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Appendix
A. Notations

For better understanding, this section provides notation conversions for some of the key concepts in the main text beyond
matrix-vector notation.

• Q-value
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• The stationary distribution’s recursive form (3)
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• The cumulative reward objective (6), actor objective (10) and critic objective (11):
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• The policy gradient (8, 25), actorg (9, 25) and actoro (12) gradients
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• The gap between policy gradient and actor gradients (21, 29)
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B. Proofs

Theorem 2. [Stationary distribution derivative] Let the derivative matrix ⌥ of the stationary distribution w.r.t. the policy
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B✓i

. Then

⌥ = H✓�(⌅
J

dS,✓) 
´1

✓
.



Characterizing the Gap Between Actor-Critic and Policy Gradient

Proof. By the chain rule, we can calculate ⌥ as

⌥ = H✓
r⌥ (49)

where r⌥rsra,sa = Bd✓(s,a)
B⇡✓(rs,ra) and recall that (H✓)i,sa = B⇡✓(s,a)

B✓i

as defined in Eq.(2). Next we show how to calculate r⌥ using
the implicit function theorem.

Based on Eq.(3), define f(d,⇡) as
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which is invertible under regular assumptions (recall that � † 1). As for Bf
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where the last equality is due to Eq.(3). Broadcasting it to all actions, we get
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This combined with Eq.(49) completes the proof.

Theorem 3. Under Assumption 1,
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where the last equation is due to
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Under natural regularity assumptions that allow transposing derivative with summation, we can compute the gradient using
Eq.(13) as
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Therefore, the Stackelberg gradient gS,✓ is not only doing (partial) policy improvement, but also maximizing d
J
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Adding this term to the actor objective, apply Eq.(3), and get the Stackelberg actor objective
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which is exactly the dual objective of the cumulative reward objective in Eq.(6). This means the Stackelberg gradient is
unbiased policy gradient.

C. Soft Actor-Critic

C.1. Derivation of Res-SAC

In this section, we derive the actor update in Res-SAC.

With an additional entropy term, the cumulative reward objective of SAC is given by
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where q✓ := r +
∞1

i=1
(�P⇧✓)i(r ´ log⇡✓) is the action value accounting for all future entropy terms but excluding the

current entropy term (as defined as in the SAC paper). Using a critic q�, the actor and critic objectives are
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Note that the original SAC paper uses a KL divergence minimization step for the actor update (Haarnoja et al., 2018a,
Eq.(10)), which can be seen as a variant of Eq.(74). More specifically, one can re-express the KL divergence as a Bregman
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divergence associated with the negative entropy ´H (Nachum et al., 2017):
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where Z�(s) is the partition function for state s and C,C
1 are some constants independent of ✓. Thus Eq.(74) is the same

as the KL divergence minimization up to some constants and rescaling.

The first order derivatives of Eqs.(74) and (75) are
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where Eq.(80) uses the reparametrization trick (Schulman et al., 2015a) with a = ⇡✓(s, ✏) for some random variable ✏,
and �E = r + �P⇧✓(q� ´ log⇡✓) ´ q� is the residual of the critic accounting for the entropy of the next state. The
reparametrization trick is needed because the policy is predicting an action in a continuous action space.
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The question now becomes how to compute B✓(dJ
✓
�E). As in Section 4.1 (20), by the product rule, we have
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It can be combined with Eq.(80), using the Eq.(3), to get
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Eq.(89) explains the original SAC implementation for the actor update, except for using d✓ instead of a replay buffer to
compute the expectation. The final term, B✓(dJ

✓
� 1
E
), is optimizing a policy to maximize �E as a fixed reward. It is also the

residual reward for learning a res-critic for Res-SAC.

C.2. Derivation of Stack-SAC

In this section, we derive the actor update in Stack-SAC.

The second order derivative B2

�
Jq remains the same as Eq.(39). The Stackelberg gradient now becomes

g
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Then based on Eq.(85), g
SAC
S,✓

= r✓JSAC is an unbiased policy gradient for SAC.
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(a) The FourRoom environment
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Figure 4: FourRoom with a goal and results of dynamic programming

D. Experiment Details

D.1. Tabular

Fig.4a shows the FourRoom environment where goal is to reach a particular cell. The initial state distribution is a uniform
distribution over all unoccupied cells. The reward is 1 for reaching the goal and 0 otherwise.

D.1.1. ADDITIONAL DYNAMIC PROGRAMMING EXPERIMENTS

We investigate the effects of different gradient methods (Actoro, Actorg or Policy Gradient (PG)) combined with different
critic updates (Bellman residual minimization (BR) or temporal difference iteration (TD)) in the dynamic programming
setting, where the reward r and the transition P are assumed to be known. This showcases the performance of different
algorithms in the ideal scenario.

Specifically, the parameters of the softmax policy are the logits, and the critic is directly parametrized (i.e., it is tabular with
a scaler value for each state-action pair). Using r and P, one can compute the Actoro gradient B✓J⇡ (12), Actorg gradient
r�
✓
J (9) and PG (8) directly, and apply them to the policy parameters. As for the critic, BR uses the full gradient (13) while

TD uses semi-gradient (18). The critic TD error loss is weighted according to the on-policy distribution d✓. Both the actor
and the critic use Adam optimizer, with respective learning rates of 0.01 and 0.02.

Figs. 4b and 4c show the average return of the policy J⇡ and the critic objective value Jq respectively. There are a few
observations. (1) Policy gradient quickly converges to the optimal performance, regardless of whether BR or TD is used. The
performance of PG+BR and PG+TD are hardly distinguishable in Fig.4b, showing that if one can estimate PG accurately,
the critic update may be less important. (2) Actor-Critic (AC) is slower than PG to achieve optimal performance. Even with
much more iterations, both Actoro-Critic (AoC) and Actoro-Critic (AgC) are very slow to reach the final performance of
PG. Furthermore, this happens even when the critic is providing accurate estimates of the Q-values (as Jq is very small after
2000 iterations). This indicates that PG can be a better choice as long as one has access to it, and our effort of closing the
gap between AC and PG is meaningful in practice. (3) TD performs better than BR for both AoC and AgC. However, this is
not always the case (Scherrer, 2010).

D.1.2. SAMPLE-BASED EXPERIMENTS

This section refers to the FourRoom experiments in Section 6.1 in the main text. We implement sample-based algorithms
which follow the Actoro-Critic (AoC), Actorg-Critic (AgC), Stack-AC, and Res-AC updates. Hyper-parameters are listed in
Table 2.

AoC uses the following procedure. We use two replay buffers, a replay buffer O which will store states from the initial
state distribution of the environment, and a replay buffer D which will store transitions from the most recent episode run
using the current policy. Concretely, O stores samples from µ0 whereas D stores samples from the on-policy distribution d✓.
At the beginning of the training procedure, we initialize O to be empty. At the beginning of each episode, we initialize D
to be empty, and we add the initial state sampled from the environment to the initial state replay buffer O. For each step
in the environment before the episode terminates, we add the current transition to the replay buffer D. After the episode
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Hyperparameters for four-room domain experiments
Parameter Value
optimizer Adam
learning rate for actor/policy 1 ¨ 10´2

learning rate for critic 2 ¨ 10´2

discount (�) 0.9

environment steps per gradient update 300 (episode length)
batch size 300

Stack-AC: value of ⌘ 0.5

Res-AC: learning rate for res-critic 2 ¨ 10´2

Table 2: Hyperparameters used for Actoro-Critic, Actorg-Critic, Stack-AC, and Res-AC for the sample-based experiments
on the four-room domain.

Algorithm 1 Actoro-Critic
Initialize ✓,�
O – ?
for each episode do

D – ?
s0 „ µ0

O – O Y ts0u

for each environment step do

at „ ⇡(at|st)
st+1 „ P(st+1|st, at)
D – D Y t(st, at, r(st, at), st+1, at+1)u

end for

✓ – ✓+ ↵✓B✓
rJo
⇡

� – �´ ↵�B�
rJq

end for

Algorithm 2 Actorg-Critic
Initialize ✓,�
for each episode do

D – ?
for each environment step do

at „ ⇡(at|st)
st+1 „ P(st+1|st, at)
D – D Y t(st, at, r(st, at), st+1, at+1)u

end for

✓ – ✓+ ↵✓B✓
rJg
⇡

� – �´ ↵�B�
rJq

end for

Algorithm 3 Stack-AC
Initialize ✓,�
O – ?
for each episode do

D – ?
s0 „ µ0

O – O Y ts0u

for each environment step do

at „ ⇡(at|st)
st+1 „ P(st+1|st, at)
D – D Y t(st, at, r(st, at), st+1, at+1)u

end for

✓ – ✓+ ↵✓rgsemi
S,✓

� – �´ ↵�B�
rJq

end for

Algorithm 4 Res-AC
Initialize ✓,�
for each episode do

D – ?
for each environment step do

at „ ⇡(at|st)
st+1 „ P(st+1|st, at)
D – D Y t(st, at, r(st, at), st+1, at+1)u

end for

✓ – ✓+ ↵✓B✓
rJres
⇡

� – �´ ↵�B�
rJq

 –  ´ ↵ B 
rJw

end for
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terminates, we apply gradient updates to the actor (policy) and the critic. Stack-AC follows this same procedure but with
different actor updates. AgC and Res-AC follow the same procedure except for not having an initial state buffer and using
different actor updates. Res-AC additionally includes a res-critic update. For all algorithms, we compute a single critic
update (and res-critic update for Res-AC) for each actor-update to product Fig.1. To produce Fig.2, we updated the res-critic
5 times for each critic update to obtain a more accurate res-critic in order to illustrate the res-critic’s ability to close the gap
between the critic’s prediction and the true return.

For all algorithms we compute the gradient update for the critic as follows. We sample a batch of transitions BD from the
replay buffer D and compute the following loss function for the critic to minimize:

rJq =
1

|BD|
ÿ

(s,a,r,rs,ra)PBD

(q�(s, a) ´ (r+ �q 1
�
(rs, ra)))2

where rs, ra are the next state and next action in the transition, and q
1
�
(rs, ra) indicates that no gradients pass through q�(rs, ra),

i.e. it is treated as a target network. The gradient of this loss, B�rJq, is a sample-based estimate of B�Jq (13). Note, however,
that it uses a semi-gradient instead of Bellman residual minimization in Jq (which yields the full/total gradient).

Actoro-Critic

To compute the gradient update for the actor in AoC, we sample a batch of initial states BO from the replay buffer O and
compute the following objective function for the actor to maximize:

rJo
⇡
=

1

|BO|
ÿ

sPBO

log⇡✓(a|s)q�(s, a).

where the action a is sampled from the current policy ⇡✓ for each state s in BO. The gradient of this objective, B✓rJo⇡, is a
sample-based estimate of B✓J⇡ (12). For the complete pseudocode of AoC, see Algorithm 1.

Actorg-Critic

To compute the gradient update for the actor in AgC, we sample a batch of transitions BD from the replay buffer D and
compute the following objective for the actor to maximize:

rJg
⇡
=

1

|BD|
ÿ

(s,a,r,rs,ra)PBD

log⇡✓(a|s)q�(s, a).

The gradient of this objective, B✓rJg⇡, is a sample-based estimate of r�
✓
J (9). For the complete pseudocode of Actorg-Critic,

see Algorithm 2.

Stack-AC

We compute the gradient update for the actor as follows. Then the Stackelberg gradient based on semi-critic-gradient is
given by

g
semi
S,✓

:= B✓J⇡ ´ (B✓Bsemi
q

Jq)
J((Bsemi

q
)2Jq)

´1(Bsemi
q

J⇡)

In the above equation, we replace Jq with rJq and J⇡ with rJ⇡. This gives us our actor update for Stack-AC:

rgsemi
S,✓

:= B✓rJ⇡ ´ (B✓Bsemi
q

rJq)J((Bsemi
q

)2rJq)´1(Bsemi
q

rJ⇡)

For the complete pseudocode of Stack-AC, see Algorithm 3.

Res-AC

We compute the gradient update for the res-critic as follows. We sample a batch of transitions BD from the replay buffer D
and compute the following loss function for the res-critic to minimize:

rJw =
1

|BD|
ÿ

(s,a,r,rs,ra)PBD

(w (s, a) ´ (� 1
✓
(s, a) + �w 1

 
(rs, ra)))2
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where � 1
✓
(s, a) = r(s, a) + �q 1

�
(rs, ra) ´ q

1
�
(s, a) is the TD-error computed using the current critic. Note that w 1

 
(rs, ra)

indicates that that no gradients pass through w (rs, ra), i.e. it is treated as a target network. The gradient of this loss, B rJw,
is a sample-based estimate of the gradient of Jw (31). Note, however, that it uses a semi-gradient instead of Bellman residual
minimization in Jw (which yields the full/total gradient).

To compute the gradient update for the actor in Res-AC, we sample a batch of transitions BD from the replay buffer D and
compute the following objective for the actor to maximize:

rJres
⇡

=
1

|BD|
ÿ

(s,a,r,rs,ra)PBD

log⇡✓(a|s)q�(s, a) + log⇡✓(a|s)w (s, a).

The gradient of this objective, B✓rJres
⇡

, is a sample-based estimate of the actor update in Res-AC (33). For the complete
pseudocode of Res-AC, see Algorithm 4.

D.2. Continuous Control

Algorithm 5 Res-SAC
1: Initialize parameters ✓, �,  
2: Initialize replay buffer D – H

3: for each iteration do

4: for each environment step do

5: at „ ⇡✓(at|st)
6: st+1 „ P(st+1|st, at)
7: D – D Y t(st, at, r(st, at), st+1, at+1)u
8: end for

9: for each critic step do

10: � – �´ ↵�
prJQ(�)

11: end for

12: for each res-critic step do

13:  –  ´ ↵ 
prJW( )

14: end for

15: for each actor step do

16: ✓ – ✓´ ↵✓
prJ⇡(✓)

17: end for

18: end for

Our training protocol for SAC, Stack-SAC, and Res-SAC follows the same training protoocl of SAC ((Haarnoja et al.,
2018b)). Hyperparameters used for all algorithms are listed in Table 3.

D.2.1. RES-SAC: LOSS FUNCTIONS

Below, we present the loss functions and updates for the actor, critic, and res-critic of Res-SAC.

Similar to SAC, Res-SAC uses a parametrized soft Q-function (critic) Q�(s, a), and a tractable policy (actor) ⇡✓(a|s).
Additionally, Res-SAC uses a parametrized residual Q-function (res-critic) W (s, a). The parameters of these networks are
�, ✓, and  .

The soft Q-function parameters are trained exactly as in SAC (Haarnoja et al., 2018b), but we write the objectives again here
for clarity. The soft Q-function (critic) parameters are trained to minimize the soft Bellman residual:

JQ(�) = E(S,A)„D


1

2

�
Q�(S,A) ´

�
r(S,A) + �ES1„P,A1„⇡✓(S1)

⇥
Q
�̄
(S 1

, A
1) ´ log⇡✓(A 1|S 1)

⇤��2
�

where D is a replay buffer containing previously sampled states and actions, and the target soft Q-function Q
�̄

uses an
exponential moving average �̄ of � as done in the original SAC.

The residual Q-function have a similar objective, but the key differences are (1) the reward is based on the TD error of
the critic and (2) the there is no entropy term. Specifically, the residual Q-function (res-critic) parameters are trained to
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Hyperparameters for continuous control experiments
Parameter Value
optimizer Adam
learning rate 3 ¨ 10´4

discount (�) 0.99

replay buffer size 10
6

number of hidden layers 2

number of hidden units per layer 128

number of samples per minibatch 128

nonlinearity ReLU
target smoothing coefficient (⌧) 0.005

target update interval 1

entropy target ´dim(A)
environment steps per gradient step 10

Stack-SAC: value of ⌘ 0.5

Res-SAC: value of c 6.0 for HalfCheetah-v2, 1.0 for
Reacher-v2, 4.0 for Pendulum-v0

Table 3: Hyperparameters used for SAC, Stack-SAC, and Res-SAC for continuous control experiments.

minimize the Bellman residual:

JW( ) = E(S,A)„D


1

2

�
W (S,A) ´

�
rr(S,A) + �ES1„P,A1„⇡✓(S1)

⇥
W
 ̄
(S 1

, A
1)
⇤��2

�

where s is an exponential moving average of  . The clipped reward rr(s, a) is computed as follows:

rr(s, a) = clip(�(s, a),´c, c) = min(max(�(s, a),´c), c) for c ° 0

where

�(s, a) = r(s, a) + �ES1„P,A1„⇡✓(S1)[Q�̄(S
1
, A

1)] ´ Q�(s, a)

The actor / policy is trained by minimizing the KL divergence:

J⇡(✓) = ES„D


KL
✓
⇡✓(¨|S)

››››
exp [Q�(S, ¨) +Q (S, ¨)]

Z�, (S)

◆�

All objectives above can be optimized with stochastic gradients: prJQ(�), prJW( ), and prJ⇡(✓). The pseudocode for
Res-SAC can be found in Algorithm 5.

D.2.2. RES-SAC: SENSITIVITY ANALYSIS

The results in Section 6.2 suggest that actor-critic algorithms enjoy improved sample efficiency and final performance when
their actor update rules are modified to follow the Res-AC framework. In the continuous control tasks, we found that the
performance of Res-SAC was dependent on the setting of an additional hyper-parameter: the clip value c ° 0 applied to the
TD error �✓ that is used as the reward for the res-critic. On HalfCheetah-v2, we examine the sensitivity of Res-SAC to
the clip value on the res-critic’s reward (Fig.5). Without clipping, training is highly unstable. Higher clip values improve
stability, with a clip value of 6.0 leading to the best performance. We found a useful heuristic to select a clip value for
Res-SAC: train SAC on the same task and use the maximum absolute TD error of the critic that occurs during training as the
clip value c for Res-SAC. As an example, we see that when training SAC on HalfCheetah-v2, the max TD error is between
5.0 and 6.0 (Fig.6), and we find that a clip value of 6.0 leads to the best performance of Res-SAC on HalfCheetah.
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Figure 5: Sensitivity of Res-SAC to the clip value c on the
HalfCheetah-v2 task.
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Figure 6: Absolute TD error while training SAC on
HalfCheetah-v2.


