will include a factor [I — AS(t)], which in the original TKF description is associated
with the initial transition. However, if we instead rearrange this factor and assign it to the final
transition we obtain the transition matrix given in Equation S3. We can check that this transition
matrix normalized. From a state (m,0), the total outward transition probability is one:

M M+1
Yo AT e L =M + A8+ Y (B T — e — pp[1 = AB] + [uB]M (1 — AB)
m/=m+1 m’'=m+2
o M-—m
= LUV eor e = A8+ A3+ (B - A9)
=1— (uB)M "1 = AB] + [ ™ (1 = AB)

=1.
(59)
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The same expression holds for the initial transition, plugging in m = 0. From (m, 1), we have

M M+1
Do AT L= AB A A8+ Y B T L= e T — pB)[L = AB] + [ M (1 - AB)
m/=m m/=m+1
B e V)

[ —UT[1 M+1-mgq _
=g L€ —uB o e = AB] 4 AB + [uf] (1-AB)

=1 — (uB)M 1 — AB] + [uB]M (1 — AB)
=1.
(S10)

Conditional on the mth residue of X being aligned to the /th residue of Y (i.e. w; = m), the
TKF model specifies that the probability of y; given x,, is Y, Tm vl Y1y, Which is identical to
the probability under the MuE model. In the case where the Ith residue of y is aligned to a gap (i.e.
g1 = 1), the TKF model says the probability of choosing the specific base b is 7, the equilibrium
probability of the base. We can check that the MuE provides the same factor:

PMuE (yl,b = 1|'UJ, €, c, Z) = Z Cm,b’gb',b
b

= 7Tb€_ST + (TFb)2(1 — B_ST) + Z 7Tb”7rb(1 - 6_ST) (Sll)
bll#b

=me T+ mp(l —e ) =m,.

S2.2.2 Pair HMM

The pair HMM model generates pairwise alignments by switching between three states: (1) a state
emitting residues in both X and Y (a match state), (2) a state emitting a residue in X and a gap
in the alignment of Y, and (3) a state emitting a gap in the alignment of X and a residue in Y
(Durbin et al. (1998), Chapter 4.1).

Statement Figure S4 shows a standard pair HMM diagram and state probabilities, with ~ the
probability of transitioning to a gap state, € the probability of staying in a gap state, and x the
probability of the Markov chain terminating. We assume 1 —2y —k >0 and 1 — e — k > 0. When
in a match state, the pair HMM emits letters b and b in the x and y sequences with probability
Wy otherwise, in gap states, the probability of letter b in the non-gapped sequence is .

Define the MuE transition matrix and termination probability vector as
( 1=27-r ifm+l=m'<Mandg=¢g =0

—m—1

1—(yeM=m =1 (1—)+rtyr =0 )
yem =m=2(1_cg) if lem' <Manda=d =0
1—(7€M7"L71(1—H)+n+75#) im + m = and g=g
Y if l=m'<Mandag=0and ¢ =1
1 (yeM 1 (1) p iz 1y BT +1=m'<Mand g=0andg

agk/:: %%H ifm+1l=m'=M+1landg=0and ¢ =1 (512)
Lo ifm=m'<Mandg=1and ¢ =0
T ifm=m'<Mandg=¢ =1
pe ifm=m'=M+1landg=¢ =1
0 otherwise
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A/7€

X alone
Ty
Y K
/ ~ \
match KR termination

initial F=———> >
1-2v—k ¢b,b/

Figure S4: Pair HMM state diagram.

]M—m—ln

e ; —
= ifm< Mand g=0
1—(76M*7"*1(1—/{)—&—/{—1—75—1_51&{_5 1) g

t,(:) N if m=M and g =0 (S13)
P ifm=M+1andg=1
0 otherwise
The initial transition vector is defined by al(co) = a(()tac and initial termination probability is t(©) :=

tét). Define the substitution matrix

Yy

€ /L= 814
by = (S14)

for all b0’ € {1, ..., B}. Let the rows of the insertion matrix ¢ be
emi=0HT .7 (S15)

where £~ is the inverse of the substitution matrix, which is assumed to be an invertible matrix,
and T indicates the matrix transpose.

With these definitions, Y ~ MuE(X, ¢, ¢, a0, a®) is equivalent to the conditional distribution
of Y given X under the pair HMM. Note that if v = 0 and ¢ = diag(m) (the B x B matrix
with diagonal entries m and all other entries 0) then we recover the no-mutation limit of the MuE
distribution.

Proof We will show that the joint probability of W and Y under the MuE model is identical
to the joint probability of the corresponding alignment and Y under the pair HMM, conditional
on X. We start by enumerating all possible transitions between states of the MuE Markov chain
and computing their probability under the pair HMM model without conditioning on X. Define
wi = ]I(A§~m) € B) and wY likewise. We use w”,w¥ notation to represent possible alignments, with
the symbol “|” placed to the right of the residue we are transitioning from.

1. Transitioning from (m,0) to (m + 1 < M, 0) has probability 1 — 2y — &.
x: 1|1
y: 111
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10.

11.

. Transitioning from (m, 0) to (m’/ > m+1,0) for m’ < M+1 has probability ve™ ~"2(1—e—g).

x: 1|1 ...11
y:110...01

. Transitioning from (m,0) to (m + 1,1) has probability ~.

x: 110
y: 111

m—1

. Terminating after (m < M,0) has probability yeM ™1k,

x:111...18%
y:110...08%

. Terminating after (M, 0) has probability «.

x: 11 8%
y: 118

. Transitioning from (m, 1) to (m < M, 0) has probability 1 — e — x.

x: 0| 1
y: 111

. Transitioning from (m, 1) to (m, 1) has probability e.

x: 010
y: 111

. Terminating after (M + 1, 1) has probability x

x: 0 $
y: 11 $

. Transitioning from the initial state to (1,0) has probability 1 — 2y — k.

x: |1

y: |1

Transitioning from the initial state to (m > 1,0) for m < M + 1 has probability ve™ 2(1 —
€ —K).

x: |1 ...11

y: 1 0...01

Transitioning from the initial state to (1,1) has probability ~.
x: |0
y: |1

S11



12. Terminating immediately from the initial state has probability ye™~1x when M > 0.
x: |1 ...18
y: 10 ... 08
13. Terminating immediately from the initial state has probability x when M = 0.
x: | $
y: | $
These transition probabilities were derived without conditioning on the fact that we have observed
X, which has length M. To compute this conditional probability, we calculate the probability that

the pair HMM generates an alignment with too many or too few X residues starting from each
MuE Markov model state.

1. Starting from a state (m < M,0), the probability of the pair HMM generating an invalid
alignment that is too long (rather than transitioning to a valid MuE state) is yeM—m~1(1 —
€ — k) +yeM = = yeM=m=1(1 _ k). The first term is from alignments that use a match state
instead of terminating.

x: 111 ...11
y:110...01

The second term is from alignments that use an x-alone state instead of terminating.

x: 111 ...11

y:1]10...00

2. Starting from a state (m < M,0), the probability of generating an invalid alignment that

is too short (rather than transitioning to a valid MuE state) is k + Z%;%H ye™ Ml =

K+ 'ml*ef%_l. The first term is from alignments that immediately terminate.

x: 11 $

y: 11 $

The second term is from alignments that terminate early after transitioning to the x-alone

state.

x: 1] 1...18

y:110...08

3. Starting from the state (M, 0), the probability of generating an invalid alignment is (1 — 2y —
k)+v =1—v— k. The first term is from alignments that use a match state instead of
terminating.

111
111

X:
y:
The second term is from alignments that use an z-alone state instead of terminating.
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x: 111
y: 110
. Starting from a state (m < M, 1) the probability of generating an invalid alignment that is
too short is &.

x: 0| $

y: 118

. Starting from the state (M + 1, 1), the probability of generating an invalid alignment that is
too long is 1 — € — k.

x: 011
y: 111
. Starting from the initial state, the probability of generating an invalid alignment that is too
long is yeM~1(1 — € — k) + yeM™™ = 4eM~1(1 — k). The first term is from alignments that
use a match state instead of terminating.

x: |1 ...11
y: 1 0...01
The second term is from alignments that use an x-alone state instead of terminating.

x: |1 ...11

y: 1 0...00

. Starting from the initial state, the proba}\l;ility of generating an invalid alignment that is too
— / -1 . .

short is k + ZM 11767” 1—c when M > 0. The first term is from alignments

m/= —€
that immediately terminate.

The second term is from alignments that terminate early after transitioning to the x-alone
state.

x: |1 ...18
y: 1 0...08
. Starting from the initial state, if M = 0, then the probability of generating an invalid align-

ment is (1 — 2y — k) +v =1 — v — k. The first term is from alignments that use a match
state.

X: 1
y: |1

The second term is from alignments that use an x-alone state.

S13



x: |1
y: | 0O
We can confirm that all possible trajectories of the pair HMM are either valid transitions under
the MuE Markov model or produce alignments with too few or too many X residues, by checking
that the outward transition probabilities from each state sum to one.

1. From a state (m < M,0), the total outward transition probability is

M
(1=2y—K)+7 Z M2l —e— k) +y + vk 4 yeM—m=1(] — k)
m/=m+2
1 _EM—m—l
+(k+ 9k )
l—e (S16)
1— 6M—m—l M ) 1— 6M—m—l
:1—’}/"_"}’(1—6—%) 1— +’}/€ —m- +'7/€17_6
-1 ~y + 7(1 _ GM—m—l) + ,YGM—m—l

=1
2. From the state (M, 0), the total outward transition probability is
Y+r+(1—-—v—k)=1 (S17)
3. From a state (m < M, 1), the total outward transition probability is
(1—e—kK)+e+r=1 (S18)
4. From the state (M + 1,1), the total outward transition probability is

k+et+(l—e—kr)=1 (S19)

5. From the initial state, with M > 0, the total outward transition probability is

M M-1
—€
(1—2y—k)+ Z Y™ 1 —e— k) + v+ M 4 4N — k) + (5 +’ynﬁ)
m=2
—GM_l M1 M1 1_€M—1
= 1—’7—{—7(1—6—%)?4—’}’&6 e e (1—m)+'ynﬁ
1—eM-1 1—eM-1
=1—y+71 - —qp———— 4 M i
1—e€ 1—e€
=1
(S20)
6. From the initial state, with M = 0, the total outward transition probability is
Yy+E+(1-—y—k)=1 (S21)

Consolidating transition probabilities and conditioning on the length of X yields the transition
matrix Equation S12.

Next we consider sequence emission probabilities, given an alignment. Recall that X and Y are
one-hot encodings of sequences.
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1.

Consider the case that Y; is aligned to X,,, ie.
x: 1
y: 1

The conditional probability of Y;;; = 1 given X,,;, = 1 is, according to the pair HMM,
Yy /mp. This matches the conditional probability assigned by the MuE,

Y, ~ Categorical( Z Xm’buébu) = Categorical(ﬂ). (S22)

b// Trb

. Consider the case that Y; is aligned to a gap, ie.

x: 0
y: 1

The conditional probability of ¥}, given X is just m, (since X is not informative in this case).
This matches the conditional probability assigned by the MuE,

Y, ~ Categorical((7rT 071 0)T) = Categorical (). (S23)

. Consider the case that X, is aligned to a gap, ie.

x: 1
y: O
The conditional probability of X, given X is trivially one, so this term does not contribute

to the conditional probability of Y given X under the pair HMM. It also does not contribute
to the probability under the MuE.

Thus, term-by-term, the joint probability of W and Y under the proposed MuE distribution matches
the joint probability of the corresponding alignment and Y under the pair HMM conditional on X.

O

S2.2.3 Profile HMM

The profile HMM (pHMM) is a widely used model for defining protein sequence families, inferring
multiple sequence alignments, and performing database searches (Durbin et al., 1998).

Statement Define the pHMM insertion parameter 7, ; € [0,1] for all m € {1,..., M + 1} and
j €{0,1,2}, and the deletion parameter u,, ; € [0, 1] for all m € {1,..., M} and j € {0,1,2}. Then
define the MuE transition matrix and termination probability

(1 = rmt1-gg)(1 — Um+1-g,9)
ifm+1—g=m'and ¢ =0

1
(1 = Tmt1-g,9)tmt1-g,g ([ Inr—mro—g[(1 = T 2)um o) (1 = 73 2) (1 = gt 2)

ifm+1—-—g<m' and ¢ =0

ak’)k, = Tmtl—gyg (S24)

ifm+1l—g=m'and ¢ =1

/I
(1- Tm+1—g,g)um+1—g,g(HZ":1m+2_g[(1 - Tm"72)um”,2])rm’,2

ifm+1—g<m/ and ¢ =1

L0 otherwise
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x TACGC

r=(0,0,0,0,0,0) r=(0,0,0,0,0,0) r=/(0,0,0,0.4,0,0)

u=(0,0,0,0,0,0) wu=(0,0.5,0,0,0,0) u=(0,0,0,0,0,0)
TACGC TACGC TACGTGC
TACGC TACGC TACGC
TACGC TACGC TACCGC
TACGC TCGC TACGC
TACGC TACGC TACAGC
TACGC TCGC TACGC
TACGC TACGC TACCGGC
TACGC TACGC TACGC
TACGC TCGC TACAAGC
TACGC TCGC TACGC

Figure S5: Samples from the profile HMM. The regressor sequence X; s is set to TACGC,
and we set 17y, j—0 = Tm j=1 = T'mj=2 a0d Uy j=0 = Upm, j=1 = U, j=2 for all m.

1-— TM+1,g
itm—g=M
t® = g u (S25)
(1- Tm+1—9,g)um+1—g,g(Hm”:m+27g[(1 - rm”,2)um”,2]>(1 - TM+1,2)
ifm—-—g< M
The initial transition vector is given by al(CO) = aétL and the initial termination probability is given

by ¢t = t(()t). Let the MuE substitution matrix £ be the identity matrix Ip, ie.
by = Oy (S26)

for b, € {1,..., B}.

With these definitions the profile HMM can be written as Y ~ MuE(X, ¢, ¢, a®, a(t)). Figure S5
illustrates samples from the pHMM. Intuitively, r» controls insertion probabilities and u controls
deletion probabilities; when 7, ; = 0 and u,,; = 0 for all m and j, we recover the no-mutation
limit of the MuE.

Proof This result follows from the relabeling of the profile HMM Markov state architecture
with the (m, g) notation (Figure S6). So-called “delete states” in profile HMMs do not generate ob-
servations Y;. To compute the probability of transitioning between two observable states (m, g) and
(m’,¢"), we compute the probability of (1) direct paths between the two states and (2) all possible
paths between the two states that go only through deletion states. This yields Equation S24.

The emission probability of each state in the pHMM is set by its associated emission probability
vector. Without loss of generality, we can write any emission matrix of the pHMM as Z (Definition
2.1) since ¢ is the identity matrix.

O

S2.2.4 Needleman-Wunsch

The Needleman-Wunsch (NW) algorithm is a classic non-probabilistic alignment method (Needle-
man and Wunsch, 1970).
Summary Let G be the NW gap penalty, which we assume to be negative, and define u := €©.
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initial (1,0)

(1=r10)(1 = uro) (3, 0) (M, 0)}———————— termination

1—rpmi1p0

(1 =r20)(L —uz0)

(1 —r3,0)(1 —uzo)

Figure S6: Profile HMM state architecture. The conventional profile HMM state architecture
labeled with MuE states, using (m, g) notation. Squares indicate “match states”, diamonds indicate
“insert states”, and circles indicate “delete states”.

We define the MuE transition matrix and termination probabilities

luym/=m=1tg  jfm—g<m/ < M+1land ¢ =0

1+u
a](;)k, = hZum —m+tg ifm—g<m'<M+1landg =1 (S27)
0 otherwise
2
) _ 1+u” oy
t, = —— 528
K 1+u " (828)
The initial transition vector is defined by a,(c) = a((]ti and the initial termination probability is

t,(co) =1 [()). Let Sy be the NW similarity matrix, for which we assume that ", e = B for all
b. We define, for b, € {1, ..., B},

¢ ebw $29
b = g (529)
Finally, for all m € {1,..., M + 1},

em =Y. (1/B,..,1/B)" (S30)

where £~1 is the inverse of the substitution matrix (assumed to be invertible) and (1/B,...,1/B)"
is a length B column vector. Let X and Y be the sequences to be aligned.

Under the MuE model Y ~ MuE(X, ¢, ¢, a0, a®), the maximum a posteriori estimator of the
alignment variable w given X and Y corresponds to the Needleman-Wunsch pairwise alignment
between X and Y. Note that in the limit G — —oo and Sy — —oo for all b’ # b, we recover the
no-mutation limit of the MuE distribution.

Proof We can organize the NW scoring system according to transitions in the MuE Markov
model. We use w®, w? notation to represent alignments, with the symbol “|” placed to the right
of the residue we are transitioning from. We assign I’ to be the residue of Y at the column of the
alignment corresponding to state k'

1. Transitioning from (m, 0) to (m' > m, 0) gives a NW score of (m/—m—1)G+>_y ;s T pSp 0y v/ -

x: 111 ...11
y:110...01
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2. Transitioning from (m,0) to (m’ > m,1) gives a NW score of (m' — m)G
x:1]1...10
y:110...01

3. Transitioning from (m, 1) to (m’ > m,0) gives a NW score of (m’ —m)G + 3, y T pSb 1 Yur iy
x: 011 ...11
y:1]10...01

4. Transitioning from (m,1) to (m’ > m,1) gives a NW score of (m’ — m + 1)G.
x: 0] 1...10
y:1]10...01

5. Terminating after (m,0) gives a NW score of (M —m)G.
x: 1|1 1...18
y:110...08

6. Terminating after (m, 1) gives a NW score of (M —m + 1)G.
x: 011 ...18%

y:110...08
Now we can rewrite the Needleman-Wunsch objective function in terms of these transitions,
rather than in terms of gap and insert scoring. In particular, define

(m' —m —14+9)G+ >y T pSepyyry fm—g<m' <Mandg =0

A{l',m,g,m',¢") =% (m' —m+ g)G ifm—g<m'<Mandg =1
—00 otherwise
(S31)
Based on the cases outlined above, the NW objective function can now be rewritten as
L
argﬁniaxz A(l,mi_1,91-1,m1,91) + (M —mp + gr)G (S32)
™y =1

where we set mg = 0,99 = 0. If we find the solution to this objective function, then follow the
mapping from the list of Markov chain states (mq,¢1), ..., (mr, gr) back to an alignment, we obtain
the Needleman-Wunsch alignment between sequences x and y.

Now we examine the maximum a posteriori estimator of w under the MuE distribution. We
have

L
arg max log p(y, w|x, ¢, a,¢) = argmax | log p(term.|wr) + Z log p(yr, wi|wi—1) + log p(y1, w1)
(S33)
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where p(term.|wy) is the termination probability after state wr, which reduces to p(term.|init.)
when L = 0. Under the given MuE model,

Lty =191 Lexp (Y, ) @ pSopyiy) i mu—1 — g1 <my <M +1and g =0

T+u
Py, wilwi—1) = Tk ifmi1—g—1<my<M+1and g =1
0 otherwise
(S34)
1 + U2 M—
¢ ) — mr+gr S35
p(term.|wr) T u u (S35)
L:—Zuml_lé eXp(ZM, Ty pSpy Y1)  fmp <M+1and g =0
p(y1,w1) = };—Zu"”% ifm <M+1land g; =1 (S36)
0 otherwise
. 1+u?
term.|init.) = S37
p(term.|init.) Tra (S37)
Now, the maximum a posteriori estimator of w can be written as
L
1—ul 1+ u?
arg max log p(y, w|x) = argmr’r;ax [L log(H—Z E) + log( 1-:1; )+ ZZ; Al my—1, gi-1, 70, 91)
+ (M —myp + gL)G] (S38)
L
= argﬁniax |: Z A(l’ mi—1,91—-1, My, gl) + (M —mp + gL)G:|
m.g =1

where again my = 0 and go = 0. This objective function is identical to the NW objective function
(Equation S32), so the maximum a posteriori estimator of w in the MuE distribution corresponds
to the Needleman-Wunsch pairwise alignment of X and Y.

We can confirm that the transition probabilities of the MuE distribution are normalized by
considering transitions from state (m, g):

1—u M 1—u N 1+ u?
— m/'—m—1+g + — m'—m+g M—m-+g
1+u ,Z “ 14w /Z “ +1+uu
m/=m—g+1 m/=m—g+1
M—m—14g M—m+g )
1—wu m!’ " 1 +u M—
— 4 m m—+g
T+ u [ 2: U U Z U ] + T+u U
m''=0 m/'=0 , (839)
— 1 [1 o uM—m+g +u— uM—m+g+2] + 1+u uM—m—Irg
14+u 1+u
2 2
-1 1+u uM—m+g+ 1+u uM—m—l—g
1+u 1+u
=1.
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Algorithm 2: Multiple sequence alignment construction
input : {(Wi,.... Wi}, {Wna,....Wnry}and Yi,..., YN
output: Yysa
Plug in definition of j; and g; for each sequence;
forie {1,2,...,N} do
for l; € {1,2,...,L;} do
gig; = U(Wiy, > M);
mi1, = Wiy, — Mgiy,;

end
9i,L;i+1 =0 (for convenience);
m; r,+1 =0 (for convenience);
end
n =0;
ll,l2,...,lN =1;
Iterate through each latent state, assigning letters of Y1,...,Yn to Yvsa;

for m € {1,2,...,M + 1} do

Place in the same contiguous set of columns letters generated from the same site in c;

while Ji : m;;, = m and g;;, = 1 do

n=n+1;

forie {1,2,...,N} do

if m;;, = m and g;;, = 1 then
YMsAin = Yiu;
li=1+1;

else

| Yasain = =
end

end

end

Place in the same column letters generated from the same site in X;

if 3i:m;;, =m and g;;;, = 0 then

n=n+1;

forie {l1,...,N} do

if m;;, = m and g;;, = 0 then
Ymsain = Yi;
li=1+1,

else

| Yusain ==
end

end
end

end

S2.3 Inferring multiple sequence alignments

In this section we describe how MuE observation models can be used to infer multiple sequence
alignments. First we define a multiple sequence alignment, analogously to Definition 4.2.
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Definition S2.2 (Multiple sequence alignment). Let Y1, ..., Yn be sequences with lengths Ly, ..., L.
A multiple sequence alignment Yyisa € (B U {—})7 has rows YMSA L, - .-, YMSA,N each consisting
of the letters of Y;, in order, interspersed with gap symbols. The alignment Yrisa must satisfy the
condition that for every j € {1,...,J}, there exists some i € {1,..., N} such that Ynvsaj € B.

Consider models of the form of Equation 2, and let W; be the latent alignment variable associated
with sequence Y;, i.e. W;1,...,W; 1, is the path through the latent state space that generated Y;
with length L;. Algorithm 2 constructs a multiple sequence alignment of the dataset Yi,...,Yn
given W1, ..., Wy, placing Y;; that are generated from the same state (m,0) (corresponding to a
particular position in the “ancestral” sequence X;) in the same column. Note in the case of multiple
sequence alignments, as opposed to pairwise alignments, there is no longer a unique alignment
given W, since X is not observed. The Algorithm 2 construction is chosen to match a standard
construction used for the profile HMM (see Durbin et al. (1998), Chapter 6.5), using the fact that
the profile HMM is a special case of Equation 2 with py(v) = d,,(v), where d,,(v) is the Dirac
delta function at vg. In MuE observation models we can apply the same algorithm as for pHMMs,
placing Y;; that are generated from the same state (m,0) in the same column.

S2.4 Proof of Proposition 4.5

We require that with probability 1, the set {j1,...,7jr} defined by Definition 4.3 is valid, i.e. it
must be ordered such that j; < ji11 for all I € {1,...,L — 1}. Plugging in Definition 4.3, this is
equivalent to the requirement that

myp1 > my — g, (540)

where recall m; := W; — Mg;. For this inequality to hold with probability 1 for any sample W,
Condition 2.2 is necessary and sufficient. O

S2.5 Vogel et al. natural language translation

The Vogel et al. (1996) translation model takes the same general form as a MuE distribution, with
X a sentence in one language and Y a sentence in another language (encoded as sequences of
words). In particular, with states k indexed by tuples (m, g), the transition matrix takes the form

) ._

el if g=g =0and m,m <M
g=9g =0and m,m <
ak W= Zi\r{”:l 7"Mer”—'m (841)
’ 0 otherwise

where r € RiM is a vector of non-negative weights. The initial transition vector is defined by

a,(fo) = a(()?c. The length L of Y is sampled independently of W. We can see that for general r,

Condition 2.2 is violated.

S3 Models

In this section we provide a detailed description of the models evaluated in the main text. We
parameterized the transition matrix a® in terms of r and u following Equation $24 (the profile
HMM parameterization). We also considered a simplified variation on Equation S24 where we
enforce the constraint u,, 0 = Um,1 = Um2 and likewise 7y, 0 = 7,1 = T2 for all m. We enforced
(in both cases) the constraint uys; = 0 for j € {0,1,2} (termination has probability zero); rather
than assign a termination state we assume the length of the sequence Y;, that is L;, is independent
of W;. Since the probability of L; does not contribute to the per residue perplexity performance
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metric (Section S5) we do not use an explicit model for L;. The initial transition vector followed
(0) (®)

the same form as the transition matrix, i.e. a;’ = ag .-
Note that in our experiments we go slightly beyond the vanilla MuE observation model presented
in the main text (Equation 2), and allow the insertion sequence ¢ to also depend on py.

S3.1 Profile HMM
The profile HMM is

Y; ~ MuE(z, ¢, £ = Ig,a® (r,u),a® (r, u)) (S42)

where a(©(r,u) and a®(r,u) depend deterministically on the parameters r and u according to
Equation S24, D = B, and Ip is the B x B identity matrix.

S3.2 RegressMuE

The RegressMuE model uses a linear regression model as the MuE observation’s continuous-space

vector model. Let H; 1, ..., H; 7 be covariates associated with sequence Y;. Let ﬂ[()x), ey Béz) € RMxD

be a set of coeflicients associated with X, and let B(()c), ey C([’C) e RIMFDXD Y16 5 get of coefficients
associated with c¢. Then the RegressMuE is

T
V=857 3 Hiaby”
t=1

T (S43)
v = g9 4 S Hy 8L
t=1

Y ~ MuE(X; = softmax(Vi(x)), C; = softmax(Vi(c)),E, a O (r,u),a® (r, u)).

Note that in this model, unlike the pHMM, the substitution matrix ¢ is not constrained to the
identity. When r,, = ¢, = 0 for all m and ¢ = Ip, the RegressMuE reduces to a multi-output
multinomial logit regression model.

S3.3 FactorMuE

The FactorMuE model is the latent linear version of the RegressMuE. Instead of observing covariates
H, we draw a latent variable Z from a standard normal prior,

Zit ~ Normal(0, 1)

T
Vi =557+ Y ZiaBl”
t=1
. (S44)
Vi =+ 3z
t=1

Y; ~ MuE(X; = softmax(‘/;(x)), C; = softmaX(Vi(C)), 0,a9(r,u),a® (r,u))
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S3.4 ICAMuE

The ICAMuE model the same as the FactorMuE model, except that it uses a Laplace prior instead
of a Normal prior on the local latent variable (Murphy (2012), Chapter 12.6).

Zi+ ~ Laplace(0,1)

T

v = 49+ 3 7,8
=1

T (S45)

O =0+ 3 2

t=1
Y; ~ MuE(X; = softmaX(Vi(m)), Ci = softmaX(Vi(c)), ,a9(r,u),a® (1, u))

S3.5 NeuralMuE

The NeuralMuE model uses a fully connected neural network as the MuE observation’s continuous-
space vector model. We use a network I layers using relu nonlinearities, widths 77, 1), and weights
Bi.r+1)- Let Hivrp be a vector of covariates.

Tri1
Vir+1 = Bry1,0 + Z H;tBrii
=1

Tr
Vir = Bro+ Y relu(Viry)Bry
=1

m (S46)
VY =80+ 3 relu(Vig,) 8L
t=1
Ty
Vi) = 8%+ D relu(Viz, )8
t=1
Y; ~ MuE(X; = softmax(ViEf)), Ci = softma,x(ViSf)),E, a O (r,u),a® (r,u))

S3.6 LatentNeuralMuE

The LatentNeuralMuE model uses a neural network latent variable model as the MuE observation’s
continuous-space vector model. It is the latent covariate version of the NeuralMuE, where instead
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of observing H we draw a latent variable Z from a standard normal prior.

Zi ~ Normal(0, 1)
Tria

Vir+1 = Bryio + E ZitBri1y
t=1

Ir
Vir = Bro+ Y relu(Viri1)Br
t=1

(S47)

T
VY =800+ D relu(Viz) 8L
t=1

T
VY =80+ relu(Vi) 85
t=1

Y; ~ MuE(X; = softmax(ViEf)), C;= softmax(V;Ef)), l, a(o)(r, u), al®) (ryu))

S3.7 Priors

We place standard normal priors Normal(0,1) over each element of each coefficient matrix /5 in
each model. Recall that each row of the matrix £ is constrained to the simplex, £; € Ap. To enable
easy gradient-based optimization and stochastic variational inference (Kucukelbir et al., 2017), we
transform an unconstrained parameter £ € RP*5 with a Gaussian prior to the simplex,

gd,b o~ Normal((), 1)

- (S48)
{4 = softmax({y).

The variables r,, j and u,, ; are constrained to [0, 1] for all m and j. This corresponds to the first
dimension of a simplex As, and so we apply the same approach,
T g ~ Normal(ug), 1) for ¥ € {1,2}
_ eXp(7m,j,2) (S49)
exp(Fm,j,1) + exp(Fm,j,2)

Tm 7j

where u(r) is a hyperparameter. The variable u,, is handled identically, with prior i, ;s ~
Normal(,ugu), 1) for ¥ € {1,2}.

In the case of the ICAMuE model we found that training improved with an annealing strategy:
we multiplied each coefficient matrix § by a scalar inverse-temperature parameter £, drawn accord-
ing to & ~ Normal(100,1) and ¢ = softplus(€) where softplus = log(1 + exp(-)); the variational
approximation to ¢ (see below) was initialized such that ¢(¢) had mean 0. Note that this annealing
approach does not change the expressivity of the model, only the prior and training dynamics.
Details can be found in the supplementary code (see Section S4.2).

S4 Inference

S4.1 Stochastic variational inference

Variational inference approximates the posterior distribution p(0|Y1.n) of a given probabilistic
model using a tractable family of distributions g,(6|Y1.n) parameterized by 7 (Blei et al., 2017).
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To form this approximation, variational inference minimizes the Kullback-Leibler (KL) divergence
between the two distributions,

o := arg min KL(g, (0[Y1:n)[[p(6]Y1.3)) (S50)
U

This objective can be rewritten as maximizing the evidence lower bound (ELBO),

"o = argmax Eq, @0y log p(Yi:n, 0)] — Ey, 01v:.v) [Log @y (0]Y1:3)] = arg max ELBO(7)  (S51)

We employ mean-field variational inference for MuE observation models. We use a diagonal
Gaussian distribution, with unknown mean and standard deviation, for the variational distribu-
tion over the global parameters f,&,lz é and B. For the local variable z in the FactorMuE and
LatentNeuralMuE, we amortize inference using an inference network (also known as an encoder
network) (Kingma and Welling, 2014; Rezende et al., 2014). In particular, we set

N
. (Vi) = [ . (ali) = Hsz\f (Yisn.), £ (Yisn.)) (S52)

where N (z|u, o) is the probability distribution function of a Gaussian with mean p and standard
deviation o, and f()(Y;;n,) and f(9)(Y;;n.) are differentiable functions of 7,. We parameterize
f@ and f(°) using a neural network,
Z/ﬁ) = By oMuB(v;.0(0) £00) a0 (@) u@) 0 (+@ u@)) [V ]
(@ B
(9)
Yir@y1 = F<4>+10 + Zzyzlbﬁrwﬂm
I=1 b=1

F(Q)
(9)
”@r(tn r(q) o™ Z relu(v r(q)+1 t)ﬁm)t
(S53)

T
F = gl 4 Z relu(v.% ) 814"

f( (q’ +Zrelu th )‘.

where we have introduced the variational parameters (6(‘1), D ) u(Q),K(‘?)) =:1n,. The first layer
of the encoder employs the MuE distribution and computes the expected value of mutants of Y;, at
positions [ € {1, ...,L(q)}; this expected value is a differentiable function of the MuE parameters,
and can be tractably computed using the forward algorithm. We use the same parameterization of
the MuE distribution as in the models (Section S3), but fix qu()) = TH = qu% r% =..= 7’5\(/1[)’2

and ug?()) = u“ = ugq% = ugg = .. = ug\%)_l , and cg) = cgq) = .= cg\qd). Intuitively, the MuE
encoding serves to “smear out” the one-hot encoded sequence Y; according to learnable insertion,
deletion and substitution probabilities, making it easier for the encoder to learn which sequences
are similar, and making each encoded sequence yl@ the same length L@,

To optimize the variational approximation we need to compute the gradient of the ELBO
with respect to the variational parameters 7. To enable faster optimization we employ stochas-

tic variational inference, approximating the gradient at each update step using a minibatch of
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data (Ranganath et al., 2014). Let ¢ := (8,7, u,f) be the global parameters of the MuE obser-
vation models proposed in Section S3 and let 7,4 be the parameters of the associated mean-field
variational distribution. Then the gradient of the ELBO is

N
p(Zi)
VpELBO(7) = ) (VWEQn¢(¢)an (ilve) log P(YilZi, )] + VB, (zi1v;) [10% m])
=1 2 \Hi| L1
p(9) }

+ViEy, (9) | 108
" [ Iy () - (S54)
b4
|S| Z( 1Bay, (8)an. (za1vi) [log P(Yil Zi, @) + Vy Eq”z(zlly)[log nz(ZiIY;)D

p(¢) }
q77¢ (¢)

where § C {1,..., N} is the set of datapoint indices making up the minibatch and |S| is the size
of the set S. We estimate the gradient of the first term on the right hand side of this equation
using the reparameterization trick Monte Carlo estimator (with a single sample) and automatic
differentiation (Kucukelbir et al., 2017; Kingma and Welling, 2014; Rezende et al., 2014). The
remaining terms can be computed analytically (see e.g. Kingma and Welling (2014); Rezende et al.
(2014)). Note that this approach relies crucially on the fact that the marginal likelihood of the
MuE model, pyug(y|z, ¢, £, a0, a®) = > wPMuE(Y|w, z, ¢, 0,09, a®), is a differentiable function
of x, ¢, a and £. We integrate over all possible values of the Markov chain state variable w using
the forward algorithm.

It is useful in some circumstances to reweight the variational objective to reduce the amount
of regularization placed on the local latent variable. In particular, for x € [0, 1], we reweight the
ELBO as

+V77EQT7¢ (#) |: 1Og

ELBO, ( ( any (D). (z:1v) 108 P(Yi|Zi, )] + XBq,,_ (v2) 10g

+E‘1n¢(¢) [log ql;f?q)ﬁ)] .

||Mz

p(Zi) )])

Z;|Y;

We achieved improved training performance by annealing the weight x from 0 to 1 linearly over the
course of an initial time period during training (Bowman et al., 2016). To avoid posterior collapse
and produce informative latent representations, we found it useful in certain cases to anneal x only
up to a low value xg << 1 in which case we are approximating the maximum likelihood estimator
of z; this annealing schedule was only used for producing data visualizations, rather than prediction
of held out data (Section S8) (Alemi et al., 2018).

S4.2 Probabilistic programming

We implemented a MuE distribution in both Pyro (Bingham et al., 2019) and Edward2 (Tran
et al., 2018), probabilistic programming languages that are GPU-enabled and can use a variety of
different inference procedures including both stochastic variational inference and MCMC methods.
Probabilistic programming systems make it easy to try out different priors and different continuous-
space matrix models pyg; they also make it easy to build joint models of sequences and other types
of data.

Documentation for the Pyro implementation can be found at https://docs.pyro.ai/en/dev/
contrib.mue.html. Example Pyro models can be found at https://github.com/pyro-ppl/pyro/
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tree/dev/examples/contrib/mue. The Edward2 implementation, along with a brief tutorial, is
available at https://github.com/debbiemarkslab/MuE.

S5 Evaluation

The per residue perplexity of a probabilistic sequence model p(y), over a dataset Y7.y, is defined

as
N

Q:zexp( N L

logp(Y|L ). (S56)
In evaluating our models, we computed the average log likelihood performance on a heldout test
set Y7 for the model distribution learned from the training set Yp. More precisely, we use

Q= exp ( |T|Z 7 By log p(Yi| Li, 9))) (S57)

where q(¢|yp) is the variational approximation to the posterior distribution from the training
dataset and |7 is the size of the test set. For models with local latent variables z;, we approximate
the marginal likelihood using the ELBO (Blei et al., 2017),

R p(Zi)

O~ log p(Yi|Ls, Zi, 8)] + Eq( [1 7} (858
We use Monte Carlo estimation for the expectations. In comparing between different models pq
and pso, we also report the log Bayes factor associated with the held out data, ie. the difference in
total log probability of the heldout data between the two models,

logBF12 1= Y Eg, sy 108 p2(Yil Li, )] = > gy o1y log p1 (Vi |Li, ¢)] (S59)
€T €T
where ¢; and ¢y are the variational approximations associated with p; and ps. For models with
local latent variables, we can use the ELBO approximation as in Equation S58. The Bayes factor
provides a measurement of the total evidence in favor of one model versus another.

Per residue perplexity is a useful performance metric for biological sequence models because it
is an absolute scale and comparable across datasets as well as models. Since per residue perplexity
is not yet widely used in the biological literature, in the interest of making it more interpretable
we computed the expected per-residue perplexity for a variety of different protein sequence models,
covering different data regimes. In particular, for each model p(y), we examined the expected
perplexity in the large data limit, assuming that the model is true,

Qo :=exp (— Ep) [% logp(Y'|L)]). (S60)

The expected perplexity is the exponentiated entropy of the model distribution, and so also provides
a measurement of sequence diversity under the model. Below, we compute the expected perplexity
for distributions ranging from the very high diversity regime (all of evolution) down to the very
small diversity regime (human population genetics).

Naive

A naive model assigns an equal probability to each amino acid. In this case the per residue
perplexity is
Qo = exp(—E[log(1/20)]) = 20. (S61)
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Amino acid frequencies

A simple modeling approach is to predict individual amino acids solely based on their naturally
occurring frequency across evolution. Using the UniprotKB amino acid frequencies f for b €
{1,..., B =20}, we have

20
o = exp ( - IEYNCategorical(f) [log(fT ’ Y)]) = exp(— Z Jolog fb) ~ 17.92 (862)
b=1

where Y is a one-hot encoding (UniProt Consortium, 2019; Gasteiger et al., 2005).

BLOSUMG62

If we are studying specific evolutionary families of proteins, an idealized strategy for building a
model is to infer the sequence of the last common ancestor and then predict family members using
the standard BLOSUMG62 substitution matrix (Henikoff and Henikoff, 1992). The BLOSUMG62
matrix is a renormalized copula density, but we can convert it into a mutation probability matrix ¢
by assuming the marginal probability of each amino acid follows the UniprotKB frequency across
evolution:

log £y, = log p(yy = 1]zp = 1) = log (@:) = logJy +log (ﬁﬁ)
(S63)
log(2

where z is a one-hot encoding of the ancestral amino acid, y is a one-hot encoding the mutated
amino acid, and fp} is the joint probability of amino acids b and ¥/, where b,0" € {1, ..., B = 20}.
(The log(2)/2 factor comes from the definition of BLOSUM62.) We renormalize the rows ¢, to
ensure £, € Ap (BLOSUMG62 uses only small integers, producing non-negligible rounding error).
Next, we assume that the ancestral sequence is known exactly, has infinite length, and the frequency
of each amino acid within the ancestral sequence matches the UniprotKB overall frequency across
evolution. The expected per residue perplexity is then

Qo = exp(_]EXNCategorical(f) [EYNCategorical(X~Z) [1Og(XT - Y)]]) ~ 11.00. (864)

Human Population Genetics

Finally, we examined a simple model of human population variation. Each human has on average
roughly 5 million single nucleotide polymorphisms (SNPs) relative to the reference genome (1000
Genomes Project Consortium et al., 2015). Naively assuming a constant mutation rate over the
genome, the probability of a mutation occurring in any particular codon is geoqgon = 1—(1—5/6400)3,
since there are 6.4 billion total base pairs. If we very naively assume a uniform probability of the
codon mutating to any other amino acid, then we can use the substitution matrix ¢ defined by

4codon lf b :,é b/
by = E) e (S65)
1 — Geodon ifb=10.

If we further very naively assume that there are no correlations among mutations at different
genome locations when looking across individuals, then the expected per residue perplexity of the
sequence distribution is

Qo = exXp (EYNCategorical(zT-f) [log(mT L Y)]) ~ 1.024. (866)
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S6 Predictive Performance

S6.1 Survey

Dihydrofolate reductase (DHFR) is a widely conserved enzyme, serine recombinase (PINE) is
used as a tool for genomic engineering, cyclin dependent kinase inhibitor 1B (CDKN1B/p27)
is a cell cycle inhibitor, and the human papillomavirus E6 protein (VE6) is an oncogenic viral
protein Hopf et al. (2017); Toth-Petroczy et al. (2016); Tamarozzi and Giuliatti (2018). Evolu-
tionarily related sequences for each were collected using jackhmmer (v3.1) from the UniRef100
dataset (date 6/2019) (Johnson et al., 2010; Eddy, 2011; Suzek et al., 2015). We used seed se-
quences with Uniprot identifiers DYR_.HUMAN (DHFR dataset), PINE_ECOLI (PINE dataset),
CDN1B_HUMAN (CDKNI1B dataset), and VE6_HPV16 (VE6 dataset). Note that CDKN1B and
VEG6 have regions classified as disordered. We set a bitscore threshold of 0.5 bits/residue as in Hopf
et al. (2017) and ran the jackhmmer search using the API from the EVcouplings package (Hopf
et al., 2019). We included the full envelope of the profile HMM hit in the final dataset. The
CDNI1B dataset had 1,055 sequences and the VE6 dataset 1,609 sequences. We found 32,510
and 79,354 hits respectively for the DHFR and PINE datasets, which we randomly subsampled
to 10,000 sequences to create the final datasets. Note that the jackhmmer search algorithm uses
a profile HMM to find distant homologs, and thus may bias the dataset to look more like sam-
ples from a pHMM; we therefore expect the performance gains from using other MuE observation
models, as compared to the pHMM, on these datasets to be smaller (more conservative) than the
performance gains that might be achieved on alternative datasets assembled using different search
methods. The TCR dataset was not assembled using jackhmmer. Instead, we downloaded a pub-
lic dataset from 10x Genomics of 6,327 TCR sequences found in CD8+ cytotoxic T-cells https:
//support.10xgenomics.com/single-cell-vdj/datasets/2.2.0/vdj_v1l_hs_cd8_t (download
file dated July 28, 2018). These were sequenced using single cell sequencing of peripheral blood
mononuclear cells obtained from an individual healthy donor. Internal stop codons were removed
from the sequence.

We set the latent alphabet size D = 25. In each experiment, we set M to be 10% longer than
the longest sequence in the dataset. We used T' = 5 latent space dimensions in the FactorMuE and
layer sizes Th = 5, T1 = 10 in the LatentNeuralMuE (we found a substantial dropoff in performance
when increasing network width or depth). In the recognition network, we set L@ =M —1. We
also used I'@ = 0 (no relu nonlinearities) in the FactorMuE recognition network and I'9) = 1,
71 = 10 in the LatentNeuralMuE recognition network. For the MuE, we used the constraint
Um0 = Um,1 = Um,2 and likewise 7, 0 = 11 = 7,2 for all m. For the prior on the MuE insertion
and deletion parameters we used pu( = p(® = (100,1) to disfavor indels.

In these particular experiments, models were implemented in PyTorch, with variational inference
implemented by hand and without the parallelized forward algorithm (experiments in Sections S6.2
and S6.3 were performed second with the Pyro implementation). We optimized the variational
approximation using Adam (Kingma and Ba, 2015) and a minibatch size of 5. The mean of the
variational distribution was initialized at the prior mean, while the variance was initialized to a
small random value (the absolute value of a sample from a normal distribution with standard
deviation 0.01). We used one Monte Carlo sample to estimate the ELBO gradient at each step. For
each model and dataset, we evaluated two different learning rates, 0.1 and 0.01, and three different
random restarts, selecting among training runs the parameter values that reached the highest ELBO
on the training set for making predictions. For models with local latent variables (the FactorMuE
and LatentNeuralMuE), we annealed the ELBO reweighting factor y from 0 to 1 linearly over the
first 2 epochs. We trained for 4 epochs total on the DHFR and PINE datasets, and 7 epochs total
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on the smaller CDKN1B, VE6 and TCR datasets, which was sufficient for convergence in each
model. We estimated the heldout perplexity using one independent Monte Carlo sample per batch.
Computations were performed on graphics processing units (NVIDIA Tesla M40, K80 and V100
GPUs), with double precision, and we used gradient accumulation to reduce memory usage. Single
training runs ranged from ~30 min. for smaller datasets (CDKN1B and VEG6) to ~2.5 hours for
larger datasets (DHFR, PINE and TCR).

S6.2 Patient immune repertoires

We considered six datasets. “HC 1”7 consisted of 5,179 BCR sequences from a healthy donor,
obtained with single cell sequencing of peripheral blood mononuclear cells, available from 10x
Genomics https://support.10xgenomics.com/single-cell-vdj/datasets/3.0.0/vdj_v1_hs_
pbmc2_b (download file dated November 15, 2018). The rest of the datasets all were taken from a
study of T cell receptors in patients with and without multiple sclerosis during pregnancy (Ramien
et al., 2019). Sequences were translated to amino acids based on the provided nucleotide sequence
annotations. The dataset “HC 2” is from a healthy patient, third trimester, CD8+ cells. “HC 3”
is from a healthy patient, third trimester, CD4+ cells. “MS 17 is from a patient with MS, before
pregnancy, CD8+ cells. “MS 2”7 is from a patient with MS, second trimester, CD8+ cells. “MS 3”
is from a patient with MS, third trimester, CD4+ cells. Each of the datasets from Ramien et al.
(2019) was uniformly subsampled to 20,000 sequences. Across all datasets, internal stop codons
were modeled along with the 20 amino acids (i.e. B = 21).

We again set the latent alphabet size to D = 25. We set M = 200, longer than most sequences
in each dataset. We used T' = 5 latent dimensions in the ICAMuE. In the recognition network we
used T = 0 and set (@, 4(@ and £(9) to the no-mutation limit (avoiding the need for the forward
algorithm, to speed up inference at some cost in flexibility). We did not use either the constraint
Um,0 = Um,1 = Um2 or the constraint r,, o = r,;,1 = 1,2 in these experiments. For the prior on
the MuE insertion and deletion parameters we used u(” = (% = (10,0), for both the ICAMuE
and pHMM models. We used the fN ~ Normal(100,1) prior as described in Section S3.7 for the
ICAMuE model.

Models were implemented in Pyro. We used Pyro’s stochastic variational inference method (in
particular, JitTrace_ELBO, the jit-compiled ELBO), and the parallelized forward algorithm (Sarkké
and Garcia-Fernandez, 2020). Optimization was performed with Adam, with a learning rate of 0.01,
and a minibatch size of 5. Initialization was performed the same as previously, with the exception
that q(f~ ) was initialized to have mean zero. Pyro’s low-variance ELBO gradient estimators enabled
more reliable inference, and so we only used one initialization in each experiment (rather than
three). For the HC 1 dataset we trained for 10 epochs, annealing x for the first 4; for the remaining
(larger) datasets, we trained for two epochs, annealing for 1. This was sufficient for convergence. We
used the same GPU hardware as previously, but did not use gradient accumulation. Training took
~20 min. on the larger datasets (the Pyro implementation offers considerable speedup advantages,
thanks in part to the parallelized filtering algorithm).

S6.3 Disordered proteins

Toth-Petroczy et al. (2016) collected datasets of evolutionarily related sequences using jackhmmer
on the Uniref and Uniprot databases, starting from regions of human proteins classified as disor-
dered. They developed a (heuristic) alignment uncertainty score to determine whether the MSA
provided by jackhmmer was trustworthy enough to apply a Potts model and reach conclusions
about epistatic interactions between positions in the MSA. They did not proceed with the Potts
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model analysis on datasets with a sufficiently high uncertainty score; we examined these datasets in
particular (https://marks.hms.harvard.edu/disorder/proteome). We focused on moderately
sized datasets: those with more than 3,000 but less than 25,000 sequences, with the disordered
segment less than 160 amino acids long. As before, we included the full envelope of the profile
HMM hit in the final dataset.

We used the same hyperparameters and training procedure as in Section S6.2, but set the
number of epochs to be the minimum number such that at least 50,000 optimization steps were
taken, and the number of epochs of x annealing to half this number (rounded up).

Detailed results Perplexity on a randomly held out 20% of sequences are shown in Table S2. In
55 out of the 56 datasets, the relative performance of the pHMM and ICAMuE on the training data
accurately reflected their relative performance on the test set, i.e. when the pHMM outperformed
the ICAMuE model on the training set it also did so on the test set and vice versa. The ICAMuE
seems to offer particular advantages when the pHMM itself has low perplexity: among datasets
with pHMM perplexity below 8, we find the ICAMuE performs better in more than half (16 out of
31), while among datasets with pHMM perplexity below 5, the ICAMuE performs better in 5 out
of 6.

Table S2: Heldout perplexity on disordered protein datasets.
“Disordered segment” is the region of the protein classified
as disordered that was used as a seed in jackhmmer. “Size”
is the total number of sequences in the dataset. Rows sorted
by pHMM perplexity.

Gene name Uniprot id Disordered segment Size (sequences) pHMM ICAMuE

AKAP6 Q13023 293-431 6349 2.88 1.98
NSD1 QI6L73 2463-2590 6517 2.93 2.64
NFAT5 094916 633-769 10283 2.94 1.98
CIC QI6RKO 48-207 7511 3.10 3.79
S26A8 QI6RN1 847-970 9466 4.14 2.67
TADBP Q13148 261-373 12873 4.78 2.97
TET2 Q6N021 1475-1587 22017 5.11 5.98
K2022 Q5QGS0 589-707 3719 5.14 5.99
YAF2 Q8IY57 53-180 16005 5.42 5.98
HDAC5  Q9UQL6 479-631 14275 5.44 5.85
MUC19 Q7Z5P9 5890-6021 13491 5.59 4.84
RBM27  QYP2N5 91-247 11685 5.80 6.28
DENIA  QSTEH3 453-567 6070 5.84 6.11
K1683 QIHOB3 383-502 10098 5.94 4.39
FNBP1 QI6RU3 280-432 23781 5.96 3.82
TOX 094900 135-269 9881 6.02 6.48
SRPK3  Q9UPEl 238-348 9345 6.06 5.73
CAC1G 043497 470-626 16502 6.16 7.07
NGAP QIUJF2 803-953 6356 6.39 4.45
PS1C1 QIUIGH 1-126 3434 6.62 6.13
GPKOW Q92917 31-157 5888 6.67 4.90
GOG8B  ASMQT?2 1-131 3674 7.17 8.04
CPXM1  Q96SM3 30-137 3538 7.28 11.51

Continued on next page
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Table S2 — continued from previous page
Gene name Uniprot id Disordered segment Size (sequences) pHMM ICAMuE

ESX1 Q8N693 34-147 10234 7.34 10.44
PPIL4  QSWUA2 337-492 5897 7.38 6.06
TAOK3  QOH2KS 316-433 8661 7.38 8.32
CAAP1  Q9HS8G2 197-335 19715 7.54 5.00
CCD66  A2RUB6 631-830 9586 7.66 9.02
GCC2 Q8IWJ2 1416-1552 7593 7.74 5.71
ASXL3 QICOF0 107-236 5108 7.75 8.42
ARHGF 094989 273-413 4290 7.97 7.66
YJ013 Q6ZQT7 1-158 922994 8.07 4.32
PHLB2 Q86SQ0 842-976 22091 8.34 10.61
CC168  QSNDH2 86-232 12240 8.40 9.73
41 P11171 690-805 7429 8.70 10.05
CEBPA P49715 161-314 20149 8.81 10.18
CP250 QIBVT3 2213-2346 17867 9.08 12.34
CHD6 QS8TD26 2312-2457 8843 9.19 10.62
ANKHI  QSIWZ3 2000-2149 15540 9.22 10.59
CPLX4 QTZ7G2 18-128 20000 9.42 11.16
WAC QIBTA9 198-353 3385 9.58 9.15
BAHC1 QoP281 1357-1482 9092 9.76 11.13
GOG6B  AGNDN3 473-580 7947 9.78 11.50
NOB1 QIULX3 110-221 4659 9.86 11.93
DGKH Q86XP1 581-705 5903 9.86 11.41
CASZ1 Q86V15 1589-1735 7943 9.92 11.38
POTED  Q86YR6 367-502 15076 9.95 11.48
POTEC  B2RU33 367-502 15076 10.02  11.43
POTEH  Q6S545 405-545 8777 10.32  11.90
ZKSC2 Q63HK3 586-738 18126 10.32 1457
PTRF Q6NZI2 175-297 18730 10.35  14.07
PERQ1 075420 289-441 10443 10.44  12.35
U17L8 POCTIO 383-530 2759 10.57 9.99
LRCH2  Q5VUJ6 491-642 6832 10.66  12.60
EMIL2  Q9BXXO0 121-259 5666 11.16  14.16
LMO7  QSWWIL 763-901 7893 11.18  12.68

S7 T-Cell Receptor Analysis

S7.1 Detalils

We used the 10x Genomics single-cell TCR sequencing dataset described in Section S6.1, along
with the CellRanger annotations of chain features provided along with the dataset. Annotations
of the reference structure PDB:2BNR are based on IgBLAST annotations (Ye et al., 2013) of
the nucleotide sequence of 1G4 TCRf obtained from Robbins et al. (2008), and translated from
nucleotides into the corresponding positions in the amino acid sequence (Figure S9).

To obtain a latent space representation (Figure 5B), we trained the FactorMuE observation
model with T' = 2 latent dimensions, and chose among training runs based on a randomly held out
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Figure S7: Latent space representation of human T-cell receptor sequences, colored by
supervised annotations. Annotations were provided with the 10x Genomics dataset. (A) C,
versus Cg. (B) a chain V types. (C) a chain J types. (D) § chain V types. (E) § chain D types.
(F) 8 chain J types and subtypes.

test set (5% of the data). Hyperparameters were otherwise set as in Section S6.1. The shift v is
estimated using the variational approximation to the posterior of the FactorMuE (using 10 Monte
Carlo samples). wyer is estimated using a single sample from the variational approximation to the
posterior and the Viterbi algorithm.

S7.2 Further results

Along feature vector 2 (Figure 5D) we found weak positive correlation between the magnitude of
variation and the relative surface accessibility of each site (Spearman correlation p = 0.20, p < 0.02;
Figure S8). Along feature vector 1 (Figure 5D) we observed high values of v; in the V segment,
suggesting that there are systematic and heterogeneous differences between the V segment sequence
distribution used in TCRa chains and in TCRS chains. To confirm the observation, we used the
RegressMuE model to predict the entire TCR sequence based just on its annotation as TCRa« or
TCRp. In particular, as covariate vector H; we used a one-hot encoding of the chain type annotated
by CellRanger; sequences without an annotation were labeled as (0,0). We computed the regression
shift v; in the same way as Equation 3, with the covariate H in place of z. Figure S10 plots the
shift in amino acid preference between the two chains, showing that at a population level there are
key positions within the variable region with substantial differences in preference.
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Figure S8: Comparing MuE observation model features to T-cell receptor rela-
tive solvent accessibility. (A) Relative solvent accessibility of TCRS from the structure
PDB:2BNR (Chen et al., 2005) (the TCRa chain is shown in gray), computed using DSSP (Kabsch
and Sander, 1983) and the maximum values in Tien et al. (2013) with the Biopython API (Cock
et al., 2009). (B) Residue relative solvent accessibility versus FactorMuE shift magnitude v; along
vector 1 and vector 2 from Figure 5D. The correlation between the shift along vector 1 and the
accessibility is Spearman p = 0.039, p = 0.64.

S8 Influenza Analysis

S8.1 Details

We downloaded publicly available influenza A(H3N2) HA sequences from GISAID (Shu and Mc-
Cauley, 2017). We selected only sequences longer than 500 amino acids and with no ambiguous
amino acids. Some sequences were labeled at different levels of time resolution, with annotations
providing months or years rather than days; we assumed month and/or day were missing at random
and imputed them uniformly at random. Following Lee et al. (2018), we randomly subsampled six
sequences per month, from 1968 to October 2019, to form the dataset. In the forecasting experi-
ments we removed the mis-annotated data identified in the 2008 outlier cluster marked by I in Figure
6E prior to subsampling (GISAID identifiers EPT_ISL_24813, EPI_ISL_24814, ..., EPI_ISL_24867).
Accession numbers for the complete dataset can be found in the Supplementary Table 1 file; our
results were stable upon resampling. We extracted only the first 350 amino acids of each HA
sequence, covering HA1 in the reference A(H3N2) numbering (Burke and Smith, 2014).

We used M = 361 in the MuE distribution. We set the prior on indels to (") = p(*) = (1000, 1).
We trained each model for 7 epochs, which was sufficient for convergence. Hyperparameters and
training schedule were otherwise set as in Section S6.1. To produce the latent embedding in Figure
6D, however, we annealed the ELBO weighting x only up to xo = 0.001 after 7 epochs, providing
only very weak prior regularization such that the embedding corresponds to approximately the
maximum likelihood estimator of z (and we avoid posterior collapse).

To visualize features, we trained the RegressMuE model on the full time period (1968 to 2019),
with 5% of datapoints randomly held out to choose among training runs. We computed the mag-
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Figure S9: T-cell receptor structural annotations. (A) CDR segments of PDB:2BNR chain
E (Chen et al., 2005), based on IgBLAST annotations (Ye et al., 2013) of the nucleotide sequence
of 1G4 TCRp obtained from Robbins et al. (2008), and translated from nucleotides into the corre-
sponding positions in the amino acid sequence. CDR1 in red, CDR2 in yellow and CDR3 in orange.
(B) V (green), J (yellow) and junction (red) segments of the 1G4 nucleotide sequence, based on
the IgBLAST annotations, and translated from nucleotides.

Figure S10: Shift v from chain a to chain  sequences learned by the RegressMuE model.
v; was computed as in Equation 3, using the chain annotation in place of the latent variable z.

nitude of the shift in sequence space from time ¢y to time ¢; in the RegressMuE as

S 1/2
o [Z (B[Vip[tbrer, t = 2019] — E[Yip|tber, ¢ = 1968])* (S67)
b=1
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Figure S11: Comparing RegressMuE model coefficients to HA1 structural domains. (A)
Head (orange) and stalk (green) domains of the HA1 protein (PDB:405N); residues between sites
52 and 277 are defined as the head domain, and all others as stalk, following Lee et al. (2018). (B)
Violin plots of regression shift v; (Equation S67) for residues in the head domain (226 residues)
versus the stalk domain (103 residues). Mean and standard deviation are shown in orange.

using as reference the HA1 sequence from PDB:4O5N. The expectation is estimated using the
variational approximation to the posterior with 10 Monte Carlo samples. .. is estimated using
a single sample from the variational approximation to the posterior and the Viterbi algorithm. In
evaluating the association between the shift vector v; and epitope regions of HA1, we specifically
compared to the 16 sites with clear antigenic selection in at least one human sera identified in Lee
et al. (2019).

S8.2 Further results

In addition to the classic epitope regions, we also compared the regression shift v to the structural
domains of the HA1 protein (Figure S11), relative solvent accessibility (Figure S13), and relative
amino acid preference in a deep mutational scan evaluating fitness effects of mutations (Figure S14).

The cluster marked i in Figure 6E appears around 2008 but the latent representation of these
sequences is close to that of sequences from the late 1960s or 1970s; this cluster comes from an
experiment performed in 2008 on 1968 sequences, rather than contemporary patient samples as in
the rest of the GISAID dataset.

MukE observation models can be used to generate samples of future sequences, enabling experi-
mental tests of immune response and antibody titer on sequences that are likely to emerge in the
future. We generated samples for the year 2024 from the RegressMuk, and confirmed that they
are similar to previously observed sequences, as would be expected (Figure S15). In particular, we
sampled from

¢~ q(¢o|Yp)

A (568)
Y ~ pRegressMuE(y|wrefv ¢t = 2024)

where ¢(¢|Yp) is the variational approximation to the posterior over model parameters, under the
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Figure S12: Comparing MuE observation model regression coefficients to HA1 epitope
regions. (A) Epitope regions A (red), B (orange), C (yellow), D (green), E (blue) (Wiley et al.,
1981; Munoz and Deem, 2005). (B) Violin plots of regression shift v; (Equation S67) for residues
in each epitope region, for all epitope regions together, and for residues not in any epitope region;
the number of residues in each region is shown in parenthesis. Mean and standard deviation are
shown in orange.

model trained on the full time period (1968 to 2019), and PDB:405N is again used as a reference
sequence.
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