Thinking Like Transformers

layer 0 layer 1
head 0
Fmdmel o] 1] 2[3] 4] 5] 6] 7] 8] o[10[11[12[f0) ®
FF 0 o/ o[ofofofofo|ofo]o]ofofofm] om0 s e
FF| seq 1| o[o[of o[o[o ofo]of of of 0 §@]trom (0 s7lelalcb[a|a[B[CID[E[E
FF -1 EIEIEIEIEIEIEIEIEIEIEIEIE] B 0[50
[FF|(indices- 1)[-1| 0 1| 2[3] 4| 5| 6] 7| 8| 9|10|11 §@)|from (0) ;fg
B
FF 0 o/ o[o[o]o[ofo]o[o]o] o] o] o §®)] from 0 STzl (BNl
C|D|E|F 4|clo
9(10{11{12 5|50
C|D|E |F 6 [a]0|
ojojo|0 7 |A0
5 8 (B0
9 |C|0|
f 10/D[o
e 11]E[o]
12|F |0
d
c
|
b
a
A
B
C
indices | O [1 | 2 [3| 4 [5| 6 [7[8| 9 [10]|11]| 12 RO
o seq 0.077/0.083(0.0910.1{0.111{0.125{0.143| 1 (0.5]|0.333|0.25|0.2{0.167 (1)
E <l A [[afafalafala]a[ala] 1 @
num_before | 12.0 [11.0 | 10.0 [9.0| 80 | 7.0 | 6.0 [0.0{1.0[2.0 [3.0 (40| 50 §(3)| from (1)
E
IFFInnm_bcfm: -1 |11.0|10.0|9.0(80 | 7.0 | 6.0 (0.0|/1.0{ 20 [3.0 |40| 50 R(4)|from (2,0,3)
§ f e d c b a A B C D E F
layer 2
head 0
(grab_output)
0|1 |2 (3[4|5[6|7|8]|9]10[11]12

-1{11.0/10.019.0(8.0({7.0(/6.0/0.0|1.0{2.0{3.0({4.0|50

Slolololelolololo|ololo]o

RS laeTo]
-

7z -
[AlB[C[p[E[F[a[b]c dle]f]

Figure 6: Computation 3ow in compiled architecture freeSPsolution for sort (with BOS token), alongside heatmaps

from the corresponding heads in a transformer trained with both target and attention supervision on the same task and
RASP solution. TheRASP solution is simply writtersort(tokens,tokens,assume_bos=True) , using the functiorsort

shown in Figurel5. Both theRASParchitecture and the transformer are applied to the input sequefeskebaABCDEF"

Appendices A. Experiments

In AppendixA we give training details from the experi- A.1l. Results: Attention-regularised transformers
ments in this paper, as well as additional results from th
transformers trained to mimiRASP-predicted attention pat-

terns. The exadRASP solutions for all tasks considered

in the paper, as well as an implementation of the operatio . .
! pap W Imp I peratl paper. All of these reached high9+%) accuracy on their

selector_width in terms of other operations (which have nce-t nce task computed as fraction of output
direct translation to a transformer), are presented in A pequence-to-sequence task, computed as fraction of outpu

pendixB. This section also presents the computation Bowéc’kenS predicted cprr'ect'ly. Plotting their attentiqn patterns
in compiled architectures for several of these solutions. ;Ir?)(;rs;rggs clear similarity to those of the compifeaiSP

Note. References to appendices D and E in the submit-
ted draft should in fact be to B and A, respectively. Our
apologies.

?Ne trained3 transformers with a target attention pattern
according to ouRASPsolutions, thes8 being for the tasks
I;}Iouble—histogram, sort, and most-freq as described in the

or thedouble-histograntask, a full compiled architec-
ture is presented on the sequem@abbaain Figure 17.
Additionally, in Figurel, just its attention patterns are pre-

Thinking Like Transformers

sented alongside the corresponding attention heads frof8. RASP programs and computation 3ows for
its attention-regularised transformer, this time both on the the tasks considered

sequenc@aabbaabb

)] B.1.selector_width
For thesorting task, we present a full computation Row

on the input sequenceedcbaABCDERIongside the corre- TheRASPimplementation obelector_width is presented
sponding attention heads of the regularised transformer oift Figure9. The core observation is that, by using a selector
the same sequence, in Fig@eThe regularised transformer that always focuses on zeror(in the presented code), we
had input alphabet of sizB2 and reached test accuracy can compute the inverse of that selectorOs width by aggregat-
99.0% on the task (measured as percentage of output pé?d al from position0 andO from everywhere else. It then
sitions where the correct output token had the maximunfemains only to make a correction according to whether or
probability). not the selector was actually focused@rusing the second

))) selectorandO(if there isnOt a beginning-of-sequence token)
For themost—freqa_sk (returning each unique token in the or our prior knowledge about the input (if there is).
input, by descending order of frequency, and padding the
rgst with the BO.S token) we dp the again show a 'cor.nquaB.ZI RASP solutions for the paper tasks
tion Bow alongside the regularised transformer, this time in
Figure7 and with the sequencemabbcddd On this task the We now present thR ASP solutions for each of the tasks
regularised transformer had input alphabet of &@and considered in the paper, as well as an implementation of
reached test accura®p.9%. the RASPprimitive selector_width in terms of only the

primitivesselect andaggregate.

A.2. Training Details The solution for histograms, with or without a BOS token,

In the upper bound and tightness experiments (Seﬁﬁpn is given in Figurell. The code for double-histograms (e.g.,
for each task and layer/head specibcation, we train tranBist2(" aaabbccdef’)=,1,1,2,2,2,2,3,3,3]) is given
formers with embedding dimensi@56and feed-forward in Figurel2. The general sorting algorithm (sorting any one
dimension512on the task fol00epochs. We use learning seduence by the values (OkeysO) of any other sequence) is
rates0.0003and0.0001, and learning rate decay= 0.98 given in Figurel3, and sorting the tokens by their frequency
and0.99, training4 transformers overall for each task. We ("Most freq"”) is given in Figurel4. Descriptions of these
use the ADAM optimiser and no dropout. Each transformersolutions are in their captions.

is trained on sequences of len@h —100 with train/valida-

tion/test set sizes &0, 000, 1,000, and1, 000respectively.))
Excluding the BOS token, the alphabet sizes &and "€ Dyck-PTF Languages Dyck1-PTF First each posi-

5 and for Dyck4 and Dyck? (the parentheses, plus one FIOF\ attends to all previous positions up to and mc!udmg
neutral token)100for reverse and sort, artBfor the rest ItSelf in order to compute the balance between opening and
(to allow for sufbcient repetition of tokens in the input se-Cl0Sing braces up to itself, not yet considering the internal
quences). All input sequences are sampled uniformly fronPrdering of these. Next, each position again attends to all
the input alphabet and length, with exception of the DyckPrevious positions, this time to see if the ordering was prob-

languages, for which they are generated with a bias toward§matic at some point (i.e., there was a negative balance).
legal prebxes to avoid most outputs befag From there it is possible to infer for each prebx whether it

is balanced (T), could be balanced with some more clos-

For the attention regularised transformers, we make thghg parentheses (P), or can no longer be balanced (F). We
following changes: Prst, we only train one transformer pefpresent the code in Figues.

language, with learning ra@0003and decay0.98. We) o .)

train each transformer f@50 epochs (though they reach pyck—Z—PTF For this <_jescr|p|t|on we d|ﬁerentlgte between
high validation accuracy much earlier than that). The losdnstances of an opening and closing parenthegsrferand
this time is added to an MSE-loss component, compute§!0S€!) matching each other with respect to their position
from the differences between each attention distribution and/ithin @ given sequence, e.g. @s and{] do in the
its expected pattern. As this loss is quite small, we scale i#€duenceé{]> , and of the actual tokens matching with

by a factor ofL00 before adding it to the standard output '€SPect to the pair debnitions, e.g. as the token pairsnd
loss. (,) are debned. For clarity, we refer to these as structure-

match and pair-match, respectively.

For a Dyckn sequence to be balanced, it must satisfy the
balance checks as described in Dyickwhen treating all

openers and all closers as the same), and additionally, it
must satisfy that every structure-matched pair is also a pair-

Thinking Like Transformers

layer 1

head 1 head 0

) 5}
o]1]2[3]4[s]6]7]8 o[1]2[3]4[s]6]7]8
§[a[b[b[c[c[d]d]d bblc|c[afa]a

Z‘
B
3
3
o
=
)
)
&

o
ENRDEONEE

alalalolo|o|o|s [=
S[o[o[o[s[o[o]o]e

.emoo-@

55—

)

w

=

o

Y

=]

=3
clelelolnlolols [=
S[ololo[a[ololo]o

:ﬂlﬂﬂﬂﬂﬂﬂﬂﬂ

/NN

seq[1[1{1]0.5[1[0.5/1{0.5/0.333'

alb b [clcld]d]d o
0.5[0.333] 0:333 [0.333[0333 [025[025 | 025 (1)
@
$| 8 § § § [$] 8 § @)

on| | = |eon
°
@
o|f
@
)
&
=)
@
8
8

00[10[20 | 20 [20] 20 [30] 30 | 30 f@]| from()
000000 [10 [00 [10 [00] 10 | 20 §)| from(2)
F[F[F [T [F[r[F[1 [T O from®
ofofo[1 o[t]ol 11 Foof frome
0010 20 [-2980] 20 |2980[3.0 [297.0]-297.0 ®) | from 4, 7)

slalbv [s [c][s[d]ls [s JOrmas60
-0.0[-1.0[2.0 [298.0] 2.0 [298.0]-3.0] 297.0] 297.0 J10)] " from (8)
layer 2
head 0

o
©
IS
o
o

78
-00[-1.0[-2.0[298.0(-2.0[298.0[-3.0[297.0[297.0|

-0.0[-10]-

o ol&]e
B
o =]
g
of BB
I 1 1
sHE
o|B|w|8|w
2
I ENEES
2
BERES
|2
e|Pla|w e
BRE
=
=|S| = <
1=l f=l |
s
o|% Sle
Bl
SR =R
FREEE
HEEEE
e e e

indices [0 1]2] 3] 4]5][6]7] 8 Jo)
seq_ [02[025[0.50.143[0.333[0.125] 1 [02[0.167 (1)
BN ENENENEIEIEN)
num_before 4.0 3.0 [1.0] 60 | 20 | 70 [oof40] 50 §@)| from (1)
[num_before | -1 | 30 [1.0] 60 | 20 | 70 [00[40[50 J@)]from 0.3.2)

layer 3
head 0
(grab_output)
of1 3[4]s 7]8
-1[3.0[1.0[6.0[20[70]00]4.0[5.0
o[-1]o
of1 3[4]s5[6]7]8] [1]o]o
-1[3.0]10]60[20[70[0020]50| [2[1]0
of1 4[5 8| [3]2]o
o1 [2]3]a]5[6]7]| [43]0
ofofofo]ofofo]o]o]| [5]«]o
650
7]6]0
8]7]0
[ltered_tokens[s]a o]s c s d]s]s]
N "'
LLRK
[sort_by_most frea[[d[b]c]a]s]s[s[s]

Figure 7: Computation Row in compiled architecture fremSP solution for sorting by frequency (returning all unique

tokens in an input sequence, sorted by decreasing frequency), alongside heatmaps from attention heads in transformer trained
on same task and regularised to create same attention patterns. Both are presented on the inputabuedde for

which the correct output isdbca The transformer architecture has 3 layers with 2 heads apiece, lRASRarchitecture

requires only 1 head for each of the second and third layers. We regularised only one for each of these and present just that
head.

Thinking Like Transformers

© 0o N o g b W N P

W OWRNNNNNDRNDRNNRNNRNNRNER B B B 2
B O © ©® N o O & W NP O © ® N~ O 00 b W N P O

pairs = ["0"."{}."[I"]; # etc
openers = [p[0] for p in pairs];
closers = [p[1] for p in pairs];
opens = tokens in openers;
closes = tokens in closers ;
n_opens = num_prevg opens);
n_closes = num_prevgcloses);

depth = n_opens - n_closes;
delay_closer =
depth + indicator (closes);
earlier_same_depth =
select(delay_closer , delay_closer , ==)
and
select(indices, indices, <=);
depth_index =
selector_width(earlier_same_depth);
open_for_close =
select(opens, True, ==) and
select(delay_closer ,
delay_closer ,==) and
select(depth_index,
depth_index -1, ==5);
matched_opener=
aggregate(open_for_close , tokens,"-");

opener_matches = matched_openett in pairs;

mismatch = closes and not opener_matches
had_problem =
num_prevg mismatch or depth<0)>0;
return "F' if had_problem else
(" T if depth==0 else "P");

match.

We begin by using the functiomum_prevdrom Figurel5

to compute balances as for Dyékignoring which token

pair each opener or closer belongs to. Next, we create an at-
tention pattermpen_for_close that focuses each closer on

its structure-matched opener, and use that pattern to pull up
the structure-matched opener for each closer (the behaviour
of that pattern on closers that do not have structure-matched
openers is not important: in this case there will anyway be a
negative balance at that closer). For each location, we then
check that it does not have an earlier negative balance, and
it does not have an earlier closer whose structure-matched
opener is not a pair-match. If it fails these conditions the
output is F, otherwise it is T if the current balance is 0
and P otherwise. The remaining challenge is in computing
open_for_close.

In pureRASHNi.e., within the language as presented in this
workNithis is realisable in two steps. First, we number each
parenthesis according to how many previous parentheses
have the same depth as itself, taking for openers the depth
after their appearance and for closers the depth before. For
example, fo())() , the depths arf1,2,2,1,1,1] , and

the depth-index i$1,1,2,2,3,3] . Then, each closerOs
structure-matched opener is the opener with the same depth
as itself, and depth-number immediately preceding its own.
This solution is given in Figur8, and compiles to 4 layers
with maximum width 2.

However, by adding the theoretical operatsmiect_best ,

and ascorer object similar to selectors (with numbered
values as opposed to booleans), we can simplify the
computation obpen_for_close to simply: the last opener
with the same depth as the closerOs, that is still before
the closer. This would be obtained aslect_best(
select(adjusted_depth,adjusted_depth,==) and
select(indices,indices,<) , score(indices,0,+))

In this case, the depth-index of each position does not need
to be computed in order to obtaipen_for_close, saving

the layer and 2 heads that its compilation creates.

B.3. Computation Bows for select solutions

Figure 8: PureRASPcode (as opposed to with an additional RASP can compile the the architecture of any s-op, and

select-best operation) for computing Dy8KPTF with the

display it with an example input sequence. The command is

parenthese§) ,{,} and[,] . The code can be used for any draw(s2s,inp) wheres2sis the target s-op andp is the

Dyck-n by extending the lispairs , without introducing

additional layers or heads.

example sequence to display, edraw(dyckl,"(())")

Example computation Rows féiist_bos andreverse are
given in the main paper in Figurésand4, respectively.

An example computation Row fdnist_nobos is given in
Figure16. The double-histogram Row partially shown in
Figurelis shown in full in Figurel7. Computation 3ows
for the compiled architectures ebrt and formost_freq
(as solved in Figure$3 and14) are shown in full, alongside

Thinking Like Transformers

1 def selector_width(sel,

2 assume_bos= False) {

3

4 light0 = indicator (

5 indices == 0);

6 or0 = sel or select_eq (indices,0);
7 and0 =sel and select_eq (indices,0);
8 or0_0_frac =aggregate(or0, light0);
9 orO_width = 1/0r0_0_frac;

10 andO_width =

11 aggregate(ando, light0 ,0);

12

13 # if has bos, remove bos from width
14 # (doesn®x count, even if chosen by
15 # sel) and return .

16 bos_res = or0_width - 1;

17

18 # else, remove 0-position from or0,
19 # and re-add according to andO:

20 nobos_res = bos_res + andO_width;
21

22 return bos_res if assume_boselse
23 nobos_res;

24 }

25

Figure 9: Implementation of the powerf@]ASP opera-
tion selector_width
It is through this implementation th&ASP compiles
selector_width down to the transformer architecture.

in terms of othelRASP operations.

1 reverse = aggregate(

2 select(indices,

3 length- indices-1, ==)
4

tokens);

Figure 10:RASPone-liner for reversing the original input
sequencetokens. This compiles to an architecture with
two layers:length requires an attention head to compute,
andreverse applies aselect-aggregate pair that uses
(among others) the s-ofength .

1 def histf (seq, assume_bos= False) {
2 same_tok = select(seq, seq, ==);

3 return selector_width(same_tok

4 assume_bos=assume_bo};
5 }

Figure 11:RASPprogram for computing histograms over
any sequence, with or without a BOS token. Assuming a
BOS token allows compilation to only one layer and one
head, through the implementationsslector_width as

in Figure9. Thehist_bos andhist_nobos tasks in this
work are obtained throudhistf(tokens) , with or without
assume_bhoset toTrue.

the attention patterns of respectively attention-regularised,

transformers, in AppendiA. Computation 3ows for Dyck-

1-PTF and Dyck2-PTF are shown in Figur&8 and Fig-
ure19.

1 def has_prev(seq) {

2 prev_copy =

3 select(seq, seq, ==) and

4 select(indices, indices, <=);
5 return aggregate(prev_copy,1,0) >0;
6 }

8 is_repr = not has_prev(tokens);

9 same_count=

10 select(hist_bos , hist_bos , ==);
11 same_count_reprs = same_count and
12 select(isnt_repr , False, ==);
13 hist2 =selector_width (

14 same_count_reprs,

15 assume_bos= True);

Figure 12:RASPcode for hist-2, making use of the previ-
ously computedhist s-op created in Figurgl. We assume
there is a BOS token in the input, though we can remove
that assumption by simply usifdst_nobos and removing
assume_bos=Tru&om the call toselector_width . The
segment debnes and uses a simple fundiam prev to
compute whether a token already has an copy earlier in the
sequence.

Thinking Like Transformers

def sort (vals, keys, assume_bos=Falsg {
smaller = select(keys, keys, <) or
(select(keys, keys, ==) and
select(indices, indices, <));
num_smaller =
selector_width(smaller ,
assume_bos=assume_bps

target_pos = num_smaller if

© 0o N o g b~ W N P

not assume_boselse
(0 if indices==0 else (num_smaller+l));

o =
o

sel_new =

=
N

select(target_pos , indices, ==);
sort

=
w

= aggregate(sel_new, vals);

=
~
A ad

Figure 13:RASPcode for sorting the s-opals according

to the order of the tokens in the s-dqys, with or without 1
a BOS token. The idea is for every position to focus on all ,,
positions with keys smaller than its own (with input position
as a tiebreaker), and then usslector_width to compute

its target position from that. A further select-aggregate pair
then moves each value iral to its target position. The
sorting task considered in this workOs experiments is imple§

mented simply asort_input=sort(tokens,tokens) 7
8

9

3

1 max_len = 20000; 10
2 freq = hist (tokens, assume_bos=Trug 1
3 is_repr = not has_prev(tokens); 12
4 keys = freq - 13
5 indicator (not is_repr) * max_len

6 values = tokens if is_repr else "&"

7 most_freq = sort (values, keys,

8 assume_bos=Trug

Figure 14:RASPcode for returning the unique tokens of
the input sequence (with a BOS token), sorted by order of
descending frequency (with padding for the remainder of
the output sequence). The code uses the functiists
andsort debned in Figure$1 and13, as well as the util-

ity function has_prev debned in Figurd2. First, hist
computes the frequency of each input token. Then, each
input token with an earlier copy of the same token (e.g., the
second'a" in "baa") is marked as a duplicate. The key
for each position is set as its tokenOs frequency, minus the
maximum expected input sequence length if it is marked as
a duplicate. The value for each position is set to its token,
unless that token is a duplicate in which case it is set to the
non-tokerr. The values are then sorted by the keys, using
sort as presented in Figuds.

def num_prevg bools) {

prevs = select(indices, indices, <=);
return (indices+1) *
aggregate(prevs,

indicator (bools))

n_opens = num_prevg tokens=="(");

n_closes = num_prevgtokens==")");

balance = n_opens - n_closes;

prev_imbalances = num_prevg balance<0);

dycklPTF= "F" if prev_imbalances > 0

else
¢

if balance==0 else "P");

Figure 15:RASPcode for computing Dyck-PTF with the
parenthese§ and) .

Thinking Like Transformers

4398

34)354 &| ' | 6] 7| 8] 9ff*&/
PEEEEEEE BIEES]
EHEEEEE BT
EEEEEE =

I"4$%
) @) &
*+018/ -8l
& Te[7]8]9 PEREEE
qqg"|" ag
SEEEREE [e[7]8[9] []é&]
dd "] |4 ICEHEREE
dd" qé IEE de&
PEEEEREE EEEEREE
" &I g
" &I gl
)$:"HI2I&
[34B$%1&C6|&C6|&C77&C77&C6l&CEp EEZHBEERR

34B$%?{&C6&C6|&C77&C778C6 &CEl*&/]
gl Tzl zl - &
$D5$E24 7C4 7Cq 6C&| 6C&] 7Cq 7C*6l| ;v0<=&/
@+2Fa<d 8| 8] 6 | 6 [8| 8 7/ w<=ce/

Figure 16: Computation 3ow in compiled architecture framSP solution for histogram without a beginning-of-sequence

token (usindhistf(tokens) with histf from Figurell). We present the short sequerieabbaa”, in which the counts of
aandb are different.

Thinking Like Transformers

"% &
&| "] -|2|3]|4|5/6]/7]|8
& |&&l&|&l&&&|&l&]&
+$= &l & & &|&[& & E&[&
& & &f&|&l&|&f&|&l&]&
9= | "| & &|&|&|&| & &[&|&
9"t [9[9[9]|9[9[9]9[9]|9]|9
& & &l&|&l&&f&|&l&]&
= &| & &| &| &| &| &| &| &
1% "
6" e
* *+,
2 5/6|7|8["& &| "] -|2]3]|4 7|8|"&
AlA[L[I]D]S a[" NAARANE
@] & 0 &
"l & "l &
T [T
& —2345678'-& 3[Al & uE (AJALILD IS : Al &
— " “JA|A|L|1[)[S]:
@ AlA[L|1]) 8] 4|A| & n elalelelele Al &
&| &) &| &| &| & &[&| &| &] & 5[1|& 1l &
6[1]& 1l&
)| &)| &
8|$| & $| &
&) & &

" |&-4 &4 &4 |&0222|&0222|&0222 (80222 | &4 814 | &4 B*&,
T | &4 fs222] | &4 *
(/+DA;+ 88| 208 | 2& | 20& | & | (& | -(&
OE<DFI$GD1; F/$t| &0 | && | "0& | & | && | & | &&

("+DFYSCD1;F# [9| 9 | H | H 9 H 9

808 | 208 | 20& | 20& | -0& | -0& | -0& | -0& | "(& | "0& | "(&

28| 208 208 | (& [-(& | -0& | -(&| "C&| "(& | "C&|]2&
9|H[H|9[H|9[H|9|[9]|9 20&
208|208 | 208 | (& [-(& | (& | -(& | "C&| "(&["(&| [-(&
N e B e B e B e e) -(&
&l &|&|&|&|&|&[&]&[& -(&

ololo|lo|olo[o[v[o]o]o
|| eofpofpofpofrefro| e o]

"l & &) &f&|&| &) &| &[] &] &

[18=] " [eca]sca[aca] w222 ac222] ac222 222 &i-4 -4 [ac-4]

* Jaca]aia [acaec222]&222]&i222] &c222] &i-4 ac-4]i-4]
(19-DA;+[ace | "ta e[e i [-t& | & | -t& [2& [28 | 2& |

Figure 17: Computation Row in compiled architecture framSP solution for double-histogram, for solution shown in
Figurel2. Applied to"eaaabbccdef", as in Figurel.

Thinking Like Transformers

[

[[2]2]*[2] 2]f&d
HHEEREE BRI
EEHE " r3d1007+ed
8 [8]8[8[8]8[8[8 J*od 100172
HEBEEEEE B
5 [5][5]5]5][5|5[5 <4 1%/7*2

1"4$%
®) &
*+,-/-08112
[&3] 9]:] <[Al
&l
&l ol:[<[A [3
&3l of;[<[Al |9
<|
A

NN

& 3ol]<] Afed
' ['CY&CAA&C|&C|&C &{“'3'*’2
& &C|&C99&C|&C|&C &{"<|:I*32
8|8 8 [8[8]|8] 8 o]

IR
?2-1,$20 "[3c{ 3celac{ac{oc] ocel*<d 1%/7*F &2
2-@!/0$0 &lec| ‘ca[sc{ac{oc] caf*Al 1%7*er2
G'@$ "[3c{ ceac|cgac| HC*D] 1%/7*AR2
0$6 el afalele&]l * fH2l 1%7D2
8>rG'1?@%) &2%108 |- [[: [8[: [8] : JrE{1%/7:ForD
1"4$98
®) &
*+,-/-08112
[[3[9:[<[A
3[o: A [3
EEHEERE
<|
A

WK
RN
N

N
RN
JAVAVAN

&C|&C|{&C|&C{&C";9|

8|: 1|8
5|5(5|5| 5
8|: |8 5

Figure 18: Computation Bow in compiled architecture fremSP solution for Dyck4, for solution shown in Figuré5.
Applied to the unbalanced input sequefig@)())"

Thinking Like Transformers

indices
tokens
opens from (1)
closes from (1)
I((indices == 0)| from (0)
layer 1
head 0
(up_to_self)

o[1] 2[3] 4] 5] ¢}
DEEEEEER

olalslwln[elo

AR U
[s-of 1]2.0J0.6670.5/0.6/0.50.429 [s-off 0[0.0]0.3390.5]0.4]0.5]0.57]]

indices 5] 6 JO)
closes 1] 1
sop
sop
n_opens 0, 2
n_closes | 00.0 1.0 |2.0[2.0[3.0] 4.0 J(5)[from (0, 3
depth ﬂ’z.u 1.0 [0.0/1.0[0.0] 1.0 [(8)]from (5. 4)
delay_close] 1]2.0] 2.0 |1.0[1.0/1.0] 0.0 [J(7)]from (6, 1)
layer 2
head 1 head 0
(SOR0) (SANDO)
o[1] 2[3]4[5]6 56
1/2.0/2.0[1.0(1.0/1.0/0.0| 1.0[0.0]
o[1]2[3 5] 6] (o 1]0] o[1]2[3 5] 6] (o 1[0
12.0[2.01.02.01.000 [1[2.0/0] 12.02.01.0.01.000 [1[2.0/0)
o[1]2[3[4[5 220/ 0| o 1] 2[3] 4[5] 6] [2200]
1[2.02.0[1.0.01.00.0 [3[100] 1202010101000 [3[10/0]
o[o] o] o[o]o|o]| [410[q] o[o|ofo[o[o|o]| [410[q]
510/ 0| 510/ 0|
609/ 0] 600/ 0]

R =0 199 9]

T O s R e

inverted | 1]0.50.3390.50.3390.250.5] 0)
valato 1[0 o[1] 1| 1[of®)
except0[0.01.0] 2.0 [1.0] 2.0 [3.0[1.0§(2)[from (0)

depth index | 1] 1| 2 [2| 3 | 4| 1J@)[from (3, 2
(depth_index-1] 0| 0] 1 [1| 2 | 3| 0 @] from (3)
layer 3
head 0
(open_for_close)
11
5
11]o[o[1][0]0 11[2[2[3[4]1
1202029102000 | 1[T[0]
1 1] 2] 2[3[4 1| [20T[]
1202drdrdrdod |20T]1]
T[T T[T [T [T[T]| [LoT[q
o o[1[1]2[3]0] |rofT[2
1.0[7[3]
0.0[T[0]
tokens QPP r]) Jo)
closes o[o[1] 1][ofa] 1 @]
depth 1]2.0[1.0[0.0[1.0[0.0]-1.0f 2)|
matched_opener BRNENRE E
opener_matches || F|F|T|F|F|F f@)from (3,0
mismatch FIF[T[F[F|T[T f©)irom (4, 1]
I((mismatch or (depth<0) 0 0] 1] 0] 0] 1| 1 J(®)[from (2.5
layer 4
head 0
(up_to_self)
LEEEEEE
0
1
o 123456 [2]
o[12[3[4[5[6] [3]
4
5
§

depth | 1[2.0[1.0 o.gs{w 0.0 1o
0.

2.
sop 0,003 0.2]0.3390.424 ()|
had_problerd F| F| T | T [T| T | T J@)| from (1)
P

dyck2_ptf [P| F | F[F| F [F f@)|from (2]

Figure 19: Computation Bow in compiled architecture frRlSP solution for Dyckz2, for solution shown in Figur8.
Applied to the unbalanced and Qincorrectly matched® (with respect to structure/pair-matches)"§glience

