
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Supplementary

1. Additional Details on CARLA Experiments
In Sec 5, we specified the experimental setup for our experi-
ments in the CARLA driving environment, which closely
follows standard protocol from Codevilla et al. (2018; 2019);
Chen et al. (2020). We provide additional details here.

Data Collection. The CARLA100 dataset (Codevilla
et al., 2019) in our experiments is collected with noise
injection (Laskey et al., 2017) to perturb 10% of expert
actions. It also uses three cameras: a forward-facing one
and two lateral cameras facing 30 degrees away towards
left or right (Bojarski et al., 2016), for data augmentation to
guard against distributional shift.

Architectures and Training Details. All our baseline
models use ImageNet-pretrained Resnet34 as our perception
model (Codevilla et al., 2019). We use the state-of-the-art
conditional imitation learning model CILRS (Codevilla et al.,
2019) as our backbone, with a weighted control loss (Codev-
illa et al., 2018) that assigns weights of 0.5 to steer, 0.45
to throttle and 0.05 to brake. We train all models for 105

training iterations with minibatch size 120. We use Adam
optimizer, set the initial learning rate to 1× 10−4 and decay
the learning rate by 0.1 whenever the loss value no longer
decreases for 5000 iterations. We use L1 loss as our loss
function.

Defining the Metrics. We now more thoroughly define
all the metrics we used to measure the performance of the
CARLA experiments, following standard protocol (Codev-
illa et al., 2018; 2019; Chen et al., 2020):

• The %success is the number of episodes fully completed
by the ego vehicle among all the 100 predefined test
episodes. Higher is better.

• #collision reports the total times the ego car crashes into
the pedestrians, vehicles and other obstructions (over 100
test episodes). Lower is better.

• For %progress, we calculate the euclidean distance from
the start point to the target point at the beginning of each
episode (initial distance) and then compute the distance
from the start point to the final point after the episode is
over (final distance); and the %progress is 1 minus the

ratio between final distance and initial distance. Higher is
better.

• The avg. speed is calculated by dividing the path length
that the ego car traveled by the travel time. Higher is better
in general, but approaches that drive the vehicle straight
into pedestrians at high speed will still get avg. speed, so
this metric is not very informative without the context of
the other metrics.

Reporting Results In Terms of All Four Metrics. In
Sec 5 in the paper, we only had space to report the quan-
titative results in terms of %success, but we remarked on
broad trends in terms of the other metrics above too. We
now report those complete results in Table 1 (for unmodified
CARLA, including the agent velocity inputs, corresponding
to Table 1 in the paper) and Table 2 (for the CARLA-w/o-
speed setting with increased partial observability).

Expanded Fig 6. Figure 6 in the paper compares the im-
itation errors of various models on changepoint and non-
changepoint samples. We now report those same results in
tabular form for increased precision, in Table 3.

2. Additional Details on MuJoCo
Experiments

Architectures and Training Details. We use ResNet18
as our backbone and a two-layer MLP with 300 hidden
units on top of it to get the predicted action. We use Adam
optimizer with initial learning rate 2× 10−4 and reduce the
learning rate by a factor of 10 every 100k iterations during
training. We use a batchsize of 128. We train the imitation
agent for 300k iterations until convergence. We use L2 as
our loss function.

3. Hyperparameter Choices
Since there are only few hyperparameters in our method, we
can perform grid search to find the best set of hyperparam-
eters based on evaluation reward. For softmax weighting
function, we select its temperature τ from {0.1, 0.2, 0.5, 1,
5, 10} and for step weighting function, we select its thresh-
old THR from {10%, 20%} and its weight W from {3, 5,
10}.



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Keyframe-Focused Visual Imitation Learning

Table 1. CARLA test results in Nocrash-Dense benchmark. BC-SO is significantly better than BC-OH, verifying the causal confusion
phenomenon. Our method outperforms both BC-SO and BC-OH with higher success rate. Moreover, our method significantly reduces the
#collision, which is very important for urban driving tasks. Comparing with the baselines, we do better in all the four metrics than the two
offline algorithms and even beats the Dagger which require online query.

METHOD %SUCCESS (/100) (↑) #COLLISION (↓) %PROGRESS (↑) AVG. SPEED (↑)
BC-SO (CODEVILLA ET AL., 2019) 42.667 ± 8.668 48.444 ± 9.044 0.580 ± 0.055 15.559 ± 3.035

BC-OH 33.000 ± 4.190 52.111 ± 5.878 0.497 ± 0.042 11.775 ± 3.225
OURS (STEP) 43.444 ± 0.786 42.615 ± 2.228 0.580 ± 0.040 14.938 ± 2.759

FCA (WEN ET AL., 2020) 35.667 ± 3.559 50.333 ± 4.643 0.551 ± 0.030 13.927 ± 2.905
HISTORYDROPOUT (BANSAL ET AL., 2019) 34.000 ± 2.625 60.222 ± 3.119 0.506 ± 0.029 17.847 ± 2.120

DAGGER 120K (ROSS ET AL., 2011) 35.222 ± 3.067 60.000 ± 2.625 0.512 ± 0.026 18.515 ± 1.586
BCPD 28.667 ± 2.494 36.667 ± 8.260 0.440 ± 0.057 10.071 ± 6.668

ACTFREQ 20.333 ± 5.825 26.000 ± 5.354 0.410 ± 0.089 9.229 ± 3.353
BOOSTING 3.000 ± 1.414 19.333 ± 4.110 0.101 ± 0.026 1.933 ± 2.174

Table 2. CARLA-w/o-speed results in Nocrash-Dense benchmark. In this case, BC-SO’s performance is much worse than BC-OH for
lack of historical information and it is pretty difficult to infer speed from a single frame. Our method still performs well in such an
information-constrained situation.

METHOD %SUCCESS (/100) (↑) #COLLISION (↓) %PROGRESS (↑) AVG. SPEED (↑)
BC-SO (CODEVILLA ET AL., 2019) 9.222 ± 2.380 84.667 ± 4.769 0.204 ± 0.033 35.182 ± 1.594

BC-OH 25.667 ± 0.981 60.889 ± 1.911 0.467 ± 0.049 15.543 ± 3.714
OURS (STEP) 36.778 ± 5.808 45.333 ± 4.690 0.540 ± 0.050 14.416 ± 3.145

FCA (WEN ET AL., 2020) 27.444 ± 4.113 59.222 ± 5.996 0.453 ± 0.052 13.856 ± 2.729
HISTORYDROPOUT (BANSAL ET AL., 2019) 25.333 ± 5.375 66.778 ± 5.865 0.449 ± 0.047 16.086 ± 3.889

DAGGER 120K (ROSS ET AL., 2011) 28.333 ± 3.496 62.667 ± 3.771 0.457 ± 0.014 16.988 ± 2.757
BCPD 20.000 ± 1.414 44.000 ± 9.899 0.400 ± 0.0626 5.379 ± 2.259

ACTFREQ 14.667 ± 1.764 24.667 ± 3.972 0.313 ± 0.031 3.649 ± 3.073
BOOSTING 10.000 ± 2.160 49.667 ± 4.028 0.223 ± 0.026 12.502 ± 3.242

Our method We use step function for CARLA environ-
ment. In both of CARLA and CARLA-w/o-speed, we set
THR to 10% and W to 5, i.e., upweight the top 10% of
samples by a factor of 5.

In MuJoCo-Image, we experiment with both step and
softmax function. For the softmax function, we use a
temperature of 0.2 for Hopper and Walker2D and 0.1 for
HalfCheetah. For the step function, we set the THR to 10%
and W to 5.

Baselines In HistoryDropout, we set the dropout rate to
0.5 for all environments. In FCA, we set different adver-
sarial loss weight for different environment to balance the
adversarial loss and the imitation loss. More specifically, the
adversarial loss weights for the different environments are
CARLA and CARLA-w/o-speed: 0.2, Hopper: 0.1, HalfChee-
tah and Walker2D: 0.5.

4. Sensitivity Study
To study the sensitivity of out method to the hyperparameter
choices, we ran some additional experiments by perturbing
the hyperparameters. For Walker 2D, we set the softmax
temperature to 0.1, 0.2, and 0.5, and the test rewards are
765± 103, 769± 97, and 724± 61. And for CARLA, the
weight W of step function is set to 4, 5 and 6, producing
success rate 41.89, 43.44, and 41.33%. These results sug-
gest that our method is pretty robust to the hyperparameter
choices.

5. Additional Sandbox Environment: ToyCar
In addition to the standard environments in the paper, we
constructed a simple sandbox environment for fast experi-
mentation, that we will refer to as ToyCar. The environment
consists of a car on a straight road with a traffic light that
stays on red or green for random lengths of time as shown
in Fig 1. The car must successfully drive through the road
from left to right without breaking red lights. The car fol-



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Keyframe-Focused Visual Imitation Learning

Table 3. The loss of different types of samples. Our method significantly reduces the loss of hard samples, thus reducing the empirical
risks among the whole dataset. The standard deviation values are smaller than 1× 10−3 so we don’t put them here.

EXPERIMENT METHOD
UNWEIGHTED LOSS×10−2 CHANGEPOINT LOSS×10−2 COPYCAT SAMPLE LOSS×10−2

TRAIN VAL TRAIN VAL TRAIN VAL

BC-SO 1.769 1.464 4.995 4.222 1.410 1.157
W/-SPEED BC-OH 1.549 1.395 5.721 4.808 1.086 1.016

OURS (STEP) 1.742 1.537 4.545 3.731 1.431 1.294

BC-SO 5.350 4.989 11.213 11.059 4.710 4.316
W/O-SPEED BC-OH 2.172 2.055 8.194 7.588 1.504 1.441

OURS (STEP) 1.671 1.491 4.985 4.132 1.303 1.198

Figure 1. Snapshot of the ToyCar environment.

lows point mass double integrator dynamics, and has two
actions, throttle, and brake, that apply fixed positive and
negative accelerations. There is a fixed upper limit on the
velocity. The expert is a rule-based agent and has access
to the full observation, i.e. the car position, the velocity,
the traffic light position, the traffic light status and the time
remaining for the current status. All the imitator policies act
on 3x128x128 images.

Table 4. ToyCar results.

BC-SO BC-OH OURS(STEP)

%SUCCESS RATE 97.2 ± 0.7 95.1 ± 4.5 97.8 ± 0.5

Results We train the BC-SO, BC-OH and our method
with 1K expert samples, and test them in the environment.
The test success rates are shown in the Table 4. All results
are reported over 5 trials. Quantitative results mirror those
reported in the paper, but gains are relatively small due to the
fact that the environment is very simple. Qualitatively, we
observed instances of similar problems with BC-OH to the
inertia problem reported before in Codevilla et al. (2019),
namely, the car sometimes stops at a seemingly random
location and refuses to start again. Our method successfully
removes those failure cases.

6. Low-Dimensional Environments:
MuJoCo-State

Finally, while in the paper, we showed results for image-
based MuJoCo settings, we now report results in low-
dimensional partially observed MuJoCo settings. Following
Wen et al. (2020), we remove the velocity and external force
information from the full state to make the environment
partially observed.

The environmental rewards are shown in Tab 5. As in the
image-based settings, our method successfully outperforms
BC-OH easily in all these settings. Further, our results
in these environments are comparable to FCA (Wen et al.,
2020). We clearly outperform FCA on Walker2D, perform
on par with FCA on HalfCheetah, and perform worse on
Hopper. However, the FCA method, reliant on adversarial
training, scales poorly to higher-dimensional image-based
environments as mentioned in Wen et al. (2020), and also
verified throughout our other results.

Table 5. MuJoCo-State results.

HOPPER HALFCHEETAH WALKER2D

BC-SO 275 ± 40 -38 ± 36 363 ± 86
BC-OH 293 ± 83 820 ± 60 592 ± 124

FCA 1086 ± 262 1250 ± 42 1296 ± 288
OURS 641 ± 7 1023 ± 75 1460 ± 169

7. Additional Baseline: Category Frequency
Weighting with Discovered Categories

As we mentioned in Sec 2 in the paper, prior approaches
(Cui et al., 2019; Cao et al., 2019) have proposed rebal-
ancing data in supervised learning settings based on the
frequencies of categories, so that low-frequency categories
are upsampled to correct data imbalance issues. We now re-
port the results of a baseline that discovers action categories
in an unsupervised manner and apply a similar strategy. This
evaluates a different reweighting strategy to the APE-based
strategy proposed in the paper.



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Keyframe-Focused Visual Imitation Learning

We assume that there are 6 typical scenarios in urban au-
tonomous driving tasks, i.e. going straight, turning right,
turning left, accelerating, slowing down and parking, so we
use the k-means algorithm to cluster the actions in the train-
ing dataset into k = 6 clusters as categories. And we use

category frequency based weighting function wi =
∑6

j=1 nj

ni

to reweight each sample in the cluster i, where nj is the
number of samples in cluster j.

This naive reweighting strategy-based baseline does not
perform very well. The results are shown in the last rows in
Table 1 and Table 2.

References
Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauf-

feurNet: Learning to Drive by Imitating the Best and
Synthesizing the Worst. Robotics: Science & Systems
(RSS), art. arXiv:1812.03079, 2019.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D.
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin
Zhang, Jake Zhao, and Karol Zieba. End to end learning
for self-driving cars. CoRR, abs/1604.07316, 2016.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and
Tengyu Ma. Learning imbalanced datasets with label-
distribution-aware margin loss. In Advances in Neural
Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019.

Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp
Krähenbühl. Learning by cheating. In Conference on
Robot Learning, pages 66–75. PMLR, 2020.

Felipe Codevilla, Matthias Miiller, Antonio López, Vladlen
Koltun, and Alexey Dosovitskiy. End-to-end driving via
conditional imitation learning. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 1–9. IEEE, 2018.

Felipe Codevilla, Eder Santana, Antonio M López, and
Adrien Gaidon. Exploring the limitations of behav-
ior cloning for autonomous driving. In Proceedings of
the IEEE International Conference on Computer Vision,
pages 9329–9338, 2019.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge
Belongie. Class-balanced loss based on effective number
of samples. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9268–
9277, 2019.

Michael Laskey, Anca Dragan, Jonathan Lee, Ken Goldberg,
and Roy Fox. Dart: Optimizing noise injection in imita-
tion learning. In Conference on Robot Learning (CoRL),
volume 2, page 12, 2017.

Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell.
A reduction of imitation learning and structured predic-
tion to no-regret online learning. Journal of Machine
Learning Research, 15:627–635, 2011. ISSN 15324435.

Chuan Wen, Jierui Lin, Trevor Darrell, Dinesh Jayaraman,
and Yang Gao. Fighting copycat agents in behavioral
cloning from observation histories. In Advances in Neural
Information Processing Systems, volume 33, 2020.


