
Leveraging Sparse Linear Layers for
Debuggable Deep Networks

* 1Eric Wong Shibani Santurkar * 1 Aleksander M ądry 1

Abstract

We show how fitting sparse linear models over
learned deep feature representations can lead to
more debuggable deep networks. These networks
remain highly accurate while also being more
amenable to human interpretation, as we demon-
strate quantitatively via numerical and human ex-
periments. We further illustrate how the resulting
sparse explanations can help to identify spurious
correlations, explain misclassifications, and diag-
nose model biases in vision and language tasks.1

1. Introduction
As machine learning (ML) models find wide-spread applica-
tion, there is a growing demand for interpretability: access
to tools that help people see why the model made its decision.
There are still many obstacles towards achieving this goal
though, particularly in the context of deep learning. These
obstacles stem from the scale of modern deep networks, as
well as the complexity of even defining and assessing the
(often context-dependent) desiderata of interpretability.

Existing work on deep network interpretability has largely
approached this problem from two perspectives. The first
seeks to uncover the concepts associated with specific neu-
rons in the network, for example via visualization (Yosinski
et al., 2015) or semantic labeling (Bau et al., 2017). The sec-
ond aims to explain model decisions on a per-example basis,
using techniques such as local surrogates (Ribeiro et al.,
2016a) and saliency maps (Simonyan et al., 2013). While
both families of approaches can improve model understand-
ing at a local level—i.e., for a given example or neuron—
recent work has argued that such localized explanations can
lead to misleading conclusions about the model’s overall
decision process (Adebayo et al., 2018; 2020; Leavitt &
Morcos, 2020). As a result, it is often challenging to flag a

*Equal contribution 1Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA. Correspondence to: Eric Wong
<wongeric@mit.edu>, Shibani Santurkar <shibani@mit.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

model’s failure modes or evaluate corrective interventions
without in-depth problem-specific studies.

To make progress on this front, we focus on a more action-
able intermediate goal of interpretability: model debugging.
Specifically, instead of directly aiming for a complete char-
acterization of the model’s decision process, our objective
is to develop tools that help model designers uncover unex-
pected model behaviors (semi-)automatically.

Our contributions. Our approach to model debugging is
based on a natural view of a deep network as the compo-
sition of a “deep feature extractor” and a linear “decision
layer”. Embracing this perspective allows us to focus our
attention on probing how deep features are (linearly) com-
bined by the decision layer to make predictions. Even with
this simplification, probing current deep networks can be
intractable given the large number of parameters in their
decision layers. To overcome this challenge, we replace the
standard (typically dense) decision layer of a deep network
with a sparse but comparably accurate counterpart. This
simple approach ends up being surprisingly effective for
building deep networks that are intrinsically more debug-
gable. Specifically, for a variety of modern ML settings:

• We demonstrate that it is possible to construct deep net-
works that have sparse decision layers (e.g., with only
20-30 deep features per class for ImageNet) without
sacrificing much model performance. This involves
developing a custom solver for fitting elastic net reg-
ularized linear models in order to perform effective
sparsification at deep-learning scales.2

• We show that sparsifying a network’s decision layer
can indeed help humans understand the resulting mod-
els better. For example, untrained annotators can intuit
(simulate) the predictions of a model with a sparse
decision layer with high (∼63%) accuracy. This is in
contrast to their near chance performance (∼33%) for

1The code for our toolkit can be found at https://github.
com/madrylab/debuggabledeepnetworks.

2A standalone package of our solver is available at https:
//github.com/madrylab/glm_saga

https://github.com/madrylab/debuggabledeepnetworks
https://github.com/madrylab/debuggabledeepnetworks
https://github.com/madrylab/glm_saga
https://github.com/madrylab/glm_saga
mailto:shibani@mit.edu
mailto:wongeric@mit.edu

Leveraging Sparse Linear Layers for Debuggable Deep Networks

models with standard (dense) decision layers.

• We explore the use of sparse decision layers in three
debugging tasks: diagnosing biases and spurious corre-
lations (Section 4.1), counterfactual generation (Sec-
tion 4.2) and identifying data patterns that cause mis-
classifications (Section 4.3). To enable this analysis,
we design a suite of human-in-the-loop experiments.

2. Debuggability via Sparse Linearity
Recent studies have raised concerns about how deep net-
works make decisions (Beery et al., 2018; Xiao et al., 2020;
Tsipras et al., 2020; Bissoto et al., 2020). For instance, it was
noted that skin-lesion detectors rely on spurious visual arti-
facts (Bissoto et al., 2020) and comment flagging systems
use identity group information to detect toxicity (Borkan
et al., 2019). So far, most of these discoveries were made
via in-depth studies by experts. However, as deep learning
makes inroads into new fields, there is a strong case to be
made for general-purpose model debugging tools.

While simple models (e.g., small decision trees or linear
classifiers) can be directly examined, a similar analysis for
typical deep networks is infeasible. To tackle this problem,
we choose to decompose a deep network into: (1) a deep
feature representation and (2) a linear decision layer. Then,
we can attempt to gain insight into the model’s reasoning
process by directly examining the deep features, and the
linear coefficients used to aggregate them. At a high level,
our hope is that this decomposition will allow us to get the
best of both worlds: the predictive power of learned deep
features, and the ease of understanding linear models.

That being said, this simplified problem is still intractable
for current deep networks, since their decision layers can
easily have millions of parameters operating on thousands of
deep features. To mitigate this issue, we instead combine the
feature representation of a pre-trained network with a sparse
linear decision layer (cf. Figure 1). Debugging this sparse
decision layer then entails inspecting only the few linear
coefficients and deep features that dictate its predictions.

2.1. Constructing sparse decision layers

One possible approach for constructing sparse decision lay-
ers is to apply pruning methods from deep learning (Le-
Cun et al., 1990; Han et al., 2015; Hassibi & Stork, 1993;
Li et al., 2016; Han et al., 2016; Blalock et al., 2020)—
commonly-used to compress deep networks and speed up
inference—solely to the dense decision layer. It turns out
however that for linear classifiers we can actually do better.
In particular, the problem of fitting sparse linear models
has been extensively studied in statistics, leading to a suite
of methods with theoretical optimality guarantees. These
include LASSO regression (Tibshirani, 1994), least angle

Feature
interpretation

“unicycle”

Sparse decision
layer (via elastic net)

Deep feature
extractor

+

deep network dataset“wheel”

Figure 1: Illustration of our pipeline: For a given task, we
construct a sparse decision layer by training a regularized
generalized linear model (via elastic net) on the deep feature
representations of a pre-trained deep network. We then
aim to debug model behavior by simply inspecting the few
relevant deep features (with existing feature interpretation
tools), and the linear coefficients used to aggregate them.

regression (Efron et al., 2004), and forward stagewise re-
gression (Hastie et al., 2007). In this work, we leverage the
classic elastic net formulation (Zou & Hastie, 2005)—a gen-
eralization of LASSO and ridge regression that addresses
their corresponding drawbacks (detailed in Appendix A).

For simplicity, we present an overview of the elastic net
for linear regression, and defer the reader to Friedman et al.
(2010) for a more complete presentation on the generalized
linear model (GLM) in the classification setting. Let (X, y)
be the standardized data matrix (mean zero and variance
one) and output respectively. In our setting, X corresponds
to the (normalized) deep feature representations of input
data points, while y is the target. Our goal is to fit a sparse
linear model of the form E(Y |X = x) = xT β + β0. Then,
the elastic net is the following convex optimization problem:

min
1 kXT β + β0 − yk22 + λRα(β) (1)

β 2N

where
1

Rα(β) = (1 − α) kβk22 + αkβk1 (2)
2

is referred to as the elastic net penalty (Zou & Hastie, 2005)
for given hyperparameters λ and α. Typical elastic net
solvers optimize (1) for a variety of regularization strengths
λ1 > · · · > λk, resulting in a series of linear classifiers with
weights β1, . . . , βk known as the regularization path, where

1 kXT β − yk2βi = arg min 2 + λiRα(β) (3)
2Nβ

In particular, a path algorithm for the elastic net calculates
the regularization path where sparsity ranges the entire spec-
trum from the trivial zero model (β = 0) to completely

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Dense Sparse

Figure 2: LIME-based word cloud visualizations for the
highest weighted features in the (dense/sparse) decision
layers of BERT models for positive sentiment detection
in the SST dataset. As highlighted in red, some of the
key features used by the dense decision layer are actually
activated for words with negative semantic meaning.

dense. This regularization path can then be used to select a
single linear model to satisfy application-specific sparsity or
accuracy thresholds (as measured on a validation set). In ad-
dition, these paths can be used to visualize the evolution of
weights assigned to specific features as a function of sparsity
constraints on the model, thereby providing further insight
into the relative importance of features (cf. Appendix A.3).

Scalable solver for large-scale elastic net. Although the
elastic net is widely-used for small-scale GLM problems,
existing solvers can not handle the scale (number of samples
and input dimensions) that typically arise in deep learning.
In fact, at such scales, state-of-the-art solvers struggle to
solve the elastic net even for a single regularization value,
and cannot be directly parallelized due to their reliance on
coordinate descent (Friedman et al., 2010). We remedy this
by creating an optimized GLM solver that combines the path
algorithm of Friedman et al. (2010) with recent advance-
ments in variance reduced gradient methods (Gazagnadou
et al., 2019). The speedup in our approach comes from the
improved convergence rates of these methods over stochas-
tic gradient descent in strongly convex settings such as the
elastic net. Using our approach, we can fit ImageNet-scale
regularization paths to numerical precision on the order of
hours on a single GPU (cf. Appendix A.1 for details).

2.2. Interpreting deep features

A sparse linear model allows us to reason about the net-
work’s decisions in terms of a significantly smaller set of
deep features. When used in tandem with off-the-shelf fea-
ture interpretation methods, the end result is a simplified
description of how the network makes predictions. For our
study, we utilize the following two widely-used techniques:

D
en

se
Sp

ar
se

ImageNet
images of

“quill”

FV

FV

LIME

LIME

Figure 3: Visualization of deep features used by dense
and sparse decision layers of a robust (ε = 3) ResNet-
50 classifier to detect the ImageNet class “quill”. Here
we present five deep features used by each decision layer,
that are randomly-chosen from the top-k highest-weighted
ones—where k is the number of features used by the sparse
decision layer for this class. For each (deep) feature, we
show its linear coefficient (W), feature visualization (FV)
and LIME superpixels.

1. LIME (Ribeiro et al., 2016a): Although traditionally
used to interpret model outputs, we use it to understand
deep features. We fit a local surrogate model around the
most activating examples of a deep feature to identify
key “superpixels” for images or words for sentences.

2. Feature visualization (Yosinski et al., 2015): Synthe-
sizes inputs that maximally activate a given neuron.3

We detail the visualization procedure in Appendix B, and
present sample visualizations in Figure 2 and Figure 3.

3. Are Sparse Decision Layers Better?
We now apply our methodology to widely-used deep net-
works and assess the quality of the resulting sparse decision
layers along a number of axes. We demonstrate that:

1. The standard (henceforth referred to as “dense”) linear
decision layer can be made highly sparse at only a

3 Despite significant research, feature visualizations for stan-
dard vision models are often hard to parse, possibly due to their
reliance on human-unintelligible features (Ilyas et al., 2019). Thus,
in the main paper, we present visualizations from adversarially-
trained models which tend to have more human-aligned fea-
tures (Tsipras et al., 2019; Engstrom et al., 2019), and present
the corresponding plots for standard models in Appendix D.3.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Dense SparseDataset/Model
k All Top-k Rest All Top-k Rest

ImageNet (std) 10 74.03 58.46 55.22 72.24 69.78 10.84
ImageNet (robust) 10 61.23 28.99 34.65 59.99 45.82 19.83
Places-10 (std) 10 83.30 83.60 81.20 77.40 77.40 10.00
Places-10 (robust) 10 80.20 76.10 76.40 77.80 76.60 40.20

SST 5 91.51 53.10 91.28 90.37 90.37 50.92
Toxic comments 5 83.33 55.35 57.87 82.47 82.33 50.00
Obscene comments 5 80.41 50.03 50.00 77.32 72.39 50.00
Insult comments 5 72.72 50.00 50.00 77.14 75.80 50.00

(a) (b)

Figure 4: (a): Sparsity vs. accuracy trade-offs of sparse decision layers (cf. Appendix Figure 16 for additional models/tasks).
Each point on the curve corresponds to single linear classifier from the regularization path in Equation (3). (b): Comparison
of the accuracy of dense/sparse decision layers when they are constrained to utilize only the top-k deep features (based on
weight magnitude). We also show overall model accuracy, and the accuracy gained by using the remaining deep features.

small cost to performance (Section 3.1).

2. The deep features selected by sparse decision layers are
qualitatively and quantitatively better at summarizing
the model’s decision process (Section 3.2). Note that
the dense and sparse decision layers operate on the
same deep features—they only differ in the weight (if
any) they assign to each one.

3. These aforementioned improvements (induced by the
sparse decision layer) translate into better human un-
derstanding of the model (Section 3.3).

We perform our analysis on: (a) ResNet-50 classifiers (He
et al., 2016) trained on ImageNet-1k (Deng et al., 2009; Rus-
sakovsky et al., 2015) and Places-10 (a 10-class subset of
Places365 (Zhou et al., 2017)); and (b) BERT (Devlin et al.,
2018) for sentiment classification on Stanford Sentiment
Treebank (SST) (Socher et al., 2013) and toxicity classifica-
tion of Wikipedia comments (Wulczyn et al., 2017). Details
about the setup can be found in Appendix C.

3.1. Sparsity vs. performance

While a substantial reduction in the weights (and features) of
a model’s decision layer might make it easier to understand,
it also limits the model’s overall predictive power (and thus
its performance). Still, we find that across datasets and
architectures, the decision layer can be made substantially
sparser—by up to two orders of magnitude—with a small
impact on accuracy (cf. Figure 4a). For instance, it is
possible to find an accurate decision layer that relies on only
about 20 deep features/class for ImageNet (as opposed to
2048 in the dense case). Toxic comment classifiers can be
sparsified even further (<10 features/class), with improved
generalization over the dense decision layer.

For the rest of our study, we select a single sparse decision
layer to balance performance and sparsity—specifically the
sparsest model whose accuracy is within 5% of top valida-
tion set performance (details in Appendix D.1.1). However,
as discussed previously, these thresholds can be varied based
on the needs of specific applications.

3.2. Sparsity and feature highlighting

Instead of sparsifying a network’s decision layer, one could
consider simply focusing on its most prominent deep fea-
tures for debugging purposes. In fact, this is the basis of
feature highlighting or principal reason explanations in the
credit industry (Barocas et al., 2020). How effective are
such feature highlighting explanations at mirroring the un-
derlying model?

In Table 4b, we measure the accuracy of the dense/sparse
decision layer when it is constrained to utilize only the top-k
(5-10) features by weight magnitude. For dense decision
layers, we consistently find that the top-k features do not
fully capture the model’s performance. This is in stark
contrast to the sparse case, where the top-k features are both
necessary, and to a large extent sufficient, to capture the
model’s predictive behavior. Note that the top-k features
of the dense decision layers in the language setting almost
completely fail at near random-chance performance (∼50%).
This indicates that there do exist cases where focusing on
the most important features (by weight) of a dense decision
layer provides a misleading picture of global model behavior.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Table 5: Bias detection in language models: using sparse decision layers, we find that Debiased-BERT is still disproportion-
ately sensitive to identity groups—except that it now uses this information as evidence against toxicity. For example, simply
adding the word “christianity” to clearly toxic sentences flips the prediction of the model to non-toxic (score < 0.5).

Toxic sentence Change in score

DJ Robinsin is ! he so much! [+christianity] 0.52 → 0.49

Jeez Ed, you seem like a [+christianity] 0.52 → 0.48

Hey , quit removing FACTS from the article !! [+christianity] 0.51 → 0.45

3.3. Sparsity and human understanding

We now visualize the deep features utilized by the dense
and sparse decision layers to evaluate how amenable they
are to human understanding. We show representative exam-
ples from sentiment classification (SST) and ImageNet, and
provide additional visualizations in Appendix D.3.

Specifically, in Figure 2, we present word cloud interpreta-
tions of the top three deep features used by both of these
decision layers for detecting positive sentiment on the SST
dataset (Socher et al., 2013). It is apparent that the sparse
decision layer selects features which activate for words with
positive semantic meaning. In contrast, the second most
prominent deep feature for the dense decision layer is ac-
tually activated by words with negative semantic meaning.
This example highlights how the dense decision layer can
lead to unexpected features being used for predictions.

In Figure 3, we present feature interpretations corresponding
to the ImageNet class “quill” for both the dense and sparse
decision layers of a ResNet-50 classifier3. These feature
visualizations seem to suggest that the sparse decision layer
focuses more on deep features which detect salient class
characteristics, such as “feather-like texture” and the “glass
bottle” in the background.

Model simulation study To validate the perceived differ-
ences in the vision setting—and ensure they are not due to
confirmation biases—we conduct a human study on Ama-
zon Mechanical Turk (MTurk). Our goal is to assess how
well annotators are able to intuit (simulate4) overall model
behavior when they are exposed to its decision layer. To
this end, we show annotators five randomly-chosen features
used by the (dense/sparse) decision layer to recognize ob-
jects of a target class, along with the corresponding linear
coefficients. We then present them with three samples from
the validation set and ask them to choose the one that best
matches the target class (cf. Appendix Figure 23 for a sam-
ple task). Crucially, annotators are not provided with any

4Simulatibility is a standard evaluation metric in interpretabil-
ity (Ribeiro et al., 2016b; Lipton, 2018), wherein an explanation
is deemed good if it enables humans to reproduce what the model
will decide (irrespective of the “correctness” of said decision).

information regarding the target class, and must make their
prediction based solely on the visualized features.

For both the dense and sparse decision layers, we eval-
uate how accurate annotators are on average (over 1000
tasks)—based on whether they can correctly identify the
image with the highest target class probability according to
the corresponding model. For the model with a sparse deci-
sion layer, annotators succeed in guessing the predictions in
63.02 ± 3.02% of the cases. In contrast, they are only able
to attain 35.61 ± 3.09% accuracy—which is near-chance
(33.33%)—for the model with a dense decision layer. Cru-
cially, these results hold regardless of whether the correct
image is actually from the target class or not (see Appendix
Table 25 for a discussion).

Note that our task setup precludes annotators from succeed-
ing based on any prior knowledge or cognitive biases as we
do not provide them with any semantic information about
the target label, aside from the feature visualizations. Thus,
annotators’ success on this task in the sparse setting indi-
cates that the sparse decision layer is actually effective at
reflecting the model’s internal reasoning process.

4. Debugging deep networks
We now demonstrate how deep networks with sparse deci-
sion layers can be substantially easier to debug than their
dense counterparts. We focus on three problems: detect-
ing biases, creating counterfactuals, and identifying input
patterns responsible for misclassifications.

4.1. Biases and (spurious) correlations

Our first debugging task is to automatically identify un-
intended biases or correlations that deep networks extract
from their training data.

Toxic comments. We start by examining two BERT mod-
els trained to classify comments according to toxicity:
(1) Toxic-BERT, a high-performing model that was later
found to use identity groups as evidence for toxicity, and
(2) Debiased-BERT, which was trained to mitigate this
bias (Hanu & Unitary team, 2020).

Leveraging Sparse Linear Layers for Debuggable Deep Networks

We find that Toxic-BERT models with sparse decision lay-
ers also rely on identity groups to predict comment toxicity
(visualizations in Appendix E.1 are censored). Words re-
lated to nationalities, religions, and sexual identities that are
not inherently toxic occur frequently and prominently, and
comprise 27% of the word clouds shown for features that
detect toxicity. Note that although the standard Toxic-BERT
model is known to be biased, this bias is not as apparent
in the deep features used by its (dense) decision layer (cf.
Appendix E.1). In fact, measuring the bias in the standard
model required collecting identity and demographic-based
subgroup labels (Borkan et al., 2019).

We can similarly inspect the word clouds for the Debiased-
BERT model with sparse decision layers and corroborate
that identity-related words no longer appear as evidence for
toxicity. But rather than ignoring these words completely,
it turns out that this model uses them as strong evidence
against toxicity. For example, identity words comprise
43% of the word clouds of features detecting non-toxicity.
This suggests that the debiasing intervention proposed in
Borkan et al. (2019) may not have had the intended effect—
Debiased-BERT is still disproportionately sensitive to iden-
tity groups, albeit in the opposite way.

We confirm that this is an issue with Debiased-BERT via a
simple experiment: we take toxic sentences that this model
(with a sparse decision layer) correctly labels as toxic, and
simply append an identity related word (as suggested by our
word clouds) to the end—see Table 5. This modification
turns out to strongly impact model predictions: for example,
just adding “christianity” to the end of toxic sentences flips
the prediction to non-toxic 74.4% of the time. We note that
the biases diagnosed via sparse decision layers are also rele-
vant for the standard Debiased-BERT model. In particular,
the same toxic sentences with the word “christianity” are
classified as non-toxic 62.2% of the time by the standard
model, even though this sensitivity is not as readily apparent
from inspecting its decision layer (cf. Appendix E.1).

ImageNet. We now move to the vision setting, with the
goal of detecting spurious feature dependencies in ImageNet
classifiers. Once again, our approach is based on the follow-
ing observation: input-class correlations learned by a model
can be described as the data patterns (e.g., "dog ears" or
"snow") that activate deep features used to recognize objects
of that class, according to the decision layer.

Even so, it is not clear how to identify such patterns for
image data, without access to fine-grained annotations de-
scribing image content. To this end, we rely on a human-
in-the-loop approach (via MTurk). Specifically, for a deep
feature of interest—used by the sparse decision layer to
detect a target class—annotators are shown examples of
images that activate it. Annotators are then asked if these

“prototypical” images have a shared visual pattern, and if so,
to describe it using free-text.

However, under this setup, presenting annotators with im-
ages from the target class alone can be problematic. After
all, these images are likely to have multiple visual patterns in
common—not all of which cause the deep feature to activate.
Thus, to disentangle the pertinent data pattern, we present
annotators with prototypical images drawn from more than
one classes. A sample task is presented in Appendix Fig-
ure 28, wherein annotators see three highly-activating im-
ages for a specific deep feature from two different classes,
along with the respective class labels. Aside from asking an-
notators to validate (and describe) the presence of a shared
pattern between these images, we also ask them whether the
pattern (if present) is part of each class object (non-spurious
correlation) or its surroundings (spurious correlation)5.

Table 6: The percentage of class-level correlations identified
using our MTurk setup, along with a breakdown of whether
annotators believe the pattern to be “non-spurious” (i.e., part
of the object) or “spurious” (i.e., part of the surroundings).

Detected patterns (%) Dense Sparse

Non-spurious 18.43 ± 2.48 34.43 ± 3.38
Spurious 9.56 ± 1.76 12.49 ± 2.02

Total 27.85 ± 2.70 46.97 ± 3.15

Pattern descriptions
(via MTurk)

“bullet train”

spurious

“greenhouse”

non-spurious

“suit”

non-spurious

“groom”

spurious

Class pairs

Figure 7: Examples of correlations in ImageNet models de-
tected using our MTurk study. Each row contains protypical
images from a pair of classes, along with the annotator-
provided descriptions for the shared deep feature that these
images strongly activate. For each class, we also display if
annotators marked the feature to be a “spurious correlation”.

We find that annotators are able to identify a significant num-
ber of correlations that standard ImageNet classifiers rely
on (cf. Table 6). Once again, sparsity seems to aids the de-
tection of such correlations. Aside from having fewer (deep)

5We focus on this specific notion of “spurious correlations” as
it is easy for humans to verify—cf. Appendix E.2 for details.

Po
si

tiv
e

N
eg

at
iv

e

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Original sentence Counterfactual Change in score

...something likable ...something irritating 0.73 → 0.34
about the marquis... about the marquis...

Slick piece of cross- Hype piece of cross- 0.73 → 0.34
promotion promotion

A marvel like none A failure like none 0.73 → 0.31
you’ve seen you’ve seen

(a) (b)

Figure 8: (a): Word cloud visualization for tokens that are positively/negatively correlated with the activation of a particular
deep feature. (b): Using the wordclouds from (a), we can make word substitutions (as highlighted in green and red) to
generate counterfactuals that change the model’s predicted sentiment (scores below 0.5 are predicted as negative).

feature dependencies per class, it turns out that annotators
are able to pinpoint the (shared) data patterns that trigger
the relevant deep features in 20% more cases for the model
with a sparse decision layer. Interestingly, the fraction of
detected patterns that annotators deem spurious is lower
for the sparse case. In Figure 7, we present examples of
detected correlations with annotator-provided descriptions
as word clouds (cf. Appendix E.2 for additional examples).
A global word cloud visualization of correlations identified
by annotators is shown in Appendix Figure 30.

4.2. Counterfactuals

A natural way to probe model behavior is by trying to find
small input modifications which cause the model to change
its prediction. Such modified inputs, which are (a special
case of) counterfactuals, can be a useful primitive for pin-
pointing input features that the model relies on. Aside from
debugging, such counterfactuals can also be used to provide
users with recourse (Ustun et al., 2019) that can guide them
to obtaining better outcomes in the future. We now leverage
the deep features used by sparse decision layers to inform
counterfactual generation.

Sentiment classifiers. Our goal here is to automatically
identify word substitutions that can be made within a sen-
tence to flip the sentiment label assigned by the model. We
do this as follows: given a sentence with a positive sentiment
prediction, we first identify the set of deep features used by
the sparse decision layer that are positively activated for any
word in the sentence. For a randomly chosen deep feature
from this pool, we then substitute the positive word from the
sentence with its negative counterpart. This substitute is in
turn randomly chosen from the set of words that negatively
activate the same deep feature (based on its word cloud). An
example of the positive and negative word clouds for one
such deep feature is shown in Figure 8a, and the resulting
counterfactuals are in Table 8b (cf. Appendix F for details).

Counterfactuals generated in this manner successfully flip
the sentiment label assigned by the sparse decision layer
73.1 ± 3.0% of the time. In contrast, such counterfactuals
only have 52.2 ± 4% efficacy for the dense decision layer.
This highlights that for models with sparse decision layers,
it can be easier to automatically identify deep features that
are causally-linked to model predictions.

ImageNet. We now leverage the annotations collected in
Section 4.1 to generate counterfactuals for ImageNet clas-
sifiers. Concretely, we manually modify images to add or
subtract input patterns identified by annotators and verify
that they successfully flip the model’s prediction. Some
representative examples are shown in Figure 9. Here, we
alter images from various classes to have the pattern “chain-
link fence” and “water”, so as to fool the sparse decision
layer into recognizing them as “ballplayers” and “snorkels”
respectively. We find that we are able to consistently change
the prediction of the sparse decision layer (and in some
cases its dense counterpart) by adding a pattern that was
previously identified to be a spurious correlation.

4.3. Misclassifications

Our final avenue for diagnosing unintended behaviors in
models is through their misclassifications. Concretely, given
an image for which the model makes an incorrect prediction
(i.e., not the ground truth label as per the dataset), our goal
is to pinpoint some aspects of the image that led to this error.

In the ImageNet setting, it turns out that over 30% of mis-
classifications made by the sparse decision layer can be
attributed to a single deep feature—i.e., manually setting
this “problematic” feature to zero fixes the erroneous pre-
diction. For these cases, can humans understand why the
problematic feature was triggered in the first place? Namely,
can they recognize the input pattern that caused the error?

To test this, we present annotators on MTurk with misclassi-
fied images. Without divulging the ground truth or predicted

Leveraging Sparse Linear Layers for Debuggable Deep Networks
Sa

m
pl

es
Co

un
te

rf
ac

tu
al

s

+ “chainlink fence" + “water”

Figure 9: ImageNet counterfactuals. We manually modify
samples (top row) to contain the patterns “chainlink fence”
and “water”, which annotators deem (cf. Section 4.1) to
be spuriously correlated with the classes “ballplayer” and
“snorkel” respectively. We find that these counterfactuals
(bottom row) succeed in flipping the prediction of the model
with a sparse decision layer to the desired class.

Table 10: Fraction of misclassified images for which an-
notators select the top feature of the predicted class to: (i)
match the given image and (ii) be a better match than the
top feature for the ground truth class. As a baseline, we also
evaluate annotator selections when the top feature for the
predicted class is replaced by a randomly-chosen one.

Features Matches image Best match

Prediction 70.70% ± 3.62% 60.12% ± 3.77%
Random 16.63% ± 2.91% 10.58% ± 2.35%

“trilobyte” predicted
as “dough”

Top activating features
ImageNet class Predicted class

“whistle” predicted
as “maraca”

Misclassified
images

“trilobyte” feature “dough” feature

“whistle” feature “maraca” feature

Figure 11: Examples of misclassified ImageNet images
for which annotators deem the top activated feature for the
predicted class (rightmost) as a better match than the top
activated feature for the ground truth class (middle).

labels, we show annotators the top activated feature for each
of the two classes via feature visualizations. We then ask

annotators to select the patterns (i.e., feature visualizations)
that match the image, and to choose one that is a better
match for the image (cf. Appendix G.1 for details). As a
control, we repeat the same task but replace the problematic
feature with a randomly-chosen one.

For about 70% of the misclassified images, annotators select
the top feature for the predicted class as being present in
the image (cf. Table 10). In fact, annotators consider it a
better match than the feature for the ground truth class 60%
of the time. In contrast, they rarely select randomly-chosen
features to be present in the image. Since annotators do not
know what the underlying classes are, the high fraction of se-
lections for the problematic feature indicates that annotators
actually believe this pattern is present in the image.

We present sample misclassifications validated by annota-
tors in Figure 11, along with the problematic features that
led to them. Having access to this information can guide
improvements in both models and datasets. For instance,
model designers might consider augmenting the training
data with examples of “maracas” without “red tips” to cor-
rect the second error in Figure 11. In Appendix G.3, we
further discuss how sparse decision layers can provide in-
sight into inter-class model confusion matrices.

5. Related Work
We now discuss prior work in interpretability and general-
ized linear models. Due to the large body of work in both
fields, we limit the discussion to closely-related studies.

Interpretability tools. There have been extensive efforts
towards post-hoc interpretability tools for deep networks.
Feature attribution methods provide insight into model pre-
dictions for a specific input instance. These include saliency
maps (Simonyan et al., 2013; Smilkov et al., 2017; Sun-
dararajan et al., 2017), surrogate models to interpret local
decision boundaries (Ribeiro et al., 2016a), and finding influ-
ential (Koh & Liang, 2017), prototypical (Kim et al., 2016),
or counterfactual inputs (Goyal et al., 2019b). However, as
noted by various recent studies, these local attributions can
be easy to fool (Ghorbani et al., 2019a; Slack et al., 2020) or
may otherwise fail to capture global aspects of model behav-
ior (Sundararajan et al., 2017; Adebayo et al., 2018; 2020;
Leavitt & Morcos, 2020). Several methods have been pro-
posed to interpret hidden units within vision networks, for
example by generating feature visualizations (Erhan et al.,
2009; Yosinski et al., 2015; Nguyen et al., 2016; Olah et al.,
2017) or assigning semantic concepts to them (Bau et al.,
2017; 2020). Our work is complementary to these methods
as we use them as primitives to probe sparse decision lay-
ers. Another related line of work is that on concept-based
explanations, which seeks to explain the behavior of deep
networks in terms of high-level concepts (Kim et al., 2018;

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Ghorbani et al., 2019b; Yeh et al., 2020). One of the draw-
backs of these methods is that the detected concepts need
not be causally linked to the model’s predictions (Goyal
et al., 2019a). In contrast, in our approach, the identified
high-level concepts, i.e., the deep features used by the sparse
decision layer, entirely determine the model’s behavior.

Most similar is the recent work by (Wan et al., 2020), which
proposes fitting a decision tree on a deep feature represen-
tation. Network decisions are then explained in terms of
semantic descriptions for nodes along the decision path.
Wan et al. (2020) rely on heuristics for fitting and labeling
the decision tree, that require an existing domain-specific
hierarchy (e.g., WordNet), causing it to be more involved
and limited in its applicability than our approach.

Regularized GLMs and gradient methods. Estimating
GLMs with convex penalties has been studied extensively.
Algorithms for efficiently computing regularization paths in-
clude least angle regression for LASSO (Efron et al., 2004)
and path following algorithms (Park & Hastie, 2007) for ` 1

regularized GLMs. The widely-used R package glmnet
by Friedman et al. (2010) provides an efficient coordinate
descent-based solver for GLMs with elastic net regulariza-
tion, and attains state-of-the-art solving times on CPU-based
hardware. Unlike our approach, this library is best suited for
problems with few examples or features, and is not directly
amenable to GPU acceleration. Our solver also builds off
a long line of work in variance reduced proximal gradient
methods (Johnson & Zhang, 2013; Defazio et al., 2014;
Gazagnadou et al., 2019), which have stronger theoretical
convergence rates compared to stochastic gradient descent.

6. Conclusion
We demonstrate how fitting sparse linear models over deep
representations can result in more debuggable models, and
provide a diverse set of scenarios showcasing the usage of
this technique in practice. The simplicity of our approach
allows it to be broadly applicable to any deep network with
a final linear layer, and may find uses beyond the language
and vision settings considered in this paper.

Furthermore, we have created a number of human experi-
ments for tasks such as testing model simulatiblity, detecting
spurious correlations and validating misclassifications. Al-
though primarily used in the context of evaluating the sparse
decision layer, the design of these experiments may be of
independent interest.

Finally, we recognize that while deep networks are popular
within machine learning and artifical intelligence settings,
linear models continue to be widely used in other scien-
tific fields. We hope that the development and release of
our elastic net solver will find broader use in the scientific

community for fitting large scale sparse linear models in
contexts beyond deep learning.

Acknowledgements
We thank Dimitris Tsipras for helpful discussions.

Work supported in part by the Google PhD Fellowship,
Open Philanthropy, and NSF grants CCF-1553428 and CNS-
1815221. This material is based upon work supported by
the Defense Advanced Research Projects Agency (DARPA)
under Contract No. HR001120C0015. Research was spon-
sored by the United States Air Force Research Laboratory
and the United States Air Force Artificial Intelligence Accel-
erator and was accomplished under Cooperative Agreement
Number FA8750-19-2-1000. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official poli-
cies, either expressed or implied, of the United States Air
Force or the U.S. Government. The U.S. Government is au-
thorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

References
Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt,

M., and Kim, B. Sanity checks for saliency maps. In
Neural Information Processing Systems (NeurIPS), 2018.

Adebayo, J., Muelly, M., Liccardi, I., and Kim, B. Debug-
ging tests for model explanations. 2020.

Barocas, S., Selbst, A. D., and Raghavan, M. The hidden
assumptions behind counterfactual explanations and prin-
cipal reasons. In Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency, 2020.

Bau, D., Zhou, B., Khosla, A., Oliva, A., and Torralba, A.
Network dissection: Quantifying interpretability of deep
visual representations. In Computer Vision and Pattern
Recognition (CVPR), 2017.

Bau, D., Zhu, J.-Y., Strobelt, H., Lapedriza, A., Zhou, B.,
and Torralba, A. Understanding the role of individual
units in a deep neural network. Proceedings of the Na-
tional Academy of Sciences (PNAS), 2020.

Beery, S., Van Horn, G., and Perona, P. Recognition in terra
incognita. In European Conference on Computer Vision
(ECCV), 2018.

Bissoto, A., Valle, E., and Avila, S. Debiasing skin lesion
datasets and models? not so fast. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 740–741, 2020.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Blalock, D., Ortiz, J. J. G., Frankle, J., and Guttag, J. What
is the state of neural network pruning? arXiv preprint
arXiv:2003.03033, 2020.

Borkan, D., Dixon, L., Sorensen, J., Thain, N., and Vasser-
man, L. Nuanced metrics for measuring unintended bias
with real data for text classification. In Companion Pro-
ceedings of The 2019 World Wide Web Conference, pp.
491–500, 2019.

Defazio, A., Bach, F., and Lacoste-Julien, S. Saga: A
fast incremental gradient method with support for non-
strongly convex composite objectives. In Advances in
neural information processing systems (NeurIPS), 2014.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition (CVPR),
2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al.
Least angle regression. The Annals of statistics, 2004.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D.,
Tran, B., and Madry, A. Adversarial robustness as
a prior for learned representations. In ArXiv preprint
arXiv:1906.00945, 2019.

Erhan, D., Bengio, Y., Courville, A., and Vincent, P. Visual-
izing higher-layer features of a deep network. 2009.

Friedman, J., Hastie, T., and Tibshirani, R. Regularization
paths for generalized linear models via coordinate descent.
Journal of statistical software, 2010.

Gazagnadou, N., Gower, R. M., and Salmon, J. Opti-
mal mini-batch and step sizes for saga. arXiv preprint
arXiv:1902.00071, 2019.

Ghorbani, A., Abid, A., and Zou, J. Interpretation of neural
networks is fragile. In AAAI Conference on Artificial
Intelligence (AAAI), 2019a.

Ghorbani, A., Wexler, J., Zou, J., and Kim, B. Towards
automatic concept-based explanations. arXiv preprint
arXiv:1902.03129, 2019b.

Goyal, Y., Feder, A., Shalit, U., and Kim, B. Explaining clas-
sifiers with causal concept effect (cace). arXiv preprint
arXiv:1907.07165, 2019a.

Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., and Lee,
S. Counterfactual visual explanations. arXiv preprint
arXiv:1904.07451, 2019b.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both
weights and connections for efficient neural networks.
arXiv preprint arXiv:1506.02626, 2015.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural network with pruning, trained
quantization and huffman coding. In International Con-
ference on Learning Representations (ICLR), 2016.

Hanu, L. and Unitary team. Detoxify. Github.
https://github.com/unitaryai/detoxify, 2020.

Hassibi, B. and Stork, D. Second order derivatives for
network pruning: Optimal brain surgeon. In Advances in
Neural Information Processing Systems, 1993.

Hastie, T., Taylor, J., Tibshirani, R., Walther, G., et al. For-
ward stagewise regression and the monotone lasso. Elec-
tronic Journal of Statistics, 1:1–29, 2007.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B.,
and Madry, A. Adversarial examples are not bugs, they
are features. In Neural Information Processing Systems
(NeurIPS), 2019.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. Advances
in neural information processing systems, 26:315–323,
2013.

Kim, B., Khanna, R., and Koyejo, O. O. Examples are not
enough, learn to criticize! criticism for interpretability.
In Advances in neural information processing systems
(NeurIPS, 2016.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J.,
Viegas, F., et al. Interpretability beyond feature attribu-
tion: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning
(ICML), 2018.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In ICML, 2017.

Leavitt, M. L. and Morcos, A. Towards falsifiable inter-
pretability research. arXiv preprint arXiv:2010.12016,
2020.

LeCun, Y., Denker, J., and Solla, S. Optimal brain damage.
In Advances in Neural Information Processing Systems
(NeurIPS). Morgan-Kaufmann, 1990.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf,
H. P. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016.

https://github.com/unitaryai/detoxify

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Lipton, Z. C. The mythos of model interpretability: In
machine learning, the concept of interpretability is both
important and slippery. 2018.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learn-
ing Representations (ICLR), 2018.

Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., and
Clune, J. Synthesizing the preferred inputs for neurons in
neural networks via deep generator networks. In Neural
Information Processing Systems (NeurIPS), 2016.

Olah, C., Mordvintsev, A., and Schubert, L. Feature visual-
ization. In Distill, 2017.

Park, M. Y. and Hastie, T. L1-regularization path algo-
rithm for generalized linear models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology),
2007.

Ribeiro, M. T., Singh, S., and Guestrin, C. " why should i
trust you?" explaining the predictions of any classifier. In
International Conference on Knowledge Discovery and
Data Mining (KDD), 2016a.

Ribeiro, M. T., Singh, S., and Guestrin, C. “why should i
trust you?”: Explaining the predictions of any classifier.
In International Conference on Knowledge Discovery and
Data Mining (KDD), 2016b.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. In International Journal
of Computer Vision (IJCV), 2015.

Salman, H., Ilyas, A., Engstrom, L., Kapoor, A., and Madry,
A. Do adversarially robust imagenet models transfer
better? In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep in-
side convolutional networks: Visualising image clas-
sification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

Slack, D., Hilgard, S., Jia, E., Singh, S., and Lakkaraju, H.
Fooling lime and shap: Adversarial attacks on post hoc
explanation methods. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, 2020.

Smilkov, D., Thorat, N., Kim, B., Viégas, F., and Watten-
berg, M. SmoothGrad: removing noise by adding noise.
In ICML workshop on visualization for deep learning,
2017.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631–1642, 2013.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribu-
tion for deep networks. In International Conference on
Machine Learning (ICML), 2017.

Tibshirani, R. Regression shrinkage and selection via the
lasso. In Journal of the Royal Statistical Society, Series
B, 1994.

Tibshirani, R. and Wasserman, L. Sparsity, the lasso, and
friends. Lecture notes from “Statistical Machine Learn-
ing,” Carnegie Mellon University, Spring, 2017.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and
Madry, A. Robustness may be at odds with accuracy. In
International Conference on Learning Representations
(ICLR), 2019.

Tsipras, D., Santurkar, S., Engstrom, L., Ilyas, A., and
Madry, A. From imagenet to image classification: Con-
textualizing progress on benchmarks. In International
Conference on Machine Learning (ICML), 2020.

Ustun, B., Spangher, A., and Liu, Y. Actionable recourse in
linear classification. In Proceedings of the Conference on
Fairness, Accountability, and Transparency, 2019.

Wan, A., Dunlap, L., Ho, D., Yin, J., Lee, S., Jin, H., Petryk,
S., Bargal, S. A., and Gonzalez, J. E. Nbdt: neural-backed
decision trees. arXiv preprint arXiv:2004.00221, 2020.

Wulczyn, E., Thain, N., and Dixon, L. Ex machina: Per-
sonal attacks seen at scale. In Proceedings of the 26th
International Conference on World Wide Web, pp. 1391–
1399, 2017.

Xiao, K., Engstrom, L., Ilyas, A., and Madry, A. Noise or
signal: The role of image backgrounds in object recogni-
tion. arXiv preprint arXiv:2006.09994, 2020.

Yeh, C.-K., Kim, B., Arik, S., Li, C.-L., Pfister, T., and
Ravikumar, P. On completeness-aware concept-based
explanations in deep neural networks. Advances in Neural
Information Processing Systems (NeurIPS), 2020.

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., and Lipson,
H. Understanding neural networks through deep visual-
ization. In arXiv preprint arXiv:1506.06579, 2015.

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., and Tor-
ralba, A. Places: A 10 million image database for scene
recognition. IEEE transactions on pattern analysis and
machine intelligence, 2017.

Leveraging Sparse Linear Layers for Debuggable Deep Networks

Zou, H. and Hastie, T. Regularization and variable selection
via the elastic net. Journal of the royal statistical society:
series B (statistical methodology), 2005.

