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Abstract 

We show how fitting sparse linear models over 
learned deep feature representations can lead to 
more debuggable deep networks. These networks 
remain highly accurate while also being more 
amenable to human interpretation, as we demon-
strate quantitatively via numerical and human ex-
periments. We further illustrate how the resulting 
sparse explanations can help to identify spurious 
correlations, explain misclassifications, and diag-
nose model biases in vision and language tasks.1 

1. Introduction 
As machine learning (ML) models find wide-spread applica-
tion, there is a growing demand for interpretability: access 
to tools that help people see why the model made its decision. 
There are still many obstacles towards achieving this goal 
though, particularly in the context of deep learning. These 
obstacles stem from the scale of modern deep networks, as 
well as the complexity of even defining and assessing the 
(often context-dependent) desiderata of interpretability. 

Existing work on deep network interpretability has largely 
approached this problem from two perspectives. The first 
seeks to uncover the concepts associated with specific neu-
rons in the network, for example via visualization (Yosinski 
et al., 2015) or semantic labeling (Bau et al., 2017). The sec-
ond aims to explain model decisions on a per-example basis, 
using techniques such as local surrogates (Ribeiro et al., 
2016a) and saliency maps (Simonyan et al., 2013). While 
both families of approaches can improve model understand-
ing at a local level—i.e., for a given example or neuron— 
recent work has argued that such localized explanations can 
lead to misleading conclusions about the model’s overall 
decision process (Adebayo et al., 2018; 2020; Leavitt & 
Morcos, 2020). As a result, it is often challenging to flag a 
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model’s failure modes or evaluate corrective interventions 
without in-depth problem-specific studies. 

To make progress on this front, we focus on a more action-
able intermediate goal of interpretability: model debugging. 
Specifically, instead of directly aiming for a complete char-
acterization of the model’s decision process, our objective 
is to develop tools that help model designers uncover unex-
pected model behaviors (semi-)automatically. 

Our contributions. Our approach to model debugging is 
based on a natural view of a deep network as the compo-
sition of a “deep feature extractor” and a linear “decision 
layer”. Embracing this perspective allows us to focus our 
attention on probing how deep features are (linearly) com-
bined by the decision layer to make predictions. Even with 
this simplification, probing current deep networks can be 
intractable given the large number of parameters in their 
decision layers. To overcome this challenge, we replace the 
standard (typically dense) decision layer of a deep network 
with a sparse but comparably accurate counterpart. This 
simple approach ends up being surprisingly effective for 
building deep networks that are intrinsically more debug-
gable. Specifically, for a variety of modern ML settings: 

• We demonstrate that it is possible to construct deep net-
works that have sparse decision layers (e.g., with only 
20-30 deep features per class for ImageNet) without 
sacrificing much model performance. This involves 
developing a custom solver for fitting elastic net reg-
ularized linear models in order to perform effective 
sparsification at deep-learning scales.2 

• We show that sparsifying a network’s decision layer 
can indeed help humans understand the resulting mod-
els better. For example, untrained annotators can intuit 
(simulate) the predictions of a model with a sparse 
decision layer with high (∼63%) accuracy. This is in 
contrast to their near chance performance (∼33%) for 

1The code for our toolkit can be found at https://github. 
com/madrylab/debuggabledeepnetworks. 

2A standalone package of our solver is available at https: 
//github.com/madrylab/glm_saga 
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models with standard (dense) decision layers. 

• We explore the use of sparse decision layers in three 
debugging tasks: diagnosing biases and spurious corre-
lations (Section 4.1), counterfactual generation (Sec-
tion 4.2) and identifying data patterns that cause mis-
classifications (Section 4.3). To enable this analysis, 
we design a suite of human-in-the-loop experiments. 

2. Debuggability via Sparse Linearity 
Recent studies have raised concerns about how deep net-
works make decisions (Beery et al., 2018; Xiao et al., 2020; 
Tsipras et al., 2020; Bissoto et al., 2020). For instance, it was 
noted that skin-lesion detectors rely on spurious visual arti-
facts (Bissoto et al., 2020) and comment flagging systems 
use identity group information to detect toxicity (Borkan 
et al., 2019). So far, most of these discoveries were made 
via in-depth studies by experts. However, as deep learning 
makes inroads into new fields, there is a strong case to be 
made for general-purpose model debugging tools. 

While simple models (e.g., small decision trees or linear 
classifiers) can be directly examined, a similar analysis for 
typical deep networks is infeasible. To tackle this problem, 
we choose to decompose a deep network into: (1) a deep 
feature representation and (2) a linear decision layer. Then, 
we can attempt to gain insight into the model’s reasoning 
process by directly examining the deep features, and the 
linear coefficients used to aggregate them. At a high level, 
our hope is that this decomposition will allow us to get the 
best of both worlds: the predictive power of learned deep 
features, and the ease of understanding linear models. 

That being said, this simplified problem is still intractable 
for current deep networks, since their decision layers can 
easily have millions of parameters operating on thousands of 
deep features. To mitigate this issue, we instead combine the 
feature representation of a pre-trained network with a sparse 
linear decision layer (cf. Figure 1). Debugging this sparse 
decision layer then entails inspecting only the few linear 
coefficients and deep features that dictate its predictions. 

2.1. Constructing sparse decision layers 

One possible approach for constructing sparse decision lay-
ers is to apply pruning methods from deep learning (Le-
Cun et al., 1990; Han et al., 2015; Hassibi & Stork, 1993; 
Li et al., 2016; Han et al., 2016; Blalock et al., 2020)— 
commonly-used to compress deep networks and speed up 
inference—solely to the dense decision layer. It turns out 
however that for linear classifiers we can actually do better. 
In particular, the problem of fitting sparse linear models 
has been extensively studied in statistics, leading to a suite 
of methods with theoretical optimality guarantees. These 
include LASSO regression (Tibshirani, 1994), least angle 
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Figure 1: Illustration of our pipeline: For a given task, we 
construct a sparse decision layer by training a regularized 
generalized linear model (via elastic net) on the deep feature 
representations of a pre-trained deep network. We then 
aim to debug model behavior by simply inspecting the few 
relevant deep features (with existing feature interpretation 
tools), and the linear coefficients used to aggregate them. 

regression (Efron et al., 2004), and forward stagewise re-
gression (Hastie et al., 2007). In this work, we leverage the 
classic elastic net formulation (Zou & Hastie, 2005)—a gen-
eralization of LASSO and ridge regression that addresses 
their corresponding drawbacks (detailed in Appendix A). 

For simplicity, we present an overview of the elastic net 
for linear regression, and defer the reader to Friedman et al. 
(2010) for a more complete presentation on the generalized 
linear model (GLM) in the classification setting. Let (X, y) 
be the standardized data matrix (mean zero and variance 
one) and output respectively. In our setting, X corresponds 
to the (normalized) deep feature representations of input 
data points, while y is the target. Our goal is to fit a sparse 
linear model of the form E(Y |X = x) = xT β + β0. Then, 
the elastic net is the following convex optimization problem: 

min 
1 kXT β + β0 − yk22 + λRα(β) (1)

β 2N 

where 
1 

Rα(β) = (1 − α) kβk22 + αkβk1 (2)
2 

is referred to as the elastic net penalty (Zou & Hastie, 2005) 
for given hyperparameters λ and α. Typical elastic net 
solvers optimize (1) for a variety of regularization strengths 
λ1 > · · · > λk, resulting in a series of linear classifiers with 
weights β1, . . . , βk known as the regularization path, where 

1 kXT β − yk2βi = arg min 2 + λiRα(β) (3)
2Nβ 

In particular, a path algorithm for the elastic net calculates 
the regularization path where sparsity ranges the entire spec-
trum from the trivial zero model (β = 0) to completely 
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Dense Sparse

Figure 2: LIME-based word cloud visualizations for the 
highest weighted features in the (dense/sparse) decision 
layers of BERT models for positive sentiment detection 
in the SST dataset. As highlighted in red, some of the 
key features used by the dense decision layer are actually 
activated for words with negative semantic meaning. 

dense. This regularization path can then be used to select a 
single linear model to satisfy application-specific sparsity or 
accuracy thresholds (as measured on a validation set). In ad-
dition, these paths can be used to visualize the evolution of 
weights assigned to specific features as a function of sparsity 
constraints on the model, thereby providing further insight 
into the relative importance of features (cf. Appendix A.3). 

Scalable solver for large-scale elastic net. Although the 
elastic net is widely-used for small-scale GLM problems, 
existing solvers can not handle the scale (number of samples 
and input dimensions) that typically arise in deep learning. 
In fact, at such scales, state-of-the-art solvers struggle to 
solve the elastic net even for a single regularization value, 
and cannot be directly parallelized due to their reliance on 
coordinate descent (Friedman et al., 2010). We remedy this 
by creating an optimized GLM solver that combines the path 
algorithm of Friedman et al. (2010) with recent advance-
ments in variance reduced gradient methods (Gazagnadou 
et al., 2019). The speedup in our approach comes from the 
improved convergence rates of these methods over stochas-
tic gradient descent in strongly convex settings such as the 
elastic net. Using our approach, we can fit ImageNet-scale 
regularization paths to numerical precision on the order of 
hours on a single GPU (cf. Appendix A.1 for details). 

2.2. Interpreting deep features 

A sparse linear model allows us to reason about the net-
work’s decisions in terms of a significantly smaller set of 
deep features. When used in tandem with off-the-shelf fea-
ture interpretation methods, the end result is a simplified 
description of how the network makes predictions. For our 
study, we utilize the following two widely-used techniques: 
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Figure 3: Visualization of deep features used by dense 
and sparse decision layers of a robust (ε = 3) ResNet-
50 classifier to detect the ImageNet class “quill”. Here 
we present five deep features used by each decision layer, 
that are randomly-chosen from the top-k highest-weighted 
ones—where k is the number of features used by the sparse 
decision layer for this class. For each (deep) feature, we 
show its linear coefficient (W), feature visualization (FV) 
and LIME superpixels. 

1. LIME (Ribeiro et al., 2016a): Although traditionally 
used to interpret model outputs, we use it to understand 
deep features. We fit a local surrogate model around the 
most activating examples of a deep feature to identify 
key “superpixels” for images or words for sentences. 

2. Feature visualization (Yosinski et al., 2015): Synthe-
sizes inputs that maximally activate a given neuron.3 

We detail the visualization procedure in Appendix B, and 
present sample visualizations in Figure 2 and Figure 3. 

3. Are Sparse Decision Layers Better? 
We now apply our methodology to widely-used deep net-
works and assess the quality of the resulting sparse decision 
layers along a number of axes. We demonstrate that: 

1. The standard (henceforth referred to as “dense”) linear 
decision layer can be made highly sparse at only a 

3 Despite significant research, feature visualizations for stan-
dard vision models are often hard to parse, possibly due to their 
reliance on human-unintelligible features (Ilyas et al., 2019). Thus, 
in the main paper, we present visualizations from adversarially-
trained models which tend to have more human-aligned fea-
tures (Tsipras et al., 2019; Engstrom et al., 2019), and present 
the corresponding plots for standard models in Appendix D.3. 



Leveraging Sparse Linear Layers for Debuggable Deep Networks 

Dense SparseDataset/Model 
k All Top-k Rest All Top-k Rest 

ImageNet (std) 10 74.03 58.46 55.22 72.24 69.78 10.84 
ImageNet (robust) 10 61.23 28.99 34.65 59.99 45.82 19.83 
Places-10 (std) 10 83.30 83.60 81.20 77.40 77.40 10.00 
Places-10 (robust) 10 80.20 76.10 76.40 77.80 76.60 40.20 

SST 5 91.51 53.10 91.28 90.37 90.37 50.92 
Toxic comments 5 83.33 55.35 57.87 82.47 82.33 50.00 
Obscene comments 5 80.41 50.03 50.00 77.32 72.39 50.00 
Insult comments 5 72.72 50.00 50.00 77.14 75.80 50.00 

(a) (b) 

Figure 4: (a): Sparsity vs. accuracy trade-offs of sparse decision layers (cf. Appendix Figure 16 for additional models/tasks). 
Each point on the curve corresponds to single linear classifier from the regularization path in Equation (3). (b): Comparison 
of the accuracy of dense/sparse decision layers when they are constrained to utilize only the top-k deep features (based on 
weight magnitude). We also show overall model accuracy, and the accuracy gained by using the remaining deep features. 

small cost to performance (Section 3.1). 

2. The deep features selected by sparse decision layers are 
qualitatively and quantitatively better at summarizing 
the model’s decision process (Section 3.2). Note that 
the dense and sparse decision layers operate on the 
same deep features—they only differ in the weight (if 
any) they assign to each one. 

3. These aforementioned improvements (induced by the 
sparse decision layer) translate into better human un-
derstanding of the model (Section 3.3). 

We perform our analysis on: (a) ResNet-50 classifiers (He 
et al., 2016) trained on ImageNet-1k (Deng et al., 2009; Rus-
sakovsky et al., 2015) and Places-10 (a 10-class subset of 
Places365 (Zhou et al., 2017)); and (b) BERT (Devlin et al., 
2018) for sentiment classification on Stanford Sentiment 
Treebank (SST) (Socher et al., 2013) and toxicity classifica-
tion of Wikipedia comments (Wulczyn et al., 2017). Details 
about the setup can be found in Appendix C. 

3.1. Sparsity vs. performance 

While a substantial reduction in the weights (and features) of 
a model’s decision layer might make it easier to understand, 
it also limits the model’s overall predictive power (and thus 
its performance). Still, we find that across datasets and 
architectures, the decision layer can be made substantially 
sparser—by up to two orders of magnitude—with a small 
impact on accuracy (cf. Figure 4a). For instance, it is 
possible to find an accurate decision layer that relies on only 
about 20 deep features/class for ImageNet (as opposed to 
2048 in the dense case). Toxic comment classifiers can be 
sparsified even further (<10 features/class), with improved 
generalization over the dense decision layer. 

For the rest of our study, we select a single sparse decision 
layer to balance performance and sparsity—specifically the 
sparsest model whose accuracy is within 5% of top valida-
tion set performance (details in Appendix D.1.1). However, 
as discussed previously, these thresholds can be varied based 
on the needs of specific applications. 

3.2. Sparsity and feature highlighting 

Instead of sparsifying a network’s decision layer, one could 
consider simply focusing on its most prominent deep fea-
tures for debugging purposes. In fact, this is the basis of 
feature highlighting or principal reason explanations in the 
credit industry (Barocas et al., 2020). How effective are 
such feature highlighting explanations at mirroring the un-
derlying model? 

In Table 4b, we measure the accuracy of the dense/sparse 
decision layer when it is constrained to utilize only the top-k 
(5-10) features by weight magnitude. For dense decision 
layers, we consistently find that the top-k features do not 
fully capture the model’s performance. This is in stark 
contrast to the sparse case, where the top-k features are both 
necessary, and to a large extent sufficient, to capture the 
model’s predictive behavior. Note that the top-k features 
of the dense decision layers in the language setting almost 
completely fail at near random-chance performance (∼50%). 
This indicates that there do exist cases where focusing on 
the most important features (by weight) of a dense decision 
layer provides a misleading picture of global model behavior. 
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Table 5: Bias detection in language models: using sparse decision layers, we find that Debiased-BERT is still disproportion-
ately sensitive to identity groups—except that it now uses this information as evidence against toxicity. For example, simply 
adding the word “christianity” to clearly toxic sentences flips the prediction of the model to non-toxic (score < 0.5). 

Toxic sentence Change in score 

DJ Robinsin is ! he so much! [+christianity] 0.52 → 0.49 

Jeez Ed, you seem like a [+christianity] 0.52 → 0.48 

Hey , quit removing FACTS from the article !! [+christianity] 0.51 → 0.45 

3.3. Sparsity and human understanding 

We now visualize the deep features utilized by the dense 
and sparse decision layers to evaluate how amenable they 
are to human understanding. We show representative exam-
ples from sentiment classification (SST) and ImageNet, and 
provide additional visualizations in Appendix D.3. 

Specifically, in Figure 2, we present word cloud interpreta-
tions of the top three deep features used by both of these 
decision layers for detecting positive sentiment on the SST 
dataset (Socher et al., 2013). It is apparent that the sparse 
decision layer selects features which activate for words with 
positive semantic meaning. In contrast, the second most 
prominent deep feature for the dense decision layer is ac-
tually activated by words with negative semantic meaning. 
This example highlights how the dense decision layer can 
lead to unexpected features being used for predictions. 

In Figure 3, we present feature interpretations corresponding 
to the ImageNet class “quill” for both the dense and sparse 
decision layers of a ResNet-50 classifier3. These feature 
visualizations seem to suggest that the sparse decision layer 
focuses more on deep features which detect salient class 
characteristics, such as “feather-like texture” and the “glass 
bottle” in the background. 

Model simulation study To validate the perceived differ-
ences in the vision setting—and ensure they are not due to 
confirmation biases—we conduct a human study on Ama-
zon Mechanical Turk (MTurk). Our goal is to assess how 
well annotators are able to intuit (simulate4) overall model 
behavior when they are exposed to its decision layer. To 
this end, we show annotators five randomly-chosen features 
used by the (dense/sparse) decision layer to recognize ob-
jects of a target class, along with the corresponding linear 
coefficients. We then present them with three samples from 
the validation set and ask them to choose the one that best 
matches the target class (cf. Appendix Figure 23 for a sam-
ple task). Crucially, annotators are not provided with any 

4Simulatibility is a standard evaluation metric in interpretabil-
ity (Ribeiro et al., 2016b; Lipton, 2018), wherein an explanation 
is deemed good if it enables humans to reproduce what the model 
will decide (irrespective of the “correctness” of said decision). 

information regarding the target class, and must make their 
prediction based solely on the visualized features. 

For both the dense and sparse decision layers, we eval-
uate how accurate annotators are on average (over 1000 
tasks)—based on whether they can correctly identify the 
image with the highest target class probability according to 
the corresponding model. For the model with a sparse deci-
sion layer, annotators succeed in guessing the predictions in 
63.02 ± 3.02% of the cases. In contrast, they are only able 
to attain 35.61 ± 3.09% accuracy—which is near-chance 
(33.33%)—for the model with a dense decision layer. Cru-
cially, these results hold regardless of whether the correct 
image is actually from the target class or not (see Appendix 
Table 25 for a discussion). 

Note that our task setup precludes annotators from succeed-
ing based on any prior knowledge or cognitive biases as we 
do not provide them with any semantic information about 
the target label, aside from the feature visualizations. Thus, 
annotators’ success on this task in the sparse setting indi-
cates that the sparse decision layer is actually effective at 
reflecting the model’s internal reasoning process. 

4. Debugging deep networks 
We now demonstrate how deep networks with sparse deci-
sion layers can be substantially easier to debug than their 
dense counterparts. We focus on three problems: detect-
ing biases, creating counterfactuals, and identifying input 
patterns responsible for misclassifications. 

4.1. Biases and (spurious) correlations 

Our first debugging task is to automatically identify un-
intended biases or correlations that deep networks extract 
from their training data. 

Toxic comments. We start by examining two BERT mod-
els trained to classify comments according to toxicity: 
(1) Toxic-BERT, a high-performing model that was later 
found to use identity groups as evidence for toxicity, and 
(2) Debiased-BERT, which was trained to mitigate this 
bias (Hanu & Unitary team, 2020). 
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We find that Toxic-BERT models with sparse decision lay-
ers also rely on identity groups to predict comment toxicity 
(visualizations in Appendix E.1 are censored). Words re-
lated to nationalities, religions, and sexual identities that are 
not inherently toxic occur frequently and prominently, and 
comprise 27% of the word clouds shown for features that 
detect toxicity. Note that although the standard Toxic-BERT 
model is known to be biased, this bias is not as apparent 
in the deep features used by its (dense) decision layer (cf. 
Appendix E.1). In fact, measuring the bias in the standard 
model required collecting identity and demographic-based 
subgroup labels (Borkan et al., 2019). 

We can similarly inspect the word clouds for the Debiased-
BERT model with sparse decision layers and corroborate 
that identity-related words no longer appear as evidence for 
toxicity. But rather than ignoring these words completely, 
it turns out that this model uses them as strong evidence 
against toxicity. For example, identity words comprise 
43% of the word clouds of features detecting non-toxicity. 
This suggests that the debiasing intervention proposed in 
Borkan et al. (2019) may not have had the intended effect— 
Debiased-BERT is still disproportionately sensitive to iden-
tity groups, albeit in the opposite way. 

We confirm that this is an issue with Debiased-BERT via a 
simple experiment: we take toxic sentences that this model 
(with a sparse decision layer) correctly labels as toxic, and 
simply append an identity related word (as suggested by our 
word clouds) to the end—see Table 5. This modification 
turns out to strongly impact model predictions: for example, 
just adding “christianity” to the end of toxic sentences flips 
the prediction to non-toxic 74.4% of the time. We note that 
the biases diagnosed via sparse decision layers are also rele-
vant for the standard Debiased-BERT model. In particular, 
the same toxic sentences with the word “christianity” are 
classified as non-toxic 62.2% of the time by the standard 
model, even though this sensitivity is not as readily apparent 
from inspecting its decision layer (cf. Appendix E.1). 

ImageNet. We now move to the vision setting, with the 
goal of detecting spurious feature dependencies in ImageNet 
classifiers. Once again, our approach is based on the follow-
ing observation: input-class correlations learned by a model 
can be described as the data patterns (e.g., "dog ears" or 
"snow") that activate deep features used to recognize objects 
of that class, according to the decision layer. 

Even so, it is not clear how to identify such patterns for 
image data, without access to fine-grained annotations de-
scribing image content. To this end, we rely on a human-
in-the-loop approach (via MTurk). Specifically, for a deep 
feature of interest—used by the sparse decision layer to 
detect a target class—annotators are shown examples of 
images that activate it. Annotators are then asked if these 

“prototypical” images have a shared visual pattern, and if so, 
to describe it using free-text. 

However, under this setup, presenting annotators with im-
ages from the target class alone can be problematic. After 
all, these images are likely to have multiple visual patterns in 
common—not all of which cause the deep feature to activate. 
Thus, to disentangle the pertinent data pattern, we present 
annotators with prototypical images drawn from more than 
one classes. A sample task is presented in Appendix Fig-
ure 28, wherein annotators see three highly-activating im-
ages for a specific deep feature from two different classes, 
along with the respective class labels. Aside from asking an-
notators to validate (and describe) the presence of a shared 
pattern between these images, we also ask them whether the 
pattern (if present) is part of each class object (non-spurious 
correlation) or its surroundings (spurious correlation)5. 

Table 6: The percentage of class-level correlations identified 
using our MTurk setup, along with a breakdown of whether 
annotators believe the pattern to be “non-spurious” (i.e., part 
of the object) or “spurious” (i.e., part of the surroundings). 

Detected patterns (%) Dense Sparse 

Non-spurious 18.43 ± 2.48 34.43 ± 3.38 
Spurious 9.56 ± 1.76 12.49 ± 2.02 

Total 27.85 ± 2.70 46.97 ± 3.15 

Pattern descriptions 
(via MTurk)

“bullet train”

spurious

“greenhouse”

non-spurious

“suit”

non-spurious

“groom”

spurious

Class pairs

Figure 7: Examples of correlations in ImageNet models de-
tected using our MTurk study. Each row contains protypical 
images from a pair of classes, along with the annotator-
provided descriptions for the shared deep feature that these 
images strongly activate. For each class, we also display if 
annotators marked the feature to be a “spurious correlation”. 

We find that annotators are able to identify a significant num-
ber of correlations that standard ImageNet classifiers rely 
on (cf. Table 6). Once again, sparsity seems to aids the de-
tection of such correlations. Aside from having fewer (deep) 

5We focus on this specific notion of “spurious correlations” as 
it is easy for humans to verify—cf. Appendix E.2 for details. 
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Original sentence Counterfactual Change in score 

...something likable ...something irritating 0.73 → 0.34 
about the marquis... about the marquis... 

Slick piece of cross- Hype piece of cross- 0.73 → 0.34 
promotion promotion 

A marvel like none A failure like none 0.73 → 0.31 
you’ve seen you’ve seen 

(a) (b) 

Figure 8: (a): Word cloud visualization for tokens that are positively/negatively correlated with the activation of a particular 
deep feature. (b): Using the wordclouds from (a), we can make word substitutions (as highlighted in green and red) to 
generate counterfactuals that change the model’s predicted sentiment (scores below 0.5 are predicted as negative). 

feature dependencies per class, it turns out that annotators 
are able to pinpoint the (shared) data patterns that trigger 
the relevant deep features in 20% more cases for the model 
with a sparse decision layer. Interestingly, the fraction of 
detected patterns that annotators deem spurious is lower 
for the sparse case. In Figure 7, we present examples of 
detected correlations with annotator-provided descriptions 
as word clouds (cf. Appendix E.2 for additional examples). 
A global word cloud visualization of correlations identified 
by annotators is shown in Appendix Figure 30. 

4.2. Counterfactuals 

A natural way to probe model behavior is by trying to find 
small input modifications which cause the model to change 
its prediction. Such modified inputs, which are (a special 
case of) counterfactuals, can be a useful primitive for pin-
pointing input features that the model relies on. Aside from 
debugging, such counterfactuals can also be used to provide 
users with recourse (Ustun et al., 2019) that can guide them 
to obtaining better outcomes in the future. We now leverage 
the deep features used by sparse decision layers to inform 
counterfactual generation. 

Sentiment classifiers. Our goal here is to automatically 
identify word substitutions that can be made within a sen-
tence to flip the sentiment label assigned by the model. We 
do this as follows: given a sentence with a positive sentiment 
prediction, we first identify the set of deep features used by 
the sparse decision layer that are positively activated for any 
word in the sentence. For a randomly chosen deep feature 
from this pool, we then substitute the positive word from the 
sentence with its negative counterpart. This substitute is in 
turn randomly chosen from the set of words that negatively 
activate the same deep feature (based on its word cloud). An 
example of the positive and negative word clouds for one 
such deep feature is shown in Figure 8a, and the resulting 
counterfactuals are in Table 8b (cf. Appendix F for details). 

Counterfactuals generated in this manner successfully flip 
the sentiment label assigned by the sparse decision layer 
73.1 ± 3.0% of the time. In contrast, such counterfactuals 
only have 52.2 ± 4% efficacy for the dense decision layer. 
This highlights that for models with sparse decision layers, 
it can be easier to automatically identify deep features that 
are causally-linked to model predictions. 

ImageNet. We now leverage the annotations collected in 
Section 4.1 to generate counterfactuals for ImageNet clas-
sifiers. Concretely, we manually modify images to add or 
subtract input patterns identified by annotators and verify 
that they successfully flip the model’s prediction. Some 
representative examples are shown in Figure 9. Here, we 
alter images from various classes to have the pattern “chain-
link fence” and “water”, so as to fool the sparse decision 
layer into recognizing them as “ballplayers” and “snorkels” 
respectively. We find that we are able to consistently change 
the prediction of the sparse decision layer (and in some 
cases its dense counterpart) by adding a pattern that was 
previously identified to be a spurious correlation. 

4.3. Misclassifications 

Our final avenue for diagnosing unintended behaviors in 
models is through their misclassifications. Concretely, given 
an image for which the model makes an incorrect prediction 
(i.e., not the ground truth label as per the dataset), our goal 
is to pinpoint some aspects of the image that led to this error. 

In the ImageNet setting, it turns out that over 30% of mis-
classifications made by the sparse decision layer can be 
attributed to a single deep feature—i.e., manually setting 
this “problematic” feature to zero fixes the erroneous pre-
diction. For these cases, can humans understand why the 
problematic feature was triggered in the first place? Namely, 
can they recognize the input pattern that caused the error? 

To test this, we present annotators on MTurk with misclassi-
fied images. Without divulging the ground truth or predicted 



Leveraging Sparse Linear Layers for Debuggable Deep Networks 
Sa

m
pl

es
Co

un
te

rf
ac

tu
al

s

+ “chainlink fence" + “water”

Figure 9: ImageNet counterfactuals. We manually modify 
samples (top row) to contain the patterns “chainlink fence” 
and “water”, which annotators deem (cf. Section 4.1) to 
be spuriously correlated with the classes “ballplayer” and 
“snorkel” respectively. We find that these counterfactuals 
(bottom row) succeed in flipping the prediction of the model 
with a sparse decision layer to the desired class. 

Table 10: Fraction of misclassified images for which an-
notators select the top feature of the predicted class to: (i) 
match the given image and (ii) be a better match than the 
top feature for the ground truth class. As a baseline, we also 
evaluate annotator selections when the top feature for the 
predicted class is replaced by a randomly-chosen one. 

Features Matches image Best match 

Prediction 70.70% ± 3.62% 60.12% ± 3.77% 
Random 16.63% ± 2.91% 10.58% ± 2.35% 

“trilobyte” predicted  
as “dough”

Top activating features
ImageNet class Predicted class

“whistle” predicted  
as “maraca”

Misclassified  
images

“trilobyte” feature “dough” feature

“whistle” feature “maraca” feature

Figure 11: Examples of misclassified ImageNet images 
for which annotators deem the top activated feature for the 
predicted class (rightmost) as a better match than the top 
activated feature for the ground truth class (middle). 

labels, we show annotators the top activated feature for each 
of the two classes via feature visualizations. We then ask 

annotators to select the patterns (i.e., feature visualizations) 
that match the image, and to choose one that is a better 
match for the image (cf. Appendix G.1 for details). As a 
control, we repeat the same task but replace the problematic 
feature with a randomly-chosen one. 

For about 70% of the misclassified images, annotators select 
the top feature for the predicted class as being present in 
the image (cf. Table 10). In fact, annotators consider it a 
better match than the feature for the ground truth class 60% 
of the time. In contrast, they rarely select randomly-chosen 
features to be present in the image. Since annotators do not 
know what the underlying classes are, the high fraction of se-
lections for the problematic feature indicates that annotators 
actually believe this pattern is present in the image. 

We present sample misclassifications validated by annota-
tors in Figure 11, along with the problematic features that 
led to them. Having access to this information can guide 
improvements in both models and datasets. For instance, 
model designers might consider augmenting the training 
data with examples of “maracas” without “red tips” to cor-
rect the second error in Figure 11. In Appendix G.3, we 
further discuss how sparse decision layers can provide in-
sight into inter-class model confusion matrices. 

5. Related Work 
We now discuss prior work in interpretability and general-
ized linear models. Due to the large body of work in both 
fields, we limit the discussion to closely-related studies. 

Interpretability tools. There have been extensive efforts 
towards post-hoc interpretability tools for deep networks. 
Feature attribution methods provide insight into model pre-
dictions for a specific input instance. These include saliency 
maps (Simonyan et al., 2013; Smilkov et al., 2017; Sun-
dararajan et al., 2017), surrogate models to interpret local 
decision boundaries (Ribeiro et al., 2016a), and finding influ-
ential (Koh & Liang, 2017), prototypical (Kim et al., 2016), 
or counterfactual inputs (Goyal et al., 2019b). However, as 
noted by various recent studies, these local attributions can 
be easy to fool (Ghorbani et al., 2019a; Slack et al., 2020) or 
may otherwise fail to capture global aspects of model behav-
ior (Sundararajan et al., 2017; Adebayo et al., 2018; 2020; 
Leavitt & Morcos, 2020). Several methods have been pro-
posed to interpret hidden units within vision networks, for 
example by generating feature visualizations (Erhan et al., 
2009; Yosinski et al., 2015; Nguyen et al., 2016; Olah et al., 
2017) or assigning semantic concepts to them (Bau et al., 
2017; 2020). Our work is complementary to these methods 
as we use them as primitives to probe sparse decision lay-
ers. Another related line of work is that on concept-based 
explanations, which seeks to explain the behavior of deep 
networks in terms of high-level concepts (Kim et al., 2018; 
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Ghorbani et al., 2019b; Yeh et al., 2020). One of the draw-
backs of these methods is that the detected concepts need 
not be causally linked to the model’s predictions (Goyal 
et al., 2019a). In contrast, in our approach, the identified 
high-level concepts, i.e., the deep features used by the sparse 
decision layer, entirely determine the model’s behavior. 

Most similar is the recent work by (Wan et al., 2020), which 
proposes fitting a decision tree on a deep feature represen-
tation. Network decisions are then explained in terms of 
semantic descriptions for nodes along the decision path. 
Wan et al. (2020) rely on heuristics for fitting and labeling 
the decision tree, that require an existing domain-specific 
hierarchy (e.g., WordNet), causing it to be more involved 
and limited in its applicability than our approach. 

Regularized GLMs and gradient methods. Estimating 
GLMs with convex penalties has been studied extensively. 
Algorithms for efficiently computing regularization paths in-
clude least angle regression for LASSO (Efron et al., 2004) 
and path following algorithms (Park & Hastie, 2007) for ` 1 

regularized GLMs. The widely-used R package glmnet 
by Friedman et al. (2010) provides an efficient coordinate 
descent-based solver for GLMs with elastic net regulariza-
tion, and attains state-of-the-art solving times on CPU-based 
hardware. Unlike our approach, this library is best suited for 
problems with few examples or features, and is not directly 
amenable to GPU acceleration. Our solver also builds off 
a long line of work in variance reduced proximal gradient 
methods (Johnson & Zhang, 2013; Defazio et al., 2014; 
Gazagnadou et al., 2019), which have stronger theoretical 
convergence rates compared to stochastic gradient descent. 

6. Conclusion 
We demonstrate how fitting sparse linear models over deep 
representations can result in more debuggable models, and 
provide a diverse set of scenarios showcasing the usage of 
this technique in practice. The simplicity of our approach 
allows it to be broadly applicable to any deep network with 
a final linear layer, and may find uses beyond the language 
and vision settings considered in this paper. 

Furthermore, we have created a number of human experi-
ments for tasks such as testing model simulatiblity, detecting 
spurious correlations and validating misclassifications. Al-
though primarily used in the context of evaluating the sparse 
decision layer, the design of these experiments may be of 
independent interest. 

Finally, we recognize that while deep networks are popular 
within machine learning and artifical intelligence settings, 
linear models continue to be widely used in other scien-
tific fields. We hope that the development and release of 
our elastic net solver will find broader use in the scientific 

community for fitting large scale sparse linear models in 
contexts beyond deep learning. 
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