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A. Dataset Construction
In this section, we describe how we subsampled data from the Semantic Scholar Open Research Corpus (S2ORC) (Ammar
et al., 2018), extracted reviewer/paper features such as subject area and TPMS, and simulated bids using citation. Our data
is publicly released7 for reproducibility and to facilitate future research.

A.1. Conference Simulation

The goal of our dataset is to simulate a NeurIPS-like conference environment, where the organizers assign reviewers to
papers based on expertise and interest. We first retrieve the collection of 6956 papers from S2ORC that are published in
ML/AI/CV/NLP venues between the years 2014-2015, which includes the following conferences: AAAI, AISTATS, ACL,
COLT, CVPR, ECCV, EMNLP, ICCV, ICLR, ICML, IJCAI, NeurIPS, and UAI. We believe the diversity of subject areas
represented by the above conferences is an accurate reflection of typical ML/AL conferences in recent years. We will refer
to this collection of papers as the corpus.

Subject areas. Most conferences require authors to indicate primary and secondary subject areas for their submitted
papers. However, the S2ORC only contains a field of study attribute for most of the retrieved papers in the corpus, which is
often the broad category of computer science. To identify the suitable fine-grained subjects for each paper, we adopt an
unsupervised learning approach of clustering the papers by relatedness and treating each discovered cluster as a subject area.

Similarity is defined in terms of co-citations – a common signal used in information retrieval for discovering related
documents (Dean & Henzinger, 1999). For a paper p, let N(p) denote the union of in-citations and out-citations for p. The
similarity between two papers p, q is defined as

σ(p, q) =
|N(p) ∩N(q)|√
|N(p)| ·

√
|N(q)|

, (S1)

which is the cosine similarity in document retrieval. We perform agglomerative clustering using average linkage8 to reduce
the set of papers to 1000 clusters. After removing small cluster (less than 5 papers), we obtain 368 clusters to serve as
subject areas. Table S1 shows a few sample clusters along with papers contained in the cluster. Most of the discovered
clusters are highly coherent with members sharing keywords in their titles despite the definition of similarity depending
entirely on co-citations.

To populate the list of subject areas for a given paper p, we first compute its subject relatedness to a cluster C by:

σ(p, C) =
1

|C|
∑
q∈C

σ(p, q). (S2)

Given the set of clusters representing subject areas, we identify the top-5 clusters according to σ(p, C) to be the list of
subject areas for the paper p, denoted subj(p).

Reviewers. The S2ORC dataset contains entries of authors along with their list of published papers. We utilize this
information to simulate reviewers by collecting the set of authors who has cited at least one paper from the corpus. The total
number of retrieved authors is 234,598. Because the vast majority of retrieved authors are very loosely related to the field of
ML/AI, they would not be suitable reviewer candidates for a real ML/AI conference. Therefore, we retain only authors who
have cited at least 15 papers from the corpus to serve as reviewers. We also remove authors who cited more than 50 papers

7https://drive.google.com/drive/folders/1khI9kaPy 8F0GtAzwR-48Jc3rsQmBhfe?usp=sharing
8https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering

https://drive.google.com/drive/folders/1khI9kaPy_8F0GtAzwR-48Jc3rsQmBhfe?usp=sharing
https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering
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Subject Area Papers

Multi-task learning

Encoding Tree Sparsity in Multi-Task Learning: A Probabilistic Framework
Multi-Task Learning and Algorithmic Stability
Exploiting Task-Feature Co-Clusters in Multi-Task Learning
Efficient Output Kernel Learning for Multiple Tasks
Learning Multiple Tasks with Multilinear Relationship Networks
Etc.

Video segmentation

Efficient Video Segmentation Using Parametric Graph Partitioning
Video Segmentation with Just a Few Strokes
Co-localization in Real-World Images
Semantic Single Video Segmentation with Robust Graph Representation
PatchCut: Data-driven object segmentation via local shape transfer
Etc.

Topic modeling

On Conceptual Labeling of a Bag of Words
Topic Modeling with Document Relative Similarities
Divide-and-Conquer Learning by Anchoring a Conical Hull
Spectral Methods for Supervised Topic Models
Model Selection for Topic Models via Spectral Decomposition
Etc.

Feature selection

Embedded Unsupervised Feature Selection
Feature Selection at the Discrete Limit
Bayes Optimal Feature Selection for Supervised Learning with General Performance Measures
Reconsidering Mutual Information Based Feature Selection: A Statistical Significance View
Unsupervised Simultaneous Orthogonal basis Clustering Feature Selection
Etc.

Table S1. Sample subject areas and paper titles of cluster members.

from the corpus, since these reviewers represent senior researchers that would typically serve as area chairs. The number of
remaining reviewers is 5, 914.

Most conferences also solicit self-reported subject areas from reviewers. We simulate this attribute by leveraging the clusters
discovered through co-citation. For each subject area C, we count the number of times C appeared in subj(p) for each of
the papers p that the reviewer r has cited. The 5 most frequently appearing clusters (ties are broken randomly) serve as the
reviewer’s subject areas, denoted subj(r).

TPMS score. The TPMS score (Charlin & Zemel, 2013) is computed by measuring the similarity between a reviewer’s
profile – represented by a set of papers that the reviewer uploads – and a target paper. We simulate this score using the
language model-based approach from the original TPMS paper, which we detail below for completeness. For a reviewer r,
let Ar denote the bag-of-words representation for the set of papers that the reviewer has authored. More specifically, we
collect the abstracts of the papers that r has authored, remove all stop words, and pool the remaining words together into Ar

as a multi-set. Similarly, let Ap denote the bag-of-words representation for the abstract of a paper p. The simulated TPMS is
computed as:

TPMSr,p =
∑

w∈Ap

log frw, (S3)

where frw is the Dirichlet-smoothed normalized frequency of the word w in Ar. Let D denote the bag-of-words representa-
tion for the entire corpus of (abstracts of) papers, and let D(w) (resp. Ar(w)) denote the occurrences of w in the corpus
(resp. Ar). Then

frw :=

(
|Ar|
|Ar|+ β

)
|Ar(w)|
|Ar|

+

(
β

|Ar|+ β

)
|D(w)|
|D|

,
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where β is a smoothing factor. We set β = 1000 in our experiment. The obtained scores are normalized per paper between 0
and 1.

A.2. Simulating Bids

The most challenging aspect of our simulation is the bids. At first, it may seem natural to simulate bids using citations, since
it is a proxy of interest and can be easily obtained from the S2ORC dataset. However, we have observed that bids are heavily
skewed towards a few very influential papers, while the distribution of bids is much more uniform across all papers. To
overcome this issue, we instead model a reviewer’s bidding behavior based on the following assumptions:

1. A reviewer will only bid on papers from subject areas that he/she is familiar with.

2. Given two papers from the same subject area, a reviewer favors bidding on a paper whose title/abstract is a better match
with the reviewer’s profile.

We define several scores that reflect the above aspects and combine them to obtain the final bids. In practice, reviewers will
often also rely on TPMS to sort the papers to bid on. However, since our simulated TPMS depends entirely on the abstract,
we omit TPMS in our bidding model. Nevertheless, we have observed empirically that TPMS is highly correlated with the
bids that we obtain.

Subject score. We leverage citation to reflect the degree of interest in the subject of a paper. Let icf(q) denote the inverse
citation frequency (ICF) of a paper q in the corpus:

icf(q) = log
# total in-citations in the corpus

# in-citations for q
.

The purpose of the ICF is to down-weight commonly cited papers to avoid overcrowding of bids. Denote by C∗(q) the top
cluster that q belongs to according to Eq. (S2). The subject score for a paper p is defined as:

subject-scorer,p =
∑

q:r cites q

icf(q)
|C∗(q)|

1{p ∈ C∗(q)}. (S4)

In other words, for each paper q that r cites, we merge all papers from the same subject area of q, represented by C∗(q), into
the reviewer’s pool. Each paper in C∗(q) is weighted by the reciprocal of the cluster size and the ICF of q, and the subject
score is the resulting sum after accumulating over all papers q that the reviewer cites. Note that every paper within the same
subject cluster has the exact same subject score, which is non-zero only if the reviewer has bid on a paper within this subject
area. This property reflects the assumption that a reviewer is only interested in papers from familiar subject areas, and is
indifferent to different papers in the same subject absent of title/abstract information. To avoid overcrowding by frequently
cited papers, we set subject-scorer,p = 0 for any paper p that received over 1000 citations.

Title/abstract score. To measure the degree of title/abstract similarity between a reviewer and a paper, we compute
the inner product between the TF-IDF vectors of the reviewer’s and paper’s title/abstract. Let idf(w) denote the inverse
document frequency of a word w. For each reviewer r, let tf-idf(r) denote the vector, indexed by words, such that
tf-idf(r)w = (|Ar(w)|/|Ar|) · idf(w) for each word w. Similarly, we can define the TF-IDF vector for a paper p, and the
abstract score between a pair (r, p) is given by the inner product:

abstract-scorer,p = tf-idf(r) · tf-idf(p). (S5)

We can define the title score in an analogous manner based on the bag-of-words representation of titles instead of abstracts.

Bidding. We simulate bids by combining the subject/title/abstract scores as follows. First, we define a total score:

total-scorer,p = (title-scorer,p + abstract-scorer,p) · subject-scorer,p, (S6)

which reflects the assumptions we made about a reviewer’s bidding behavior, i.e., a higher total score reflects a higher
reviewer interest in the paper. The total score gives us a ranking of papers in the corpus, denoted by rankr(p), for each paper
p. To obtain the positive bids, we randomly retain high-ranked papers with a decaying probability:

Pr(r bids on p) = 1/(1 + exp(α · (rankr(p)− µ)),
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(a) distribution of # positive bids before the pruning

(b) distribution of # positive bids after the pruning

Figure S1. Distribution of the number of positive bids before and after subsampling.

where α and µ are hyperparameters that control the steepness of the drop in sampling probability for low-ranked papers, and
the average number of papers that each reviewer bids on. We set α = 0.2 and µ = 80 in our experiment.

The quality of bids obtained from this sampling procedure is very reasonable. However, the majority of papers had very
few bids (see Fig. S1(a)) – contrary to statistics observed in a real conference such as NeurIPS-2016 (see Figure 1 in (Shah
et al., 2018)). To match the distribution of the number of bids per reviewer/paper to that of a real conference, we further
subsample papers (resp. reviewers) to encourage selecting ones with more bids. The distribution of the number positive bids
per reviewer/paper after subsampling is shown in Fig. S1(b). Our finalized conference dataset contains m = 2483 reviewers
and n = 2446 submitted papers – a realistic balance of papers and reviewers for recent ML/AI conferences.

Finally, some conferences allow more fine-grained bids, such as in a pinch, willing and eager for conferences managed
using CMT. To simulate bid scores that reflect the degree of interest, we quantize the total score of all positive bids into the
discrete range {1, 2, 3} based on the distribution of bid scores in a real conference: at a ratio of 8 : 53 : 39 for the bids 1, 2
and 3.

B. Features and Training
We provide details regarding feature extraction and model training in this section. To fully imitate a conference management
environment, we extract relevant features from papers and reviewers that are obtainable in a realistic scenario, including:
paper/reviewer subject area (5 areas for each), bag-of-words vector for paper title, and (simulated) TPMS. These features are
further processed and concatenated as input to the linear regression model in Section 3.

Table S2 lists all the extracted features and their dimensions. Paper title (PT) is the vectorized count of words appearing in
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Features paper titles (PT) paper subject area (PS) reviewer subject area (RS)

# of Dimensions 930 368 368

Features intersected subject area (IS) TPMS vector (TV) RS⊗PS

# of Dimensions 368 12 135424

Features RS⊗PT IS⊗PT IS⊗TV

# of Dimensions 342240 342240 4410

Table S2. Extracted features and their dimensionalities. See the text for details.

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

AP@k per reviewer train 0.41 0.41 0.40 0.39 0.38 0.38 0.37 0.37 0.36 0.35
test 0.38 0.41 0.39 0.38 0.38 0.37 0.36 0.36 0.35 0.34

AP@k per paper train 0.55 0.53 0.51 0.50 0.49 0.47 0.46 0.45 0.43 0.42
test 0.58 0.55 0.52 0.51 0.48 0.47 0.45 0.44 0.43 0.41

Table S3. Average precision@k per reviewer/paper for the trained linear regressor.

the paper’s title, while paper subject area (PS), reviewer subject area (RS) and intersected subject area (IS) are categorical
features represented using binary vectors. The first dimension for the TPMS vector (TV) is the TPMS score for the
reviewer-paper pair. We also quantize the raw TPMS into 11 bins and use the bin index as well as the quantized scores,
which results in the remaining 11 dimensions for the TPMS vector.

RS⊗PS, RS⊗PT, IS⊗PT and IS⊗TV are additional quadratic features that capture the interaction between feature pairs. The
introduction of these quadratic features results in a very high-dimensional, albeit extremely sparse feature vector, and hence
many dimensions could be collapsed without a significant impact to performance. We apply feature hashing (Weinberger
et al., 2009) to the quadratic features at a hash ratio of 0.01, which reduces the total feature dimensionality to d = 10, 288.

Model performance. To validate our linear regression model and the selected features, we test the average precision at k
(AP@k) for the trained model on a train-test split. Table S3 shows the AP@k per reviewer (P@k for finding papers relevant
to a reviewer, averaged across all reviewers) and the AP@k per paper for the linear regressor. It is evident that both metrics
are at an acceptable level for real world deployment, and the train-test gap is minimal, indicating that the model is able to
generalize well beyond observed bids.

We also perform a qualitative evaluation of the end-to-end assignment process using the relevance scoring model. We select
six representative (honest) reviewers from our dataset – Kavita Bala9, Ryan P. Adam10, Peter Stone11, Yejin Choi12, Emma
Brunskill13 and Elad Hazan14 – representing distinct areas of interest in ML/AI. Table S4 shows the assigned papers for the
selected reviewers, which appear to perfectly match the area of expertise for the respective reviewers. Many of the assigned
papers have a bid score of 0 despite being very relevant for the reviewer, which shows that the scoring model is able to
discover missing bids and improve the overall assignment quality.

C. Additional Experiment on Detection
In Section 5 we evaluated our defense against attacks that succeeded in securing the target paper assignment. However, in
doing so, it is possible that malicious reviewers that did not succeed initially will inadvertent become high-ranked after other
reviewers are removed from the candidate set. Therefore, it may be necessary to detect all attack instances in the candidate

9https://scholar.google.com/citations?user=Rh16nsIAAAAJ
10https://scholar.google.com/citations?user=grQ GBgAAAAJ
11https://scholar.google.com/citations?user=qnwjcfAAAAAJ
12https://scholar.google.com/citations?user=vhP-tlcAAAAJ
13https://scholar.google.com/citations?user=HaN8b2YAAAAJ
14https://scholar.google.com/citations?user=LnhCGNMAAAAJ

https://scholar.google.com/citations?user=Rh16nsIAAAAJ
https://scholar.google.com/citations?user=grQ_GBgAAAAJ
https://scholar.google.com/citations?user=qnwjcfAAAAAJ
https://scholar.google.com/citations?user=vhP-tlcAAAAJ
https://scholar.google.com/citations?user=HaN8b2YAAAAJ
https://scholar.google.com/citations?user=LnhCGNMAAAAJ
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Reviewer Assigned Papers Bid Scores

Kavita Bala

1. Learning Lightness from Human Judgement on Relative Reflectance
2. Simulating Makeup through Physics-Based Manipulation of Intrinsic Image Layers
3. Learning Ordinal Relationships for Mid-Level Vision
4. Automatically Discovering Local Visual Material Attributes
5. Recognize Complex Events from Static Images by Fusing Deep Channels
6. Learning a Discriminative Model for the Perception of Realism in Composite Images

3
3
3
0
0
0

Ryan P. Adams

1. Stochastic Variational Inference for Hidden Markov Models
2. Parallel Markov Chain Monte Carlo for Pitman-Yor Mixture Models
3. Celeste: Variational Inference for a Generative Model of Astronomical Images
4. Measuring Sample Quality with Stein’S Method
5. Parallelizing MCMC with Random Partition Trees
6. Hamiltonian ABC

3
0
0
0
0
0

Peter Stone

1. Qualitative Planning with Quantitative Constraints for Online Learning of Robotic Behaviours
2. An Automated Measure of MDP Similarity for Transfer in Reinforcement Learning
3. On Convergence and Optimality of Best-Response Learning with Policy Types in Multiagent Systems
4. A Framework for Task Planning in Heterogeneous Multi Robot Systems Based on Robot Capabilities
5. A Strategy-Aware Technique for Learning Behaviors from Discrete Human Feedback
6. Stick-Breaking Policy Learning in Dec-Pomdps

3
3
3
3
0
0

Yejin Choi
1. Don’T Just Listen, Use Your Imagination: Leveraging Visual Common Sense for Non-Visual Tasks
2. Segment-Phrase Table for Semantic Segmentation, Visual Entailment and Paraphrasing
3. Refer-To-As Relations as Semantic Knowledge

3
0
0

Emma Brunskill

1. Policy Evaluation Using the Ω-Return
2. Towards More Practical Reinforcement Learning
3. High Confidence Policy Improvement
4. Sample Efficient Reinforcement Learning With Gaussian Processes
5. Policy Tree: Adaptive Representation for Policy Gradient
6. Abstraction Selection in Model-Based Reinforcement Learning

3
3
3
3
3
0

Elad Hazan

1. Online Linear Optimization via Smoothing
2. Online Learning for Adversaries with Memory: Price of Past Mistakes
3. Hierarchies of Relaxations for Online Prediction Problems with Evolving Constraints
4. Hard-Margin Active Linear Regression
5. Online Gradient Boosting
6. Robust Multi-Objective Learning With Mentor Feedback

3
0
0
0
0
0

Table S4. Assigned papers for six representative reviewers.
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Figure S2. TPR for detecting colluding white-box attacks (left) and colluding black-box attacks (right) that succeed in achieving top-50
rank.

set rather than ones that were successfully assigned.

Fig. S2 shows the detection TPR for all attackers that were initially ranked below K = 50 but managed to move into the
candidate set after the attack. Since this attacker pool includes many that obtained a relatively low rank, detection TPR is
much higher than that of Fig. 3 and Fig. 5. For instance, for Md = 5, even when the colluding party is significantly larger
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at Ma = 10, detection remains viable with a TPR of more than 40% against colluding white-box attack. This experiment
shows that our detection mechanism is unlikely to inadvertently increase the success rate of failed attacks.


