
Thinking Like Transformers

Figure 6: Computation ßow in compiled architecture fromRASPsolution for sort (with BOS token), alongside heatmaps
from the corresponding heads in a transformer trained with both target and attention supervision on the same task and
RASP solution. TheRASP solution is simply writtensort(tokens,tokens,assume_bos=True) , using the functionsort
shown in Figure15. Both theRASParchitecture and the transformer are applied to the input sequence"¤fedcbaABCDEF".

Appendices

In AppendixA we give training details from the experi-
ments in this paper, as well as additional results from the
transformers trained to mimicRASP-predicted attention pat-
terns. The exactRASPsolutions for all tasks considered
in the paper, as well as an implementation of the operation
selector_width in terms of other operations (which have
direct translation to a transformer), are presented in Ap-
pendixB. This section also presents the computation ßows
in compiled architectures for several of these solutions.

Note. References to appendices D and E in the submit-
ted draft should in fact be to B and A, respectively. Our
apologies.

A. Experiments

A.1. Results: Attention-regularised transformers

We trained3 transformers with a target attention pattern
according to ourRASPsolutions, these3 being for the tasks
double-histogram, sort, and most-freq as described in the
paper. All of these reached high (99+%) accuracy on their
sequence-to-sequence task, computed as fraction of output
tokens predicted correctly. Plotting their attention patterns
also shows clear similarity to those of the compiledRASP
programs:

For thedouble-histogramtask, a full compiled architec-
ture is presented on the sequence¤aabbaain Figure17.
Additionally, in Figure1, just its attention patterns are pre-

Thinking Like Transformers

sented alongside the corresponding attention heads from
its attention-regularised transformer, this time both on the
sequence¤aabbaabb.

For thesorting task, we present a full computation ßow
on the input sequence¤fedcbaABCDEF, alongside the corre-
sponding attention heads of the regularised transformer on
the same sequence, in Figure6. The regularised transformer
had input alphabet of size52 and reached test accuracy
99.0% on the task (measured as percentage of output po-
sitions where the correct output token had the maximum
probability).

For themost-freqtask (returning each unique token in the
input, by descending order of frequency, and padding the
rest with the BOS token) we do the again show a computa-
tion ßow alongside the regularised transformer, this time in
Figure7 and with the sequence¤aabbcddd. On this task the
regularised transformer had input alphabet of size26 and
reached test accuracy99.9%.

A.2. Training Details

In the upper bound and tightness experiments (Section5),
for each task and layer/head speciÞcation, we train trans-
formers with embedding dimension256and feed-forward
dimension512on the task for100epochs. We use learning
rates0.0003and0.0001, and learning rate decay� = 0 .98
and0.99, training4 transformers overall for each task. We
use the ADAM optimiser and no dropout. Each transformer
is trained on sequences of length0��100, with train/valida-
tion/test set sizes of50, 000, 1, 000, and1, 000respectively.
Excluding the BOS token, the alphabet sizes are:3 and
5 and for Dyck-1 and Dyck-2 (the parentheses, plus one
neutral token),100for reverse and sort, and26 for the rest
(to allow for sufÞcient repetition of tokens in the input se-
quences). All input sequences are sampled uniformly from
the input alphabet and length, with exception of the Dyck
languages, for which they are generated with a bias towards
legal preÞxes to avoid most outputs beingF.

For the attention regularised transformers, we make the
following changes: Þrst, we only train one transformer per
language, with learning rate0.0003and decay0.98. We
train each transformer for250epochs (though they reach
high validation accuracy much earlier than that). The loss
this time is added to an MSE-loss component, computed
from the differences between each attention distribution and
its expected pattern. As this loss is quite small, we scale it
by a factor of100before adding it to the standard output
loss.

B. RASP programs and computation ßows for
the tasks considered

B.1.selector_width

TheRASPimplementation ofselector_width is presented
in Figure9. The core observation is that, by using a selector
that always focuses on zero (or0 in the presented code), we
can compute the inverse of that selectorÕs width by aggregat-
ing a1 from position0 and0 from everywhere else. It then
remains only to make a correction according to whether or
not the selector was actually focused on0, using the second
selectorand0(if there isnÕt a beginning-of-sequence token)
or our prior knowledge about the input (if there is).

B.2. RASP solutions for the paper tasks

We now present theRASPsolutions for each of the tasks
considered in the paper, as well as an implementation of
theRASPprimitive selector_width in terms of only the
primitivesselect andaggregate.

The solution for histograms, with or without a BOS token,
is given in Figure11. The code for double-histograms (e.g.,
hist2(" aaabbccdef")=[1,1,1,2,2,2,2,3,3,3]) is given
in Figure12. The general sorting algorithm (sorting any one
sequence by the values (ÔkeysÕ) of any other sequence) is
given in Figure13, and sorting the tokens by their frequency
("Most freq") is given in Figure14. Descriptions of these
solutions are in their captions.

The Dyck-PTF Languages Dyck-1-PTF First each posi-
tion attends to all previous positions up to and including
itself in order to compute the balance between opening and
closing braces up to itself, not yet considering the internal
ordering of these. Next, each position again attends to all
previous positions, this time to see if the ordering was prob-
lematic at some point (i.e., there was a negative balance).
From there it is possible to infer for each preÞx whether it
is balanced (T), could be balanced with some more clos-
ing parentheses (P), or can no longer be balanced (F). We
present the code in Figure15.

Dyck-2-PTF For this descripition we differentiate between
instances of an opening and closing parenthesis (openerand
closer) matching each other with respect to their position
within a given sequence, e.g. as(,> and {,] do in the
sequence({]> , and of the actual tokens matching with
respect to the pair deÞnitions, e.g. as the token pairs{,} and
(,) are deÞned. For clarity, we refer to these as structure-
match and pair-match, respectively.

For a Dyck-n sequence to be balanced, it must satisfy the
balance checks as described in Dyck-1 (when treating all
openers and all closers as the same), and additionally, it
must satisfy that every structure-matched pair is also a pair-

Thinking Like Transformers

Figure 7: Computation ßow in compiled architecture fromRASPsolution for sorting by frequency (returning all unique
tokens in an input sequence, sorted by decreasing frequency), alongside heatmaps from attention heads in transformer trained
on same task and regularised to create same attention patterns. Both are presented on the input sequence¤abbccddd, for
which the correct output is¤dbca. The transformer architecture has 3 layers with 2 heads apiece, but theRASParchitecture
requires only 1 head for each of the second and third layers. We regularised only one for each of these and present just that
head.

Thinking Like Transformers

1 pairs = ["() " ,"{} ,"[]"]; # etc ...

2 openers = [p[0] for p in pairs];

3 closers = [p[1] for p in pairs];

4 opens = tokens in openers;

5 closes = tokens in closers ;

6 n_opens = num_prevs(opens);

7 n_closes = num_prevs(closes);

8

9 depth = n_opens - n_closes ;

10 delay_closer =

11 depth + indicator (closes);

12 earl ier_same_depth =

13 select (delay_closer , delay_closer , ==)

14 and

15 select (indices , indices , <=);

16 depth_index =

17 selector_width (earl ier_same_depth);

18 open_for_close =

19 select (opens, True , ==) and

20 select (delay_closer ,

21 delay_closer , ==) and

22 select (depth_index ,

23 depth_index -1 , ==);

24 matched_opener =

25 aggregate (open_for_close , tokens ," -") ;

26 opener_matches = matched_opener+t in pairs ;

27 mismatch = closes and not opener_matches;

28 had_problem =

29 num_prevs(mismatch or depth<0) >0;

30 return " F" if had_problem else

31 (" T" if depth==0 else " P") ;

Figure 8: PureRASPcode (as opposed to with an additional
select-best operation) for computing Dyck-3-PTF with the
parentheses(,) , {,} and[,] . The code can be used for any
Dyck-n by extending the listpairs , without introducing
additional layers or heads.

match.

We begin by using the functionnum_prevsfrom Figure15
to compute balances as for Dyck-1, ignoring which token
pair each opener or closer belongs to. Next, we create an at-
tention patternopen_for_close that focuses each closer on
its structure-matched opener, and use that pattern to pull up
the structure-matched opener for each closer (the behaviour
of that pattern on closers that do not have structure-matched
openers is not important: in this case there will anyway be a
negative balance at that closer). For each location, we then
check that it does not have an earlier negative balance, and
it does not have an earlier closer whose structure-matched
opener is not a pair-match. If it fails these conditions the
output is F, otherwise it is T if the current balance is 0
and P otherwise. The remaining challenge is in computing
open_for_close .

In pureRASPÑi.e., within the language as presented in this
workÑthis is realisable in two steps. First, we number each
parenthesis according to how many previous parentheses
have the same depth as itself, taking for openers the depth
after their appearance and for closers the depth before. For
example, for(())() , the depths are[1,2,2,1,1,1] , and
the depth-index is[1,1,2,2,3,3] . Then, each closerÕs
structure-matched opener is the opener with the same depth
as itself, and depth-number immediately preceding its own.
This solution is given in Figure8, and compiles to 4 layers
with maximum width 2.

However, by adding the theoretical operationselect_best ,
and ascorer object similar to selectors (with numbered
values as opposed to booleans), we can simplify the
computation ofopen_for_close to simply: the last opener
with the same depth as the closerÕs, that is still before
the closer. This would be obtained asselect_best(
select(adjusted_depth,adjusted_depth,==) and
select(indices,indices,<) , score(indices,0,+)) .
In this case, the depth-index of each position does not need
to be computed in order to obtainopen_for_close , saving
the layer and 2 heads that its compilation creates.

B.3. Computation ßows for select solutions

RASP can compile the the architecture of any s-op, and
display it with an example input sequence. The command is
draw(s2s,inp) wheres2s is the target s-op andinp is the
example sequence to display, e.g.,draw(dyck1,"(())") .

Example computation ßows forhist_bos andreverse are
given in the main paper in Figures5 and4, respectively.

An example computation ßow forhist_nobos is given in
Figure16. The double-histogram ßow partially shown in
Figure1 is shown in full in Figure17. Computation ßows
for the compiled architectures ofsort and formost_freq
(as solved in Figures13and14) are shown in full, alongside

Thinking Like Transformers

1 def selector_width (sel ,

2 assume_bos= False) {

3

4 l ight0 = indicator (

5 indices == 0) ;

6 or0 = sel or select_eq (indices ,0) ;

7 and0 =sel and select_eq (indices ,0) ;

8 or0_0_frac =aggregate(or0 , l ight0);

9 or0_width = 1/ or0_0_frac ;

10 and0_width =

11 aggregate (and0, light0 ,0) ;

12

13 # if has bos, remove bos from width

14 # (doesnÕt count , even if chosen by

15 # sel) and return .

16 bos_res = or0_width - 1;

17

18 # else , remove 0- posit ion from or0 ,

19 # and re - add according to and0:

20 nobos_res = bos_res + and0_width;

21

22 return bos_res if assume_boselse

23 nobos_res;

24 }

25

Figure 9: Implementation of the powerfulRASP opera-
tion selector_width in terms of otherRASPoperations.
It is through this implementation thatRASP compiles
selector_width down to the transformer architecture.

the attention patterns of respectively attention-regularised
transformers, in AppendixA. Computation ßows for Dyck-
1-PTF and Dyck-2-PTF are shown in Figure18 and Fig-
ure19.

1 reverse = aggregate (

2 select (indices ,

3 length - indices -1 , ==)

4 tokens) ;

Figure 10:RASPone-liner for reversing the original input
sequence,tokens. This compiles to an architecture with
two layers:length requires an attention head to compute,
andreverse applies aselect-aggregate pair that uses
(among others) the s-oplength .

1 def histf (seq, assume_bos= False) {

2 same_tok = select (seq, seq, ==);

3 return selector_width (same_tok,

4 assume_bos=assume_bos);

5 }

Figure 11:RASPprogram for computing histograms over
any sequence, with or without a BOS token. Assuming a
BOS token allows compilation to only one layer and one
head, through the implementation ofselector_width as
in Figure9. Thehist_bos andhist_nobos tasks in this
work are obtained throughhistf(tokens) , with or without
assume_bosset toTrue.

1 def has_prev(seq) {

2 prev_copy =

3 select (seq, seq, ==) and

4 select (indices , indices , <=);

5 return aggregate (prev_copy ,1 ,0) >0;

6 }

7

8 is_repr = not has_prev(tokens) ;

9 same_count =

10 select (hist_bos , hist_bos , ==);

11 same_count_reprs = same_count and

12 select (isnt_repr , False , ==);

13 hist2 =selector_width (

14 same_count_reprs,

15 assume_bos= True) ;

Figure 12:RASPcode for hist-2, making use of the previ-
ously computedhist s-op created in Figure11. We assume
there is a BOS token in the input, though we can remove
that assumption by simply usinghist_nobos and removing
assume_bos=Truefrom the call toselector_width . The
segment deÞnes and uses a simple functionhas_prev to
compute whether a token already has an copy earlier in the
sequence.

Thinking Like Transformers

1 def sort (vals , keys , assume_bos=False) {

2 smaller = select (keys , keys , <) or

3 (select (keys , keys , ==) and

4 select (indices , indices , <)) ;

5 num_smaller =

6 selector_width (smaller ,

7 assume_bos=assume_bos);

8 target_pos = num_smaller if

9 not assume_boselse

10 (0 if indices==0 else (num_smaller+1)) ;

11 sel_new =

12 select (target_pos , indices , ==);

13 sort = aggregate (sel_new, vals) ;

14 }

Figure 13:RASPcode for sorting the s-opvals according
to the order of the tokens in the s-opkeys, with or without
a BOS token. The idea is for every position to focus on all
positions with keys smaller than its own (with input position
as a tiebreaker), and then useselector_width to compute
its target position from that. A further select-aggregate pair
then moves each value inval to its target position. The
sorting task considered in this workÕs experiments is imple-
mented simply assort_input=sort(tokens,tokens) .

1 max_len = 20000;

2 freq = hist (tokens , assume_bos=True);

3 is_repr = not has_prev(tokens) ;

4 keys = freq -

5 indicator (not is_repr) * max_len;

6 values = tokens if is_repr else " ¤"

7 most_freq = sort (values , keys ,

8 assume_bos=True);

Figure 14:RASPcode for returning the unique tokens of
the input sequence (with a BOS token), sorted by order of
descending frequency (with padding for the remainder of
the output sequence). The code uses the functionshist
andsort deÞned in Figures11 and13, as well as the util-
ity function has_prev deÞned in Figure12. First, hist
computes the frequency of each input token. Then, each
input token with an earlier copy of the same token (e.g., the
second"a" in "baa") is marked as a duplicate. The key
for each position is set as its tokenÕs frequency, minus the
maximum expected input sequence length if it is marked as
a duplicate. The value for each position is set to its token,
unless that token is a duplicate in which case it is set to the
non-token¤. The values are then sorted by the keys, using
sort as presented in Figure13.

1 def num_prevs(bools) {

2 prevs = select (indices , indices , <=);

3 return (indices+1) *

4 aggregate (prevs ,

5 indicator (bools))

6 }

7 n_opens = num_prevs(tokens=="(") ;

8 n_closes = num_prevs(tokens==") ") ;

9 balance = n_opens - n_closes ;

10 prev_imbalances = num_prevs(balance<0);

11 dyck1PTF = " F" if prev_imbalances > 0

12 else

13 (" T" if balance==0 else " P") ;

Figure 15:RASPcode for computing Dyck-1-PTF with the
parentheses(and) .

Thinking Like Transformers

!"#$%&

!"#$%'

($") &
*+,-.&/

($") '
*+01&/

2 34)35$+& ' 6 7 8 9 *&/

:: & & & & & & & *'/ ;%<=*/

:: +$> ' & & & & & *6/ ;%<=*&/

:: ' ' ' ' ' ' ' *7/ ;%<=*/

0?($%34)35$+& ' 6 7 8 9

0?($% ? " " @ @ " "

A$? " " @ @ " "

A$ & & & & & & &

& ' 6 7 8 9

" " @ @ " "

" &

" &

@ &

@ &

" &

" &

2 ' ' ' ' ' ' '

B"!"?& ' ' & & ' '

2 34B$%?$)&C69&C69&C777&C777&C69&C69 *&/

2 B"!"?& ' ' & & ' ' *'/

:: $D5$E?&7C& 7C& 6C& 6C& 7C& 7C& *6/ ;%<=*&/

:: (3+?F4<@<+8 8 6 6 8 8 *7/ ;%<=*'G6/

)$;"H!?I&

& ' 6 7 8 9

" " @ @ " "

" &

" &

@ &

@ &

" &

" &

2 +$> ' & & & & &

0?($%34)35$+& ' 6 7 8 9

0?($% ? " " @ @ " "

A$? " " @ @ " "

A$ & & & & & & &

34B$%?$)&C69&C69&C777&C777&C69&C69

Figure 16: Computation ßow in compiled architecture fromRASPsolution for histogram without a beginning-of-sequence
token (usinghistf(tokens) with histf from Figure11). We present the short sequence"aabbaa", in which the counts of
a andb are different.

Thinking Like Transformers

layer 0

layer 1

head 0
(s)

head 1
(s)

layer 2

head 0
(s)

X indices 0 1 2 3 4 5 6 7 8 9 10 (0)
FF 0 0 0 0 0 0 0 0 0 0 0 0 (1) from ()
FF seq 1 0 0 0 0 0 0 0 0 0 0 (2) from (0)
FF 0 0 0 0 0 0 0 0 0 0 0 0 (3) from ()
FF seq 1 0 0 0 0 0 0 0 0 0 0 (4) from (0)
FF False F F F F F F F F F F F (5) from ()
FF 0 0 0 0 0 0 0 0 0 0 0 0 (6) from ()
FF seq 1 0 0 0 0 0 0 0 0 0 0 (7) from (0)

Other indices 0 1 2 3 4 5 6 7 8 9 10
Other t § a a a b b c c d e f
Me t § a a a b b c c d e f
Me 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10
§ a a a b b c c d e f

§ 0
a 0
a 0
a 0
b 0
b 0
c 0
c 0
d 0
e 0
f 0

X seq 1 0 0 0 0 0 0 0 0 0 0

seq 1 0.25 0.25 0.25 0.333 0.333 0.333 0.333 0.5 0.5 0.5

X seq 1 0.25 0.25 0.25 0.333 0.333 0.333 0.333 0.5 0.5 0.5 (0)
X seq 1 1 0.5 0.333 1 0.5 1 0.5 1 1 1 (1)
FF hist_bos 0.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 (2) from (0)
FF num_prev_copies 0.0 0.0 1.0 2.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 (3) from (1)
FF has_prev_copy F F T T F T F T F F F (4) from (3)

0 1 2 3 4 5 6 7 8 9 10
§ a a a b b c c d e f

0 § 0
1 a 0
2 a 0
3 a 0
4 b 0
5 b 0
6 c 0
7 c 0
8 d 0
9 e 0

10 f 0

X seq 1 0 0 0 0 0 0 0 0 0 0

Other indices 0 1 2 3 4 5 6 7 8 9 10
Other t § a a a b b c c d e f
Me indices 0 1 2 3 4 5 6 7 8 9 10
Me t § a a a b b c c d e f
Me 0 0 0 0 0 0 0 0 0 0 0 0

seq 1 1 0.5 0.333 1 0.5 1 0.5 1 1 1

Other indices 0 1 2 3 4 5 6 7 8 9 10
Other hist_bos 0.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0
Other has_prev_copy F F T T F T F T F F F
Me hist_bos 0.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0
Me False F F F F F F F F F F F
Me 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10
0.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0
F F T T F T F T F F F

0.0 F 0
3.0 F 0
3.0 F 0
3.0 F 0
2.0 F 0
2.0 F 0
2.0 F 0
2.0 F 0
1.0 F 0
1.0 F 0
1.0 F 0

X seq 1 0 0 0 0 0 0 0 0 0 0

seq 1 0.5 0.5 0.5 0.333 0.333 0.333 0.333 0.25 0.25 0.25

X seq 1 0.5 0.5 0.5 0.333 0.333 0.333 0.333 0.25 0.25 0.25
FF hist2_bos 0.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0

Figure 17: Computation ßow in compiled architecture fromRASPsolution for double-histogram, for solution shown in
Figure12. Applied to"¤aaabbccdef", as in Figure1.

Thinking Like Transformers

!"#$%&

!"#$%'

($") &
*+,-./-0$!12

!"#$%3

($") &
*+,-./-0$!12

4 . * * 2 2 * 2 2 *&2

55 0$6 ' ' & & ' & & *'2 1%/7*&2

55 0$6 & & ' ' & ' ' *321%/7*&2

55 8 8 8 8 8 8 8 8 *92 1%/7*2

55 : : : : : : : : *;2 1%/7*2

55 5 5 5 5 5 5 5 5 *<2 1%/7*2

=.($%>?)>@$0& ' 3 9 ; < A

B$ >?)>@$0& ' 3 9 ; < A

& ' 3 9 ; < A

&

'

3

9

;

<

A

4 0$6 ' ' & & ' & & 4 0$6 & & ' ' & ' '

0$6 ' 'C&&CAAD&C<&CA&C<&C;3E

4 >?)>@$0 & ' 3 9 ; < A *&2

4 0$6 ' 'C&&CAAD&C<&CA&C<&C;3E *'2

4 0$6 & &C&&C999&C<&C;&C<&C<D' *32

4 8 8 8 8 8 8 8 8 *92

4 : : : : : : : : *;2

55 ?-/,$?0 ' 3C& 3C& 3C&9C&9C& 9C& *<2 1%/7*'F &2

55 ?-@!/0$0 & &C&'C& 3C&3C&9C& ;C& *A2 1%/7*&F32

55 G"!"?@$ ' 3C& 'C& &C&'C&&C&H'C& *D2 1%/7*AF<2

55 0$6 & & & & & & ' *I2 1%/7*D2

55 8 >1* G"!"?@$JJ &2$!0$: : : : 8 : 8 : *E21%/7*;F9FD2

0$6 & &C&&C999&C<&C;&C<&C<D'

=.($%>?)>@$0& ' 3 9 ; < A

B$ >?)>@$0& ' 3 9 ; < A

& ' 3 9 ; < A

&

'

3

9

;

<

A

4 0$6 & & & & & & '

,%$K->7G"!"?@$0& &C&&C&&C&&C&&C&&C';9

4 ,%$K->7G"!"?@$0 & &C&&C&&C&&C&&C&&C';9

4 8 >1* G"!"?@$JJ &2$!0$: : : : 8 : 8 :

4 5 5 5 5 5 5 5 5

55)#@L'-,.1 : : : 8 : 8 5

Figure 18: Computation ßow in compiled architecture fromRASPsolution for Dyck-1, for solution shown in Figure15.
Applied to the unbalanced input sequence"(())())" .

Thinking Like Transformers

layer 3

head 0
(open_for_close)

layer 0

layer 1

head 0
(up_to_self)

layer 2

head 0
(sAND0)

head 1
(sOR0)

layer 4

head 0
(up_to_self)

X indices 0 1 2 3 4 5 6 (0)
X tokens ({)) (}) (1)
FF opens 1 1 0 0 1 0 0 (2) from (1)
FF closes 0 0 1 1 0 1 1 (3) from (1)
FF I((indices == 0)) 1 0 0 0 0 0 0 (4) from (0)

Other indices 0 1 2 3 4 5 6
Me indices 0 1 2 3 4 5 6

 0 1 2 3 4 5 6
 0
 1
 2
 3
 4
 5
 6

X opens 1 1 0 0 1 0 0 X closes 0 0 1 1 0 1 1

s-op 1 1.0 0.667 0.5 0.6 0.5 0.429

X indices 0 1 2 3 4 5 6 (0)
X closes 0 0 1 1 0 1 1 (1)
X s-op 1 1.0 0.667 0.5 0.6 0.5 0.429 (2)
X s-op 0 0.0 0.333 0.5 0.4 0.5 0.571 (3)
FF n_opens 1 2.0 2.0 2.0 3.0 3.0 3.0 (4) from (0, 2)
FF n_closes 0 0.0 1.0 2.0 2.0 3.0 4.0 (5) from (0, 3)
FF depth 1 2.0 1.0 0.0 1.0 0.0 -1.0 (6) from (5, 4)
FF delay_closer 1 2.0 2.0 1.0 1.0 1.0 0.0 (7) from (6, 1)

s-op 0 0.0 0.333 0.5 0.4 0.5 0.571

Other indices 0 1 2 3 4 5 6
Other delay_closer 1 2.0 2.0 1.0 1.0 1.0 0.0
Me indices 0 1 2 3 4 5 6
Me delay_closer 1 2.0 2.0 1.0 1.0 1.0 0.0
Me 0 0 0 0 0 0 0 0

 0 1 2 3 4 5 6
 1 2.0 2.0 1.0 1.0 1.0 0.0

 0 1 0
 1 2.0 0
 2 2.0 0
 3 1.0 0
 4 1.0 0
 5 1.0 0
 6 0.0 0

X 1 1 1 1 1 1 1 1

valat0 1 0 0 1 1 1 0

X inverted 1 0.5 0.333 0.5 0.333 0.25 0.5 (0)
X valat0 1 0 0 1 1 1 0 (1)
FF except0 0.0 1.0 2.0 1.0 2.0 3.0 1.0 (2) from (0)
FF depth_index 1 1 2 2 3 4 1 (3) from (1, 2)
FF (depth_index - 1) 0 0 1 1 2 3 0 (4) from (3)

default: 0

 0 1 2 3 4 5 6
 1 2.0 2.0 1.0 1.0 1.0 0.0

 0 1 0
 1 2.0 0
 2 2.0 0
 3 1.0 0
 4 1.0 0
 5 1.0 0
 6 0.0 0

X I((indices == 0)) 1 0 0 0 0 0 0

Other indices 0 1 2 3 4 5 6
Other delay_closer 1 2.0 2.0 1.0 1.0 1.0 0.0
Me indices 0 1 2 3 4 5 6
Me delay_closer 1 2.0 2.0 1.0 1.0 1.0 0.0
Me 0 0 0 0 0 0 0 0

inverted 1 0.5 0.333 0.5 0.333 0.25 0.5

Other opens 1 1 0 0 1 0 0
Other delay_closer 1 2.0 2.0 1.0 1.0 1.0 0.0
Other depth_index 1 1 2 2 3 4 1
Me delay_closer 1 2.0 2.0 1.0 1.0 1.0 0.0
Me True T T T T T T T
Me (depth_index - 1) 0 0 1 1 2 3 0

 1 1 0 0 1 0 0
 1 2.0 2.0 1.0 1.0 1.0 0.0
 1 1 2 2 3 4 1

 1 T 0
2.0 T 0
2.0 T 1
1.0 T 1
1.0 T 2
1.0 T 3
0.0 T 0

X tokens({)) (})

matched_opener- - { (- (-

X tokens ({)) (}) (0)
X closes 0 0 1 1 0 1 1 (1)
X depth 1 2.0 1.0 0.0 1.0 0.0 -1.0 (2)
X matched_opener - - { (- (- (3)
FF opener_matches F F F T F F F (4) from (3, 0)
FF mismatch F F T F F T T (5) from (4, 1)
FF I((mismatch or (depth < 0))) 0 0 1 0 0 1 1 (6) from (2, 5)

default: -

Other indices 0 1 2 3 4 5 6
Me indices 0 1 2 3 4 5 6

 0 1 2 3 4 5 6
 0
 1
 2
 3
 4
 5
 6

X I((mismatch or (depth < 0))) 0 0 1 0 0 1 1

s-op 0 0.0 0.333 0.25 0.2 0.333 0.429

X depth 1 2.0 1.0 0.0 1.0 0.0 -1.0 (0)
X s-op 0 0.0 0.333 0.25 0.2 0.333 0.429 (1)
FF had_problemF F T T T T T (2) from (1)
FF dyck2_ptf P P F F F F F (3) from (0, 2)

Figure 19: Computation ßow in compiled architecture fromRASPsolution for Dyck-2, for solution shown in Figure8.
Applied to the unbalanced and Ôincorrectly matchedÕ (with respect to structure/pair-matches) sequence"())()" .

