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Figure 6: Computation flow in compiled architecture from RASP solution for sort (with BOS token), alongside heatmaps
from the corresponding heads in a transformer trained with both target and attention supervision on the same task and
RASP solution. The RASP solution is simply written sort(tokens,tokens,assume_bos=True), using the function sort

shown in Figure 15. Both the RASP architecture and the transformer are applied to the input sequence "§fedcbaABCDEF".

Appendices
In Appendix A we give training details from the experi-
ments in this paper, as well as additional results from the
transformers trained to mimic RASP-predicted attention pat-
terns. The exact RASP solutions for all tasks considered
in the paper, as well as an implementation of the operation
selector_width in terms of other operations (which have
direct translation to a transformer), are presented in Ap-
pendix B. This section also presents the computation flows
in compiled architectures for several of these solutions.

Note. References to appendices D and E in the submit-
ted draft should in fact be to B and A, respectively. Our
apologies.

A. Experiments
A.1. Results: Attention-regularised transformers

We trained 3 transformers with a target attention pattern
according to our RASP solutions, these 3 being for the tasks
double-histogram, sort, and most-freq as described in the
paper. All of these reached high (99+%) accuracy on their
sequence-to-sequence task, computed as fraction of output
tokens predicted correctly. Plotting their attention patterns
also shows clear similarity to those of the compiled RASP
programs:

For the double-histogram task, a full compiled architec-
ture is presented on the sequence §aabbaa in Figure 17.
Additionally, in Figure 1, just its attention patterns are pre-
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sented alongside the corresponding attention heads from
its attention-regularised transformer, this time both on the
sequence §aabbaabb.

For the sorting task, we present a full computation flow
on the input sequence §fedcbaABCDEF, alongside the corre-
sponding attention heads of the regularised transformer on
the same sequence, in Figure 6. The regularised transformer
had input alphabet of size 52 and reached test accuracy
99.0% on the task (measured as percentage of output po-
sitions where the correct output token had the maximum
probability).

For the most-freq task (returning each unique token in the
input, by descending order of frequency, and padding the
rest with the BOS token) we do the again show a computa-
tion flow alongside the regularised transformer, this time in
Figure 7 and with the sequence §aabbcddd. On this task the
regularised transformer had input alphabet of size 26 and
reached test accuracy 99.9%.

A.2. Training Details

In the upper bound and tightness experiments (Section 5),
for each task and layer/head specification, we train trans-
formers with embedding dimension 256 and feed-forward
dimension 512 on the task for 100 epochs. We use learning
rates 0.0003 and 0.0001, and learning rate decay � = 0.98
and 0.99, training 4 transformers overall for each task. We
use the ADAM optimiser and no dropout. Each transformer
is trained on sequences of length 0��100, with train/valida-
tion/test set sizes of 50, 000, 1, 000, and 1, 000 respectively.
Excluding the BOS token, the alphabet sizes are: 3 and
5 and for Dyck-1 and Dyck-2 (the parentheses, plus one
neutral token), 100 for reverse and sort, and 26 for the rest
(to allow for sufficient repetition of tokens in the input se-
quences). All input sequences are sampled uniformly from
the input alphabet and length, with exception of the Dyck
languages, for which they are generated with a bias towards
legal prefixes to avoid most outputs being F.

For the attention regularised transformers, we make the
following changes: first, we only train one transformer per
language, with learning rate 0.0003 and decay 0.98. We
train each transformer for 250 epochs (though they reach
high validation accuracy much earlier than that). The loss
this time is added to an MSE-loss component, computed
from the differences between each attention distribution and
its expected pattern. As this loss is quite small, we scale it
by a factor of 100 before adding it to the standard output
loss.

B. RASP programs and computation flows for
the tasks considered

B.1. selector_width

The RASP implementation of selector_width is presented
in Figure 9. The core observation is that, by using a selector
that always focuses on zero (or0 in the presented code), we
can compute the inverse of that selector’s width by aggregat-
ing a 1 from position 0 and 0 from everywhere else. It then
remains only to make a correction according to whether or
not the selector was actually focused on 0, using the second
selector and0 (if there isn’t a beginning-of-sequence token)
or our prior knowledge about the input (if there is).

B.2. RASP solutions for the paper tasks

We now present the RASP solutions for each of the tasks
considered in the paper, as well as an implementation of
the RASP primitive selector_width in terms of only the
primitives select and aggregate.

The solution for histograms, with or without a BOS token,
is given in Figure 11. The code for double-histograms (e.g.,
hist2("aaabbccdef")=[1,1,1,2,2,2,2,3,3,3]) is given
in Figure 12. The general sorting algorithm (sorting any one
sequence by the values (‘keys’) of any other sequence) is
given in Figure 13, and sorting the tokens by their frequency
("Most freq") is given in Figure 14. Descriptions of these
solutions are in their captions.

The Dyck-PTF Languages Dyck-1-PTF First each posi-
tion attends to all previous positions up to and including
itself in order to compute the balance between opening and
closing braces up to itself, not yet considering the internal
ordering of these. Next, each position again attends to all
previous positions, this time to see if the ordering was prob-
lematic at some point (i.e., there was a negative balance).
From there it is possible to infer for each prefix whether it
is balanced (T), could be balanced with some more clos-
ing parentheses (P), or can no longer be balanced (F). We
present the code in Figure 15.

Dyck-2-PTF For this descripition we differentiate between
instances of an opening and closing parenthesis (opener and
closer) matching each other with respect to their position
within a given sequence, e.g. as (,> and {,] do in the
sequence ({]>, and of the actual tokens matching with
respect to the pair definitions, e.g. as the token pairs {,} and
(,) are defined. For clarity, we refer to these as structure-
match and pair-match, respectively.

For a Dyck-n sequence to be balanced, it must satisfy the
balance checks as described in Dyck-1 (when treating all
openers and all closers as the same), and additionally, it
must satisfy that every structure-matched pair is also a pair-
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Figure 7: Computation flow in compiled architecture from RASP solution for sorting by frequency (returning all unique
tokens in an input sequence, sorted by decreasing frequency), alongside heatmaps from attention heads in transformer trained
on same task and regularised to create same attention patterns. Both are presented on the input sequence §abbccddd, for
which the correct output is §dbca. The transformer architecture has 3 layers with 2 heads apiece, but the RASP architecture
requires only 1 head for each of the second and third layers. We regularised only one for each of these and present just that
head.
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1 pairs = ["() " ,"{} ,"[]"]; # etc ...

2 openers = [p[0] for p in pairs];

3 closers = [p[1] for p in pairs];

4 opens = tokens in openers;

5 closes = tokens in closers;

6 n_opens = num_prevs(opens);

7 n_closes = num_prevs(closes);

8

9 depth = n_opens - n_closes;

10 delay_closer =

11 depth + indicator(closes);

12 earlier_same_depth =

13 select(delay_closer ,delay_closer ,==)

14 and

15 select(indices ,indices ,<=);

16 depth_index =

17 selector_width(earlier_same_depth);

18 open_for_close =

19 select(opens ,True ,==) and

20 select(delay_closer ,

21 delay_closer ,==) and

22 select(depth_index ,

23 depth_index -1,==);

24 matched_opener =

25 aggregate(open_for_close ,tokens ,"-");

26 opener_matches = matched_opener+t in pairs;

27 mismatch = closes and not opener_matches;

28 had_problem =

29 num_prevs(mismatch or depth<0 )>0;

30 return "F" if had_problem else

31 ("T" if depth==0 else "P");

Figure 8: Pure RASP code (as opposed to with an additional
select-best operation) for computing Dyck-3-PTF with the
parentheses (,), {,} and [,]. The code can be used for any
Dyck-n by extending the list pairs, without introducing
additional layers or heads.

match.

We begin by using the function num_prevs from Figure 15
to compute balances as for Dyck-1, ignoring which token
pair each opener or closer belongs to. Next, we create an at-
tention pattern open_for_close that focuses each closer on
its structure-matched opener, and use that pattern to pull up
the structure-matched opener for each closer (the behaviour
of that pattern on closers that do not have structure-matched
openers is not important: in this case there will anyway be a
negative balance at that closer). For each location, we then
check that it does not have an earlier negative balance, and
it does not have an earlier closer whose structure-matched
opener is not a pair-match. If it fails these conditions the
output is F, otherwise it is T if the current balance is 0
and P otherwise. The remaining challenge is in computing
open_for_close.

In pure RASP—i.e., within the language as presented in this
work—this is realisable in two steps. First, we number each
parenthesis according to how many previous parentheses
have the same depth as itself, taking for openers the depth
after their appearance and for closers the depth before. For
example, for (())(), the depths are [1,2,2,1,1,1], and
the depth-index is [1,1,2,2,3,3]. Then, each closer’s
structure-matched opener is the opener with the same depth
as itself, and depth-number immediately preceding its own.
This solution is given in Figure 8, and compiles to 4 layers
with maximum width 2.

However, by adding the theoretical operation select_best,
and a scorer object similar to selectors (with numbered
values as opposed to booleans), we can simplify the
computation of open_for_close to simply: the last opener
with the same depth as the closer’s, that is still before
the closer. This would be obtained as select_best(

select(adjusted_depth,adjusted_depth,==) and

select(indices,indices,<) , score(indices,0,+)).
In this case, the depth-index of each position does not need
to be computed in order to obtain open_for_close, saving
the layer and 2 heads that its compilation creates.

B.3. Computation flows for select solutions

RASP can compile the the architecture of any s-op, and
display it with an example input sequence. The command is
draw(s2s,inp) where s2s is the target s-op and inp is the
example sequence to display, e.g., draw(dyck1,"(())").

Example computation flows for hist_bos and reverse are
given in the main paper in Figures 5 and 4, respectively.

An example computation flow for hist_nobos is given in
Figure 16. The double-histogram flow partially shown in
Figure 1 is shown in full in Figure 17. Computation flows
for the compiled architectures of sort and for most_freq
(as solved in Figures 13 and 14) are shown in full, alongside
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1 def selector_width(sel ,

2 assume_bos = False) {

3

4 light0 = indicator(

5 indices == 0);

6 or0 = sel or select_eq(indices ,0);

7 and0 =sel and select_eq(indices ,0);

8 or0_0_frac =aggregate(or0 , light0);

9 or0_width = 1/ or0_0_frac;

10 and0_width =

11 aggregate(and0 ,light0 ,0);

12

13 # if has bos , remove bos from width

14 # (doesn ’t count , even if chosen by

15 # sel) and return.

16 bos_res = or0_width - 1;

17

18 # else , remove 0-position from or0 ,

19 # and re -add according to and0:

20 nobos_res = bos_res + and0_width;

21

22 return bos_res if assume_bos else

23 nobos_res;

24 }

25

Figure 9: Implementation of the powerful RASP opera-
tion selector_width in terms of other RASP operations.
It is through this implementation that RASP compiles
selector_width down to the transformer architecture.

the attention patterns of respectively attention-regularised
transformers, in Appendix A. Computation flows for Dyck-
1-PTF and Dyck-2-PTF are shown in Figure 18 and Fig-
ure 19.

1 reverse = aggregate(

2 select(indices ,

3 length -indices -1,==)

4 tokens );

Figure 10: RASP one-liner for reversing the original input
sequence, tokens. This compiles to an architecture with
two layers: length requires an attention head to compute,
and reverse applies a select-aggregate pair that uses
(among others) the s-op length.

1 def histf(seq , assume_bos = False) {

2 same_tok = select(seq ,seq ,==);

3 return selector_width(same_tok ,

4 assume_bos= assume_bos);

5 }

Figure 11: RASP program for computing histograms over
any sequence, with or without a BOS token. Assuming a
BOS token allows compilation to only one layer and one
head, through the implementation of selector_width as
in Figure 9. The hist_bos and hist_nobos tasks in this
work are obtained through histf(tokens), with or without
assume_bos set to True.

1 def has_prev(seq) {

2 prev_copy =

3 select(seq ,seq ,==) and

4 select(indices ,indices ,<=);

5 return aggregate(prev_copy ,1,0)>0;

6 }

7

8 is_repr = not has_prev(tokens);

9 same_count =

10 select(hist_bos , hist_bos ,==);

11 same_count_reprs = same_count and

12 select(isnt_repr , False ,==);

13 hist2 =selector_width(

14 same_count_reprs ,

15 assume_bos = True);

Figure 12: RASP code for hist-2, making use of the previ-
ously computed hist s-op created in Figure 11. We assume
there is a BOS token in the input, though we can remove
that assumption by simply using hist_nobos and removing
assume_bos=True from the call to selector_width. The
segment defines and uses a simple function has_prev to
compute whether a token already has an copy earlier in the
sequence.
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1 def sort(vals ,keys ,assume_bos=False) {

2 smaller = select(keys ,keys ,<) or

3 (select(keys ,keys ,==) and

4 select(indices ,indices ,<) );

5 num_smaller =

6 selector_width(smaller ,

7 assume_bos=assume_bos);

8 target_pos = num_smaller if

9 not assume_bos else

10 (0 if indices==0 else (num_smaller +1));

11 sel_new =

12 select(target_pos ,indices ,==);

13 sort = aggregate(sel_new ,vals);

14 }

Figure 13: RASP code for sorting the s-op vals according
to the order of the tokens in the s-op keys, with or without
a BOS token. The idea is for every position to focus on all
positions with keys smaller than its own (with input position
as a tiebreaker), and then use selector_width to compute
its target position from that. A further select-aggregate pair
then moves each value in val to its target position. The
sorting task considered in this work’s experiments is imple-
mented simply as sort_input=sort(tokens,tokens).

1 max_len = 20000;

2 freq = hist(tokens ,assume_bos=True);

3 is_repr = not has_prev(tokens);

4 keys = freq -

5 indicator(not is_repr) * max_len;

6 values = tokens if is_repr else "§"
7 most_freq = sort(values ,keys ,

8 assume_bos=True);

Figure 14: RASP code for returning the unique tokens of
the input sequence (with a BOS token), sorted by order of
descending frequency (with padding for the remainder of
the output sequence). The code uses the functions hist

and sort defined in Figures 11 and 13, as well as the util-
ity function has_prev defined in Figure 12. First, hist
computes the frequency of each input token. Then, each
input token with an earlier copy of the same token (e.g., the
second "a" in "baa") is marked as a duplicate. The key
for each position is set as its token’s frequency, minus the
maximum expected input sequence length if it is marked as
a duplicate. The value for each position is set to its token,
unless that token is a duplicate in which case it is set to the
non-token §. The values are then sorted by the keys, using
sort as presented in Figure 13.

1 def num_prevs(bools) {

2 prevs = select(indices ,indices ,<=);

3 return (indices +1) *

4 aggregate(prevs ,

5 indicator(bools))

6 }

7 n_opens = num_prevs(tokens== "(");

8 n_closes = num_prevs(tokens== ")");

9 balance = n_opens - n_closes;

10 prev_imbalances = num_prevs(balance<0);

11 dyck1PTF = "F" if prev_imbalances > 0

12 else

13 ("T" if balance==0 else "P");

Figure 15: RASP code for computing Dyck-1-PTF with the
parentheses ( and ).
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layer 0

layer 1

head 0
(sAND0)

head 1
(sOR0)

X indices 0 1 2 3 4 5 (0)
FF 0 0 0 0 0 0 0 (1) from ()
FF seq 1 0 0 0 0 0 (2) from (0)
FF 1 1 1 1 1 1 1 (3) from ()

Other indices 0 1 2 3 4 5
Other t a a b b a a
Me t a a b b a a
Me 0 0 0 0 0 0 0

0 1 2 3 4 5
a a b b a a

a 0
a 0
b 0
b 0
a 0
a 0

X 1 1 1 1 1 1 1

valat0 1 1 0 0 1 1

X inverted 0.25 0.25 0.333 0.333 0.25 0.25 (0)
X valat0 1 1 0 0 1 1 (1)
FF except0 3.0 3.0 2.0 2.0 3.0 3.0 (2) from (0)
FF hist_nobos 4 4 2 2 4 4 (3) from (1, 2)

default: 0

0 1 2 3 4 5
a a b b a a

a 0
a 0
b 0
b 0
a 0
a 0

X seq 1 0 0 0 0 0

Other indices 0 1 2 3 4 5
Other t a a b b a a
Me t a a b b a a
Me 0 0 0 0 0 0 0

inverted 0.25 0.25 0.333 0.333 0.25 0.25

Figure 16: Computation flow in compiled architecture from RASP solution for histogram without a beginning-of-sequence
token (using histf(tokens) with histf from Figure 11). We present the short sequence "aabbaa", in which the counts of
a and b are different.
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layer 0

layer 1

head 0
(s)

head 1
(s)

layer 2

head 0
(s)

X indices 0 1 2 3 4 5 6 7 8 9 10 (0)
FF 0 0 0 0 0 0 0 0 0 0 0 0 (1) from ()
FF seq 1 0 0 0 0 0 0 0 0 0 0 (2) from (0)
FF 0 0 0 0 0 0 0 0 0 0 0 0 (3) from ()
FF seq 1 0 0 0 0 0 0 0 0 0 0 (4) from (0)
FF False F F F F F F F F F F F (5) from ()
FF 0 0 0 0 0 0 0 0 0 0 0 0 (6) from ()
FF seq 1 0 0 0 0 0 0 0 0 0 0 (7) from (0)

Other indices 0 1 2 3 4 5 6 7 8 9 10
Other t § a a a b b c c d e f
Me t § a a a b b c c d e f
Me 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10
§ a a a b b c c d e f

§ 0
a 0
a 0
a 0
b 0
b 0
c 0
c 0
d 0
e 0
f 0

X seq 1 0 0 0 0 0 0 0 0 0 0

seq 1 0.25 0.25 0.25 0.333 0.333 0.333 0.333 0.5 0.5 0.5

X seq 1 0.25 0.25 0.25 0.333 0.333 0.333 0.333 0.5 0.5 0.5 (0)
X seq 1 1 0.5 0.333 1 0.5 1 0.5 1 1 1 (1)
FF hist_bos 0.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 (2) from (0)
FF num_prev_copies 0.0 0.0 1.0 2.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 (3) from (1)
FF has_prev_copy F F T T F T F T F F F (4) from (3)

0 1 2 3 4 5 6 7 8 9 10
§ a a a b b c c d e f

0 § 0
1 a 0
2 a 0
3 a 0
4 b 0
5 b 0
6 c 0
7 c 0
8 d 0
9 e 0
10 f 0

X seq 1 0 0 0 0 0 0 0 0 0 0

Other indices 0 1 2 3 4 5 6 7 8 9 10
Other t § a a a b b c c d e f
Me indices 0 1 2 3 4 5 6 7 8 9 10
Me t § a a a b b c c d e f
Me 0 0 0 0 0 0 0 0 0 0 0 0

seq 1 1 0.5 0.333 1 0.5 1 0.5 1 1 1

Other indices 0 1 2 3 4 5 6 7 8 9 10
Other hist_bos 0.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0
Other has_prev_copy F F T T F T F T F F F
Me hist_bos 0.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0
Me False F F F F F F F F F F F
Me 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10
0.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0
F F T T F T F T F F F

0.0 F 0
3.0 F 0
3.0 F 0
3.0 F 0
2.0 F 0
2.0 F 0
2.0 F 0
2.0 F 0
1.0 F 0
1.0 F 0
1.0 F 0

X seq 1 0 0 0 0 0 0 0 0 0 0

seq 1 0.5 0.5 0.5 0.333 0.333 0.333 0.333 0.25 0.25 0.25

X seq 1 0.5 0.5 0.5 0.333 0.333 0.333 0.333 0.25 0.25 0.25
FF hist2_bos 0.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0

Figure 17: Computation flow in compiled architecture from RASP solution for double-histogram, for solution shown in
Figure 12. Applied to "§aaabbccdef", as in Figure 1.
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layer 0

layer 1

head 0
(up_to_self)

layer 2

head 0
(up_to_self)

X t ( ( ) ) ( ) ) (0)
FF seq 1 1 0 0 1 0 0 (1) from (0)
FF seq 0 0 1 1 0 1 1 (2) from (0)
FF T T T T T T T T (3) from ()
FF P P P P P P P P (4) from ()
FF F F F F F F F F (5) from ()

Other indices 0 1 2 3 4 5 6
Me indices 0 1 2 3 4 5 6

0 1 2 3 4 5 6
0
1
2
3
4
5
6

X seq 1 1 0 0 1 0 0 X seq 0 0 1 1 0 1 1

seq 1 1.0 0.667 0.5 0.6 0.5 0.429

X indices 0 1 2 3 4 5 6 (0)
X seq 1 1.0 0.667 0.5 0.6 0.5 0.429 (1)
X seq 0 0.0 0.333 0.5 0.4 0.5 0.571 (2)
X T T T T T T T T (3)
X P P P P P P P P (4)
FF n_opens 1 2.0 2.0 2.0 3.0 3.0 3.0 (5) from (1, 0)
FF n_closes 0 0.0 1.0 2.0 2.0 3.0 4.0 (6) from (0, 2)
FF balance 1 2.0 1.0 0.0 1.0 0.0 -1.0 (7) from (6, 5)
FF seq 0 0 0 0 0 0 1 (8) from (7)
FF T if ( balance == 0 ) else P P P P T P T P (9) from (4, 3, 7)

seq 0 0.0 0.333 0.5 0.4 0.5 0.571

Other indices 0 1 2 3 4 5 6
Me indices 0 1 2 3 4 5 6

0 1 2 3 4 5 6
0
1
2
3
4
5
6

X seq 0 0 0 0 0 0 1

prev_imbalances 0 0.0 0.0 0.0 0.0 0.0 0.143

X prev_imbalances 0 0.0 0.0 0.0 0.0 0.0 0.143
X T if ( balance == 0 ) else P P P P T P T P
X F F F F F F F F
FF dyck1_ptf P P P T P T F

Figure 18: Computation flow in compiled architecture from RASP solution for Dyck-1, for solution shown in Figure 15.
Applied to the unbalanced input sequence "(())())".
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layer 3

head 0
(open_for_close)

layer 0

layer 1

head 0
(up_to_self)

layer 2

head 0
(sAND0)

head 1
(sOR0)

layer 4

head 0
(up_to_self)

X indices  0  1  2  3  4  5  6 (0)
X tokens ( { ) ) ( } ) (1)
FF opens  1  1  0  0  1  0  0 (2) from (1)
FF closes  0  0  1  1  0  1  1 (3) from (1)
FF I(( indices == 0 ))  1  0  0  0  0  0  0 (4) from (0)

Other indices  0  1  2  3  4  5  6
Me indices  0  1  2  3  4  5  6

 0  1  2  3  4  5  6
 0        
 1        
 2        
 3        
 4        
 5        
 6        

X opens  1  1  0  0  1  0  0 X closes  0  0  1  1  0  1  1

s-op  1 1.0 0.667 0.5 0.6 0.5 0.429

X indices  0  1  2  3  4  5  6 (0)
X closes  0  0  1  1  0  1  1 (1)
X s-op  1 1.0 0.667 0.5 0.6 0.5 0.429 (2)
X s-op  0 0.0 0.333 0.5 0.4 0.5 0.571 (3)
FF n_opens  1 2.0 2.0 2.0 3.0 3.0 3.0 (4) from (0, 2)
FF n_closes  0 0.0 1.0 2.0 2.0 3.0 4.0 (5) from (0, 3)
FF depth  1 2.0 1.0 0.0 1.0 0.0 -1.0 (6) from (5, 4)
FF delay_closer  1 2.0 2.0 1.0 1.0 1.0 0.0 (7) from (6, 1)

s-op  0 0.0 0.333 0.5 0.4 0.5 0.571

Other indices  0  1  2  3  4  5  6
Other delay_closer  1 2.0 2.0 1.0 1.0 1.0 0.0
Me indices  0  1  2  3  4  5  6
Me delay_closer  1 2.0 2.0 1.0 1.0 1.0 0.0
Me 0  0  0  0  0  0  0  0

 0  1  2  3  4  5  6
 1 2.0 2.0 1.0 1.0 1.0 0.0

 0  1  0        
 1 2.0  0        
 2 2.0  0        
 3 1.0  0        
 4 1.0  0        
 5 1.0  0        
 6 0.0  0        

X 1  1  1  1  1  1  1  1

valat0  1  0  0  1  1  1  0

X inverted  1 0.5 0.333 0.5 0.333 0.25 0.5 (0)
X valat0  1  0  0  1  1  1  0 (1)
FF except0 0.0 1.0 2.0 1.0 2.0 3.0 1.0 (2) from (0)
FF depth_index  1  1  2  2  3  4  1 (3) from (1, 2)
FF ( depth_index - 1 )  0  0  1  1  2  3  0 (4) from (3)

default: 0

 0  1  2  3  4  5  6
 1 2.0 2.0 1.0 1.0 1.0 0.0

 0  1  0        
 1 2.0  0        
 2 2.0  0        
 3 1.0  0        
 4 1.0  0        
 5 1.0  0        
 6 0.0  0        

X I(( indices == 0 ))  1  0  0  0  0  0  0

Other indices  0  1  2  3  4  5  6
Other delay_closer  1 2.0 2.0 1.0 1.0 1.0 0.0
Me indices  0  1  2  3  4  5  6
Me delay_closer  1 2.0 2.0 1.0 1.0 1.0 0.0
Me 0  0  0  0  0  0  0  0

inverted  1 0.5 0.333 0.5 0.333 0.25 0.5

Other opens  1  1  0  0  1  0  0
Other delay_closer  1 2.0 2.0 1.0 1.0 1.0 0.0
Other depth_index  1  1  2  2  3  4  1
Me delay_closer  1 2.0 2.0 1.0 1.0 1.0 0.0
Me True T T T T T T T
Me ( depth_index - 1 )  0  0  1  1  2  3  0

 1  1  0  0  1  0  0
 1 2.0 2.0 1.0 1.0 1.0 0.0
 1  1  2  2  3  4  1

 1 T  0        
2.0 T  0        
2.0 T  1        
1.0 T  1        
1.0 T  2        
1.0 T  3        
0.0 T  0        

X tokens ( { ) ) ( } )

matched_opener - - { ( - ( -

X tokens ( { ) ) ( } ) (0)
X closes  0  0  1  1  0  1  1 (1)
X depth  1 2.0 1.0 0.0 1.0 0.0 -1.0 (2)
X matched_opener - - { ( - ( - (3)
FF opener_matches F F F T F F F (4) from (3, 0)
FF mismatch F F T F F T T (5) from (4, 1)
FF I(( mismatch or ( depth < 0 )))  0  0  1  0  0  1  1 (6) from (2, 5)

default: -

Other indices  0  1  2  3  4  5  6
Me indices  0  1  2  3  4  5  6

 0  1  2  3  4  5  6
 0        
 1        
 2        
 3        
 4        
 5        
 6        

X I(( mismatch or ( depth < 0 )))  0  0  1  0  0  1  1

s-op  0 0.0 0.333 0.25 0.2 0.333 0.429

X depth  1 2.0 1.0 0.0 1.0 0.0 -1.0 (0)
X s-op  0 0.0 0.333 0.25 0.2 0.333 0.429 (1)
FF had_problem F F T T T T T (2) from (1)
FF dyck2_ptf P P F F F F F (3) from (0, 2)

Figure 19: Computation flow in compiled architecture from RASP solution for Dyck-2, for solution shown in Figure 8.
Applied to the unbalanced and ‘incorrectly matched’ (with respect to structure/pair-matches) sequence "())()".


