
ChaCha for Online AutoML (Supplementary)

A. Evaluation details
A.1. Datasets

The datasets are obtained from OpenML according to the following criterion: (1) the number of instances in the dataset
is larger than 10K; (2) no missing value; (3) regression dataset; (4) the dataset is still active and downloadable. The final
list of datasets that satisfy the aforementioned criterion is [573, 1201, 1195, 344, 1192, 201, 216, 41065, 42731, 4545,
42688, 1196, 23515, 1206, 1193, 42721, 42571, 42713, 537, 42724, 41540, 4549, 296, 574, 218, 5648, 215, 41539, 1199,
1203, 1191, 564, 1208, 42183, 42225, 42728, 42705, 42729, 42496, 41506]. We converted the original OpenML dataset
into VW required format5 following the instructions. We sequentially group the raw features of each dataset into up to 10
namespaces6. Log-transformation on the target variable is performed if the largest value on the target variable is larger than
100 (for datasets whose target variable has negative values, we first shift the value to make it all positive and then do the
log-transformation).

A.2. Detailed settings of ChaCha and baselines

The two compared methods Random and Exhaustive use the same method as ChaCha when selecting one model from
the ‘live’ model pool to make the final prediction at each iteration. The minimum resource lease in ChaCha is set to be
5× (dimensionality of the raw features) in all of our experimental evaluations. To ensure the empirical loss of the online
learning models is bounded, we use the ‘clipped mean absolute error’ as the empirical performance proxy in ChaCha: we
keep track of the minimum value, denoted by y

t
, and the maximum value, denoted by ȳt, of the target variable according to

observations received up to time t. When calculating the mean absolute error for models in ChaCha, we map our prediction
of the target variable ŷt into this range in the following way: min{max{y

t
, ŷt}, ȳt}. By doing so, we ensure the mean

absolute error is always bounded by ȳt−yt. Note that this revision is only performed in the update of empirical loss proxy in
ChaCha, the final output of ChaCha is not clipped. For εc,t, we use sample complexity bounds for linear functions. More

specifically, εc,t is set to be a
√

dc log(|Dc,t||Smt |/δ)
|Dc,t| , in which dc is the dimensionality of the feature induced by namespace

configuration c, a is constant related to the bound of the loss and is set to be 0.05 ∗ (ȳt − yt), and δ is set as 0.1.

A.3. Additional Results

We now provide additional results for the cases where all the methods are run for a larger number of data samples. We
compare the results on the three largest datasets with up to 1M data samples in Figure 6. The result shows the consistent
advantage of ChaCha under large data volumes. In addition, since several bars in Figure 4 and Figure 5 are cropped, we
include the actual numbers of the normalized scores in Table 1 and Table 2 for completeness.

Despite the i.i.d assumption in theoretical analysis, we do not exclude the possibility of non-stationary environments in our
empirical evaluation (we intentionally do not shuffle the dataset such that potential concept drifts in the original datasets
are preserved). In Figure 7, we show the results on an example dataset where concept drift exists. The results indicate a
clear existence of concept drift, and ChaCha is still maintain its performance advantage. This appealing property is partly
because of the base online learning algorithm’s capability to adjust to the concept drifts and partly because of ChaCha’s
progressive way of Champion promotion with the help of the ConfigOracle.

5https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Input-format
6https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Namespaces

https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Input-format
https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Namespaces

ChaCha for Online AutoML

1
2
0
3

1
2
0
6

1
5
7
5

4
2
7
2
9

5
6
4
8

0.5

0.0

0.5

1.0

1.5

2.0

N
o
rm

a
li
z
e
d
 s

c
o
re

(a) Namespace interactions tuning

1
2
0
3

1
2
0
6

1
5
7
5

4
2
7
2
9

5
6
4
8

0.5

0.0

0.5

1.0

1.5

2.0

N
o
rm

a
li
z
e
d
 s

c
o
re

(b) Namespace interactions and learning rate tuning

Figure 6. Normalized scores after a larger number of data samples (up to 1M). The normalized scores of ChaCha on dataset 1206 for
both tuning scenarios, and dataset 1575 and 42729 for namespace interactions tuning are better than those reported in Figure 4, which
indicates that ChaCha may achieve even larger gain as the increase of data samples.

B. Proof details
Proof 1 (Proof of Lemma 1) .

According to the definition of εc,t,

(1) ∀m ∈ [M], c ∈ Sm, with probability at least 1− δ,

L∗Fc
− L∗FCm

+ 2εc,t + 3εCm,t ≥ LPVc,t + εc,t − LPVCm,t + 2εCm,t = Lc,t − LCm,t
+ εCm,t (5)

The above inequality indicates that as long as L∗Fc
− L∗FCm

+ 2εc,t + 3εCm,t < 0, Lc,t − LCm,t
+ 2εCm,t < 0 which means

that c can pass the Better test when compared with Cm at time t and concludes the proof for Claim 1.

(2) For Claim 2.

When the Better test is triggered at time t = tm+1, we have, with probability at least 1− δ,

L∗FCm
− L∗FCm+1

≥ LCm,t
− LCm+1,t > LCm,t

− (LCm,t
− εCm,t) = εCm,t (6)

in which the second inequality is guaranteed by the fact that Better test is positive.

(3) For Claim 3. Lc,t − LCm,t ≤ L∗Fc
− L∗FCm

holds with probability at least 1 − δ′. If L∗Fc
< L∗FCm

< 0, then with
probability at least 1− δ, Lc,t − LCm,t < 0 (not passing the Worse test).

Proof 2 (Proof of Proposition 1) Without affecting the order of the cumulative regret (w.r.t. T), we prove the regret bound
assuming c∗ ∈ S0 (for the case c∗ is added at a particular time point t′, we only need to add an additional constant regret
term related to t′).

According to Claim 1 of Lemma 1, during a particular phase m, i.e. tm ≤ t ≤ tm+1− 1, ∀F ∈ Sm, L∗FCm
−L∗Fc

≤ 2εc,t +

3εCm,t must hold, otherwise phase m would have ended. Since c∗ ∈ Sm, we have, ∀m ∈ [M],
∑tm+1−1
t=tm

(L∗FCm
− L∗Fc∗

) <∑tm+1−1
t=tm

(2εc∗,t + 3εCm,t).

To account for the union over phases, we replace δ in εc,t from Eq. (1) by δ′ := δ/M , and replace |St| by maxm∈M |Sm|
i.e., εc,t = compFc

log(maxm∈[M]
M |Dt,c||Sm|

δ)|Dt,c|p−1). By union bound we have the following inequality holds with

ChaCha for Online AutoML

0.0 2000.0 4000.0 6000.0 8000.0 10000.0

of data samples

102

P
ro

g
re

s
s
iv

e
 v

a
li
d
a
ti

o
n
 l
o
s
s

0.0 2000.0 4000.0 6000.0 8000.0 10000.0

of data samples

2 × 101

3 × 101

4 × 101

6 × 101

A
v
e
ra

g
e
 l
o
s
s
 o

v
e
r

ti
m

e
 i
n
te

rv
a
ls

Figure 7. The existence of concept drifts on dataset #42183. The method ‘Offline’ uses the first 20% of the data to do training and is then
tested without further model updates. In the second figure, for each of the methods, we report the average loss over each time intervals,
split by vertical lines, starting from 20% data samples. It helps illustrate a clear existence of concept drift in this dataset and the behavior
of the compared methods in such a non-stationary environment.

probability at least 1− δ,

M∑
m=0

tm+1−1∑
t=tm

(L∗FCm
− L∗Fc∗

) ≤
M∑
m=0

tm+1−1∑
t=tm

2εc∗,t +

M∑
m=0

tm+1−1∑
t=tm

3εCm,t =

T∑
t=1

2εc∗,t +

M∑
m=0

tm+1−1∑
t=tm

3εCm,t (7)

The successive doubling resource allocation strategy ensures
∑T
t=1 2εc∗,t = O

(
compF∗ maxm∈[M]

|Sm|
b T p log(TM |Sm|δ)

)
.

Since we always keep the champion of each phase ‘live’, maxtm<t<tm+t
|Dt,Cm

| ≥ tm+1 − tm = Nm. Thus we have,

tm+1−1∑
t=tm

3εCm,t ≤ 3compFCm

tm+1−1∑
t=tm

|Dt,Cm
|p−1 log T (8)

= O
(
compFCm

Np
m log(

maxm∈[M] TM |Sm|
δ

)
)

= O
(
compFCm

Np
m log T + compFCm

Np
m log(max

m∈[M]
|Sm|)

)
Now we provide an upper bound on the value of

∑M
m=1N

p
m.

By Claim 2 of Lemma 1,

L∗FC0
− L∗Fc∗

≥=

M−1∑
m=0

L∗FCm
− L∗FCm+1

>

M−1∑
m=0

εCm,tm+1
> compFCm

M−1∑
m=0

Np−1
m log(

Nm
δ

) (9)

Now we discuss the properties of {Nm}m∈[M−1]. Since
∑M−1
m=0 N

p−1
m log(Nm

δ) converges,
∑M−1
m=0

1

N1−p
m

=
∑M−1
m=0 N

p−1
m

converges. Since 1 − p < 1, we have Nm ≥ Ω(m
1

1−p), otherwise
∑M−1
m=0

1

N1−p
m

diverges according to convergence
properties of Hyperharmonic series.

Since T =
∑M
m=0Nm, we have T >

∑M−1
m=0 Nm >

∑M−1
m=0 Ω(m

1
1−p) > Ω(M

2−p
1−p), which indicates M < O(T

1−p
2−p).

M∑
m=0

Np
m ≤ (M + 1)1−pT p = O(T

1
2−p) (10)

ChaCha for Online AutoML

Table 1. Normalized scores (mean ± standard deviation) reported in Figure 4(b) and Figure 5.
Dataset id Random:NI ChaCha:NI ChaCha-w/o-Champion:NI ChaCha-AggressiveScheduling:NI

1191 0.59 ± 0.35 0.64 ± 0.22 -335.79 ± 44.34 0.00 ± 0.00
1199 0.72 ± 0.53 0.10 ± 0.10 -39.37 ± 0.33 0.00 ± 0.00
1203 0.40 ± 0.35 0.38 ± 0.46 -0.35 ± 0.01 0.00 ± 0.01
1206 0.98 ± 0.03 1.02 ± 0.09 -2.38 ± 0.04 0.00 ± 0.00
1575 0.15 ± 0.06 0.13 ± 0.08 1.02 ± 0.05 1.00 ± 0.08

201 0.12 ± 0.15 0.11 ± 0.13 -6.15 ± 0.02 -0.00 ± 0.00
215 0.38 ± 0.37 0.41 ± 0.34 -0.30 ± 0.04 0.01 ± 0.02

23515 0.17 ± 0.15 2.94 ± 0.27 -17.33 ± 0.03 1.04 ± 0.01
344 0.34 ± 0.25 0.34 ± 0.30 -7.18 ± 1.26 0.00 ± 0.00

41506 0.71 ± 0.18 0.80 ± 0.18 -6.53 ± 0.73 0.10 ± 0.09
42183 0.11 ± 0.21 2.04 ± 0.08 0.16 ± 0.05 0.05 ± 0.01
42496 0.19 ± 0.41 -0.04 ± 0.02 -28.09 ± 2.68 0.00 ± 0.00
42729 0.46 ± 0.31 0.43 ± 0.25 -54.10 ± 0.04 -0.00 ± 0.00
5648 0.97 ± 0.05 1.09 ± 0.04 -0.01 ± 0.19 1.06 ± 0.04

564 0.19 ± 0.21 0.74 ± 0.41 -213.08 ± 14.48 0.00 ± 0.00

Table 2. Normalized scores (mean ± standard deviation) reported in Figure 4(b).
Dataset id Random:NI+LR ChaCha:NI+LR

1191 1.00 ± 0.00 1.00 ± 0.00
1199 1.00 ± 0.00 1.01 ± 0.03
1203 0.11 ± 0.22 -0.00 ± 0.01
1206 0.95 ± 0.06 1.25 ± 0.03
1575 0.62 ± 0.00 2.08 ± 0.54

201 1.00 ± 0.00 1.00 ± 0.00
215 0.09 ± 0.19 0.29 ± 0.39

23515 1.00 ± 0.00 1.06 ± 0.17
344 1.00 ± 0.00 1.15 ± 0.08

41506 0.86 ± 0.00 0.95 ± 0.10
42183 0.08 ± 0.00 1.86 ± 0.40
42496 0.24 ± 0.00 0.39 ± 0.30
42729 0.27 ± 0.10 0.27 ± 0.10

5648 0.56 ± 0.31 1.11 ± 0.03
564 1.00 ± 0.00 1.00 ± 0.00

in which the second inequality is based on Jensen’s inequality. Substituting Eq. (10) into Eq. (8) and Eq. (7) concludes the
proof.

Proof 3 (Proof of Theorem 1)

T∑
t=1

(Lĉt,t − L∗Fc∗
)

M∑
m=0

tm+1−1∑
t=tm

(Lĉt,t − L∗Cm
) +

M∑
m=0

tm+1−1∑
t=tm

(L∗Cm
− L∗Fc∗

) (11)

The second term in the right-hand side of Eq. (11) can be upper bounded by Proposition 1. Now we upper bound the first
term of the right-hand side of Eq. (11). ∀m ∈ {0, 1, · · · ,M},

ChaCha for Online AutoML

tm+1−1∑
t=tm

(Lĉt,t − L∗Cm
) ≤

tm+1−1∑
t=tm

εĉt,t + LPVĉt,t − L
PV
Cm,t + εCm,t (12)

≤
tm+1−1∑
t=tm

εCm,t + LPVCm,t − L
PV
Cm,t + εCm,t

=

tm+1−1∑
t=tm

2εCm,t = O(compFCm
Np
m log T)

in which the last inequality is based on the fact that ĉt = arg minc∈Bt
(LPVc,t + εc,t). Substituting conclusion in Eq (10)

which is proved in Proposition (1), into the above inequality, we have

M∑
m=0

tm+1−1∑
t=tm

(Lĉt,t − L∗Cm
) = O(max

m∈[M]
compFCm

T
1

2−p log T) (13)

Substituting Eq. (13) and the conclusion in Proposition 1 into Eq. (11) finishes the proof.

