
Learning Neural Network Subspaces 

A. Convex Setting 
In this section we consider the case where the loss is con-
vex, and we show the optimization problem remains convex 
when learning the subspace parameters. 

Let ω = (ω1, ..., ωm) denote the parameters used to con-
struct the subspace. A simplified version of our objective is 
given by 

h(ω) , Eα∼U(Λ)[`(P(α, ω))] (6) 

This objective is simplified from Equation 1 as we have 
removed the dependence on the training data and neural 
network—the loss ` is given parameters θ ∈ Rn and returns 
a positive scalar. 

We note that in each of the subspaces we learn—lines, 
curves, and simplexes—P(α, ω) is linear with respect to ω. 

Proposition A.1. If ` : Rn → R is convex and P is linear 
with respect to ω then h is convex with respect to ω. 

Proof. For two sets of parameters ω and ω and λ ∈ [0, 1], 

h((1 − λ)ω + λω) (7) 
= Eα[`(P(α, (1 − λ)ω + λω))] (8) 
= Eα[`((1 − λ)P(α, ω) + λP(α, ω))] (9) 
≤ Eα[(1 − λ)`(P(α, ω)) + λ`(P(α, ω))] (10) 
= (1 − λ)Eα[`(P(α, ω))] + λEα[`(P(α, ω))] (11) 
= (1 − λ)h(ω) + λh(ω), (12) 

where Equation 9 and Equation 10 respectively follow from 
the linearity of P (in ω) and convexity of `. 

B. Additional Samples and Feature Similarity 
Regularization 

In Algorithm 1 we approximate the inner expectation of 
Equation 1 using a single sample. In this section we ap-
proximate the expectation with multiple samples, leading 
to an improvement in accuracy along the subspace and of 
the ensemble. When approximating the expectation with s 
samples we split the batch of size b into s groups of size 
b/s and sample independent values of α ∼ U([0, 1]) for 
each. Results for s = {1, 2, 4} are shown in the first row of 
Figure 13. 

Using multiple samples allows us to experiment with ad-
ditional regularization to enable functional diversity. We 
can directly encourage models from different parts of the 
subspace to have orthogonal features. We experiment with 
regularization of this form, which we call feature similarity 
regularization, in the second row of Figure 13. For each 
batch we pick j, k randomly from {1, ..., s}, where s is the 
number of samples. Let αj and αk denote samples j and 
k from U([0, 1]) and φj , φk denote the features obtained 

using models P(αj ) and P(αk). The feature similarity reg-
ularization term is then given by 

λ|αj − αk| cos 2(φj , φk) (13) 

where the features φ are taken from the output of the penul-
timate layer and cos(φj , φk) is cosine similarity. The term 
|αj − αk| allows for more feature similarity when mod-
els are close together on the subspace. Results for feature 
similarity regularization are shown in the bottom row of 
Figure 13. 

C. Integrating over Subspaces 
Is there a subspace from which you can efficiently ensemble 
all models? We believe this is not possible for the subspaces 
of general neural networks f we learn in this paper. How-
ever, this does become possible when considering a specific 
form for f . 

Consider P : [0, 1] → Rn which defines a one-dimensional 
subspace of weights. In this section we investigate a mech-
anism for ensembling the output of all networks along the 
subspace—a closed-form expression for 

Z 1 

ŷ(x) = f(x, P(α))dα. (14) 
0 

For a particular class of functions f , Equation 14 admits a 
straightforward solution. Consider 

dg(x, P(α)))
f(x, P(α)) = g(x, P(0)) + 

dα 
. (15) 

for which 
Z 1 

f(x, P(α))dα = g(x, P(1)). (16) 
0 

The function g can be any learned neural network. To train 
f (i.e. to learn g) we approximate the derivative by finite 
difference during training. For each training batch (x, y) 
we sample α uniformly from [0, 1] and compute outputs 

g(x, P(α + �)) − g(x, P(α))
f(x, P(α)) = g(x, P(0)) + . 

� 
(17) 

During evaluation we then return g(x, P(1)) which corre-
sponds to the ensemble of all networks f(x, P(α)) (Equa-
tion 16). As shown in Figure 14, we experiment with this 
model on MNIST (LeCun, 1998) using � = 0.1. We use 
Integral to refer to the model described in this section. Re-
call that a label noise level of c denotes that a fraction c of 
the training data is assigned random and fixed labels before 
training. Since we are restricting the form of f , the accuracy 
does not differ significantly from standard training when 
there is no label noise. However, as label noise increases 
the integral solution outperforms other models. 
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Figure 13. Model and ensemble accuracy along one-dimensional subspaces. For each subspace type, (1) accuracy of a model with weights 
P(α) is shown with a dashed line and (2) accuracy when the output of models P(α) and P(1 − α) are ensembled is shown with a solid 
line and denoted (Ensemble). The number of samples of α used to approximate the inner expectation of Equation 1 is given by samples 
while λ denotes the strength of the feature similarity regularization (Appendix B). Both samples > 1 and λ > 0 tend to improve accuracy 
for both lines and curves. 

D. Additional Experimental Details 
D.1. Models and Training Details. 

For CIFAR10 experiments we use the ResNet20 model (re-
ferred to as cResNet20) which may be found at https:// 
github.com/facebookresearch/open_lth. For Tiny-
ImageNet we use the ResNet{18, 50} models which were 
used by Tanaka et al. (2020) in their TinyImageNet exper-
iments. Finally, the ImageNet models are from PyTorch 
(Paszke et al., 2019). We use PyTorch 1.6 and Python 3.7. 
All models are trained on a single GPU except for the Ima-
geNet models which are trained on 4 GPUs. Standard data 
augmentations are used—random crop and horizontal flip. 
To sample uniformly from the m − 1 dimensional prob-
ability simplex we sample m random variables from the 
exponential distribution then normalize so that the sum is 1. 

D.2. Computation 

Consider a convolutional layer with kernel size κ × κ, in-
put size (b, c1, w1, h1), and output size (b, c2, w2, h2). The 
number of parameters is p = c1c2κ2 while the number of 
FLOPs in standard training is M = bpw2h2. The algo-
rithm we present requires O(p(m − 1)) additional FLOPs 
to update the subspace’s network weights, where m is the 
number of parameters used to construct the subspace. This 
overhead is minimal with respect to M (since b, w2, h2 tend 
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Figure 14. Learning subspaces of functions with efficient closed-
form continuous ensembles (Equation 16). Since the functional 
form is restricted, these “Integral” solutions only provide an accu-
racy boost for nonzero label noise. 
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Figure 15. L2 distance and squared cosine similarity between endpoints ω1, ω2 when training a line. For “Point init” the endpoints of the 
line were initialized with the same shared weight values. 

Figure 16. Average L2 distance and squared cosine similarity between endpoints ωj , ωk when training an m endpoint simplex with 
regularization strength β (Equation 5). 

to be large, b alone is over 100). The only storage overhead 
comes from storing multiple copies of the model parameters 
O(p(m − 1)), which is not significant compared to buffers 
stored for the backward pass, of size O(bc2w2h2) (Chen 
et al., 2015). This is especially true for lines, curves, and 
low dimensional simplexes which constitute the majority 
of our experiments. No additional storage is required for 
computing the gradient, since the gradient updates to each 
endpoint are re-scaled versions of the same tensor (except 
the gradient of the regularization term, which has no depen-
dence on the input data and can be computed after the initial 
buffers are freed). 

D.3. Batch Normalization 

In many cases batch norm (Ioffe & Szegedy, 2015) parame-
ters require different treatment then other network weights. 
In standard training the batch norm scale parameter is ini-
tialized to be a vector of ones, and often remains mainly 
positive. Accordingly, cosine distance is likely the wrong 
distance metric to compare batch norm parameters. More-
over, the number of batch norm parameters is very small 
with respect to the total number of weights. Accordingly, in 
Figure 3 and Figure 15 we do not take batch norm param-
eters into account when considering cosine or L2 distance. 
Moreover, in Algorithm 1 we do not take batch norm param-
eters into account when computing the regularization term 
(Equation 5). 

Although we train batch norm parameters which lie on a line, 
curve, or simplex, batch norm layers also track a running 
mean and variance. Since these are not learned parameters, 
we follow Izmailov et al. (2018); Maddox et al. (2019) and 

recompute these statistics using training data. For instance, 
when evaluating the model at the midpoint of the simplex 
we first compute the running mean and variance with a 
pass through the training data before evaluating on the test 
set. For group norm (Wu & He, 2018) or layer norm (Ba 
et al., 2016) this would not be an issue, although these 
methods tend to achieve lower accuracy than batch norm in 
the settings we consider. 

D.4. Baseline Hyperparameters 

We implement all baselines with the same hyperparame-
ters described in section 4 whenever possible. However, 
some baselines have additional hyperparameters. For SWA 
(Izmailov et al., 2018) we use the default values from 
https://github.com/timgaripov/swa—SWA LR of 
0.05 and begin saving checkpoints 40 epochs before training 
ends (75% of the way through). For experiments with SWA 
throughout this wok we use either a cyclic (denoted Cyclic 
LR) or high constant (denoted High Const. LR) learning 
rate for the late phase of training and provide results for the 
best or both. For SWA-Guassian we construct the Gaussian 
using 6 saved SWA checkpoints. 

Additionally, we tried using the regularization term (Equa-
tion 5) to encourage diversity among the SWA checkpoints 
but did not succeed in improving performance. 

E. Further Subspace Dynamics 
This section extends the results from subsection 4.1 which 
examine the shape of subspace throughout training. Fig-
ure 15 illustrates that initializing the endpoints of the line 

https://github.com/timgaripov/swa
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Figure 17. Comparing the statistics of the models which lie at the endpoints of a learned line with two independently trained models. We 
compare total variation (TV) distance between the outputs and {L2, Cosine} distance between the weights. 
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Figure 18. Model and ensemble accuracy along one-dimensional subspaces. For each subspace type, (1) accuracy of a model with weights 
P(α) is shown with a dashed line and (2) accuracy when the output of models P(α) and P(1 − α) are ensembled is shown with a solid 
line and denoted (Ensemble). Note that quantity (2) is symmetric about 0.5 at which point it also intersects with quantity (1). “Standard 
Ensemble of Two” is the ensemble accuracy of two independently trained networks. For SWA we save only two checkpoints and consider 
the subspace formed by interpolating between them. 

with the same shared initialization (“point init”) has little 
effect on the dynamics. After a few epochs of training, any 
discrepency between “point init” and standard initialization 
nearly disappears. In Figure 16 we examine the average L2 

distance and squared cosine similarity between endpoints 
when training simplexes. The same general trends hold, 
but the average distance between endpoints decreases with 
the number of endpoints m. Since a new random pair of 
endpoints is sampled for each batch in Algorithm 1, close-
ness between each individual pair is penalized less for larger 
m. Finally, in Figure 17 we compare the endpoints of a 
line with two independently trained models in terms of L2 

distance, cosine distance, and total variation (TV) distance. 
For two networks with outputs p1 and p2 the TV distance 
is given by 1 kp1 − p2k1 and is averaged over all examples 2 
in the test set. As expected, β = 1 produces lines with more 
distant and functionally diverse endpoints. 

F. Additional Baselines for One-Dimensional 
Subspaces 

In Figure 18 we augment the experiments from subsec-
tion 4.2 the additional baseline of SWA (described in sec-
tion 2) with a cyclic learning rate scheduler. For experiments 
with SWA (Izmailov et al., 2018) throughout this wok we 
use either a cyclic (denoted Cyclic LR) or high constant 
(denoted High Const. LR) learning rate for the late phase of 
training and provide results for the best or both. In the case 
of Figure 18, where we save only two SWA checkpoints 
and interpolate between, cyclic performs better as the high 
constant scheduler does not find checkpoints which match 
standard training accuracy. Additional details on baseline 
hyperparameters are provided in Appendix D. 
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Figure 19. Comparing the relative change in accuracy when tested on corrupted data. Comparison is between the midpoint of a line and 
standard training. A positive bar indicates that the midpoint of the line has relatively less of a drop in accuracy from clean to corrupted 
data in ImageNet-C. (Hendrycks & Dietterich, 2019). See text (Appendix G) for details. 

G. Additional ImageNet-C Robustness 
Experiments 

In this section we test the models trained on ImageNet (Fig-
ure 9, subsection 4.4) across all image corruptions in the 
ImageNet-C dataset (Hendrycks & Dietterich, 2019). We 
consider the relative change in accuracy when models are 
evaluated on corrupted images. For a model with accuracy 
a on the clean set and b on the corrupted images, the relative 
change in accuracy is (b − a)/a. The relative change in 
accuracy (which we refer to as relative change) is chosen 
because performance on the clean test set can act as a con-
founder (Taori et al., 2020). The experiments are conducted 
with a corruption severity of 3. 

Figure 19 illustrates the difference in relative change be-
tween the midpoint of the line and a model found through 
standard training. A positive value indicates that the mid-
point of the line has a relatively less severe drop in accuracy 
when faced with corrupted data. Although performance on 

different corruption types is varied, the midpoint models 
we find tend to exhibit more robustness—WideResNet50 
(layerwise) outperforms standard training on all but two 
corruption types. 

However, this evaluation considers only the midpoint of the 
line, ignoring that we have trained family of models. In 
Figure 20, we compare the best-performing model on the 
line (over α ∈ {0, 0.1, ..., 0.9, 1.0}, in terms of the relative 
change in accuracy) with standard training. This setting is 
not realistic as α is tuned on the test set, however it is a 
positive sign for the case when a validation set exists for the 
corrupted data of interest. A single training run can capture 
a family of models, and each can be tested on a validation 
set for the downstream domain. 
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Figure 20. Comparing the relative change in accuracy when tested on corrupted data. Comparison is between the best model on the line 
and standard training. A positive bar indicates that there exists a model on the line with relatively less of a drop in accuracy from clean to 
corrupted data in ImageNet-C. This result demonstrates that there exists a model on the line which performs well, but does not indicate 
how to find this model. See text (Appendix G) for details. 

H. Further Analysis of Frankle et al. (2020) 
Recall from section 2, Observation 4 that Frankle et al. 
(2020) consider the scenario where two networks branch 
off after k epochs of the trajectory are shared. In other 
words, they consider θk = Train0→k(θ0, ξ) and let θi = k→T 

Traink→T (θk, ξi) for i ∈ {1, 2}. In Figure 21 (left) we re-
produce results from Frankle et al. (2020), demonstrating 
that for very small k, the weight average of θ1 and θ2 

k→T k→T 
matches the accuracy standard training accuracy. Note 
that the weight average refers to the accuracy of model� � �� 

1f ·, θ1 + θ2 and the ensemble refers to the ac-2 k→T k→T� � � � �� 
curacy of model 1 f ·, θ1 + f ·, θ2 . For mod-2 k→T k→T 
erate k, the weight average exceeds standard training as a 
result of Observation 5 (section 2). 

Figure 21 (right) demonstrates that these results hold when 
considering weight and output space ensembles of 5 mod-
els which all share k epochs of trajectory. Finally, in Fig-

ure 21 (middle) we consider random interpolations at differ-
ent scales. Random Mixture (Global) is given by 

� � �� 
Eα∼U([0,1]) Acc (1 − α)θk 

1 
→T + αθk 

2 
→T . (18) 

For Random Mixture (Layerwise) we sample different co-
efficients α for each layer, and for Random Mixture (Per-
weight) we sample different α for all weights in the network. 
The latter corresponds to a hyper-rectangle with corners 
θ1 and θk 

2 
→T . When k is at least half of thhe training k→T 

epochs all models on this n dimensional hyper-rectangle 
match standard training accuracy. 
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Figure 21. (left) Reproducing the instability analysis of (Frankle et al., 2020)—providing the accuracy of the weight space ensemble and 
output space ensemble of two models with k epochs of shared trajectory. (middle) Considering random interpolations between models 
with k epochs of shared trajectory. Interpolations are global, per-layer, and per-weight. (right) Extending the instability analysis result to 5 
models. 


