
Appendices

A Proof of �eorem 1
�eorem 1. Assume that the dataset is balanced (each class has the same amount of instances,
and c classes in total), and the noise is class-dependent. Given a class transition matrix Tc,
such that Tc,ij = P (Ȳ = j|Y = i). �e elements of the corresponding similarity transition
matrix Ts can be calculated as

Ts,00 =
c2 − c−

(∑
j(
∑

i Tc,ij)
2 − ||Tc||2Fro

)
c2 − c

, Ts,01 =

∑
j(
∑

i Tc,ij)
2 − ||Tc||2Fro

c2 − c
,

Ts,10 =
c− ||Tc||2Fro

c
, Ts,11 =

||Tc||2Fro

c
.

Proof. Assume each class has n samples. n2Tc,ijTc,i′j′ represents the number the kind of
data pairs composed by points of (Ȳ = j|Y = i) and (Ȳ = j′|Y = i′). For the �rst element
Ts,00, n2

∑
i 6=i′ Tc,ijTc,i′j′ is the number of data pairs with clean similarity labels H = 0,

while n2
∑

i 6=i′,j 6=j′ Tc,ijTc,i′j′ is the number of data pairs with clean similarity labelsH = 0

and noisy similarity labels H̄ = 0. �us the proportion of these two terms is exact the
Ts,00 = P (H̄ = 0|H = 0). �e remaining three elements can be represented in the same
way. �e primal representations are as follows,

Ts,00 =

∑
i 6=i′,j 6=j′ Tc,ijTc,i′j′∑
i 6=i′ Tc,ijTc,i′j′

, Ts,01 =

∑
i 6=i′,j=j′ Tc,ijTc,i′j′∑
i 6=i′ Tc,ijTc,i′j′

,

Ts,10 =

∑
i=i′,j 6=j′ Tc,ijTc,i′j′∑
i=i′ Tc,ijTc,i′j′

, Ts,11 =

∑
i=i′,j=j′ Tc,ijTc,i′j′∑
i=i′ Tc,ijTc,i′j′

.

Further, note that∑
i=i′

Tc,i,jTc,i′,j′ =
∑
i,j,j′

Tc,i,jTc,i,j′ =
∑
i

(
∑
j

Tc,i,j)(
∑
j′

Tc,i,j′) = c,∑
i 6=i′

Tc,i,jTc,i′,j′ =
∑

i 6=i′,j,j′
Tc,i,jTc,i′,j′ =

∑
i 6=i′

(
∑
j

Tc,i,j)(
∑
j′

Tc,i,j′) = (c− 1)c,∑
i=i′,j=j′

Tc,ijTc,i′j′ = ||Tc||2Fro,∑
i 6=i′,j=j′

Tc,ijTc,i′j′ =
∑
j

(
∑
i

Tc,ij)
2 − ||Tc||2Fro.

Substituting above equations to the primal representations, we have the �eorem 1 proved.
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B Pointwise implies pairwise
For an invertible Tc, denote by vj the j-th column of Tc and 1 the all-one vector. �en,∑

j

(
∑
i

Tc,ij)
2 =

∑
j

〈vj,1〉2 ≤
∑
j

||vj||2||1||2 = c||Tc||2Fro,

where we use the Cauchy–Schwarz inequality [Steele, 2004] in the second step. Further,
we have

Ts,11 + Ts,00 =
||Tc||2Fro

c
+
c2 − c−

(∑
j(
∑

i Tc,ij)
2 − ||Tc||2Fro

)
c2 − c

=
(c− 1)||Tc||2Fro + c2 − c−

(∑
j(
∑

i Tc,ij)
2 − ||Tc||2Fro

)
c2 − c

=
(c− 1)||Tc||2Fro + c2 − c−

(∑
j〈vj,1〉2 − ||Tc||2Fro

)
c2 − c

≥
(c− 1)||Tc||2Fro + c2 − c−

(
c||Tc||2Fro − ||Tc||2Fro

)
c2 − c

= 1.

�us the learnability of the pointwise classi�cation implies the learnability of the reduced
pairwise classi�cation.

C Proof of �eorem 2
�eorem 2. Assume that the dataset is balanced (each class has the same amount of samples),
and the noise is class-dependent. When the number of classes c ≥ 8, the noise rate of noisy
similarity labels is lower than that of the noisy class labels.

Proof. Assume each class has n points. As we state in the proof of �eorem 1, the number
of data pairs with clean similarity labels H = 0 and noisy similarity labels H̄ = 0 is
n2
∑

i 6=i′,j 6=j′ Tc,ijTc,i′j′ . We denote it by N00. Similarly, we have,

N00 = n2
∑

i 6=i′,j 6=j′
Tc,ijTc,i′j′ , N01 = n2

∑
i 6=i′,j=j′

Tc,ijTc,i′j′ ,

N10 = n2
∑

i=i′,j 6=j′
Tc,ijTc,i′j′ , N11 = n2

∑
i=i′,j=j′

Tc,ijTc,i′j′ .

�e noise rate is the proportion of the number of noisy labels to the number of total labels.
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Assume that the number of classes is c. We have

Snoise =
N01 +N10

N00 +N01 +N10 +N11

=
N01 +N10

c2n2
,

Cnoise =
n
∑

i 6=j Tc,ij

cn
.

Let Snoise minus Cnoise, we have

Snoise − Cnoise =
n2
∑

i 6=i′,j=j′ Tc,ijTc,i′j′ + n2
∑

i=i′,j 6=j′ Tc,ijTc,i′j′

c2n2
−
n
∑

i 6=j Tc,ij

cn

=

∑
i 6=i′,j=j′ Tc,ijTc,i′j′ +

∑
i=i′,j 6=j′ Tc,ijTc,i′j′ − c

∑
i 6=j Tc,ij

c2
.

Let A =
∑

i 6=i′,j=j′ Tc,ijTc,i′j′ +
∑

i=i′,j 6=j′ Tc,ijTc,i′j′ − c
∑

i 6=j Tc,ij , we have

A =
∑

i 6=i′,j=j′
Tc,ijTc,i′j′ +

∑
i=i′,j 6=j′

Tc,ijTc,i′j′ − c
∑
i 6=j

Tc,ij

=
∑

i 6=i′,j=j′
Tc,ijTc,i′j′ +

∑
i=i′,j 6=j′

Tc,ijTc,i′j′ − c(
∑
i,j

Tc,ij −
∑
i=j

Tc,ij)

=
∑

i 6=i′,j=j′
Tc,ijTc,i′j′ +

∑
i=i′,j 6=j′

Tc,ijTc,i′j′ − c2 + c
∑
i=j

Tc,ij.

�e second equation holds because the row sum of Tc is 1.
For the �rst term

∑
i 6=i′,j=j′ Tc,ijTc,i′j′ , notice that:∑

i 6=i′,j=j′
Tc,ijTc,i′j′ =

∑
j

∑
i

Tc,ij(
∑
i′ 6=i

Tc,i′j)

=
∑
j

∑
i

Tc,ij(
∑
i′ 6=i

Tc,i′j + Tc,ij − Tc,ij)

=
∑
j

∑
i

Tc,ij(
∑
i′

Tc,i′j − Tc,ij)

=
∑
j

∑
i

Tc,ij(Sj − Tc,ij) (Sj is the column sum of the j − th column)

=
∑
j

∑
i

Tc,ijSj − T 2
c,ij

=
∑
j

Sj
∑
i

Tc,ij −
∑
j

∑
i

T 2
c,ij

=
∑
j

S2
j −

∑
j

∑
i

T 2
c,ij. (1)
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Due to the symmetry of i and j, for the second term
∑

i=i′,j 6=j′ Tc,ijTc,i′j′ , we have∑
i=i′,j 6=j′

Tc,ijTc,i′j′ =
∑
j

∑
i

Tc,ij(Ri − Tc,ij) (Ri is the row sum of the i− th row, and Ri = 1)

=
∑
j

∑
i

Tc,ij − T 2
c,ij

= c−
∑
j

∑
i

T 2
c,ij. (2)

�erefore, substituting Equation (1) and (2) into A, we have

A =
∑
j

S2
j −

∑
j

∑
i

T 2
c,ij + c−

∑
j

∑
i

T 2
c,ij − c2 + c

∑
i=j

Tc,ij.

To prove Snoise − Cnoise ≤ 0 is equivalent to prove A ≤ 0.
Let M = c2 − c, N =

∑
j S

2
j − 2

∑
j

∑
i T

2
ij + c

∑
i=j Tij (we drop the subscript c in

Tc,ij), and A = N −M . Now we utilize the Adjustment method [Su and Xiong, 2015] to
scale N . For every iteration, we denote the original N by No, and the adjusted N by Na.

Since c ≥ 8, there can not exist three columns with column sum bigger than c/2− 1.
Otherwise, the sum of the three columns will be bigger than c, which is impossible because
the sum of the whole matrix is c.

�erefore, �rst, we assume that the j, k − th columns have column sum bigger than
c/2− 1. �en, for the row i, we add the elements l, which are not in j, k − th columns, to
the diagonal element. We have

Na −No = (Si + Til)
2 + (Sl + Til)

2 + cTil − 2(Tii + Til)
2 − S2

i − S2
l + 2(T 2

ii + T 2
il)

= Til(2Til + 2Si − 2Sl + c− 4Tii)

≥ Til(2Til − 2Sl + c− 2Tii) (∵ Si ≥ Tii)
> Til(2Til − c+ 2 + c− 2Tii) (∵ Sl < c/2− 1)
≥ 0. (∵ Tii ≤ 1)

We do such adjustment to every rows, then Na is ge�ing bigger and the adjusted matrix
will only have values on diagonal elements and the j, k − th columns. Since the diagonal
elements are dominant in the row, Sj +Sk < 2c/3 + 2/3 (because for i 6= j, k, Tij + Tik <
2/3).

Assume that the column sum of k − th column is no bigger than that of the j − th
column, and thus Sk < c/3 + 1/3. �en, for a row i, we add the Tik to Tii. We have

Na −No = (Si + Tik)
2 + (Sk + Tik)

2 + cTik − 2(Tii + Tik)
2 − S2

i − S2
k + 2(T 2

ii + T 2
ik)

= Tik(2Tik + 2Si − 2Sk + c− 4Tii)

≥ Tik(2Tik − 2Sk + c− 2Tii) (∵ Si ≥ Tii)
> Tik(2Tik + c/3− 2/3− 2Tii) (∵ Sk < c/3 + 1/3)
≥ 0. (∵ c ≥ 8, and Tii ≤ 1)
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We do such adjustment to every rows, then Na is ge�ing bigger and the adjusted matrix
will only have values on diagonal elements and the j − th column, which is called �nal
matrix.

Note that if there is only one column with a column sum bigger than c/2− 1, we can
adjust the rest c− 1 columns as above and then obtain the �nal matrix as well. If there
is no column with a column sum bigger than c/2− 1, we can adjust all the elements as
above and then obtain a unit matrix. For the unit matrix, A = N −M < Na −M = 0,
the �eorem 2 is proved.

Now we process the �nal matrix. For simpli�cation, we assume j = 0 in the �nal
matrix. We denote the Tij by bi and Tii by ai, for i = {1, . . . , c− 1}. We have

Na =
∑
i

a2
i + (1 +

∑
i

bi)
2 + c(

∑
i

ai + 1)− 2(
∑
i

a2
i +

∑
i

b2
i + 1)

= (1 +
∑
i

bi)
2 + c

∑
i

ai + c−
∑
i

a2
i − 2

∑
i

b2
i − 2

= 1 + (
∑
i

bi)
2 + 2

∑
i

bi + c
∑
i

ai + c−
∑
i

a2
i − 2

∑
i

b2
i − 2

= (
∑
i

bi)
2 + 2

∑
i

bi − 2
∑
i

b2
i + c

∑
i

ai −
∑
i

a2
i + c− 1

= (
∑
i

bi)
2 + 2

∑
i

bi − 2
∑
i

b2
i + c

∑
i

(1− bi)−
∑
i

(1− bi)2 + c− 1

= (
∑
i

bi)
2 + 2

∑
i

bi − 2
∑
i

b2
i + c2 − c− c

∑
i

bi −
∑
i

(1− 2bi + b2
i ) + c− 1

= (
∑
i

bi)
2 + 4

∑
i

bi − 3
∑
i

b2
i − c

∑
i

bi + c2 − c.

Now we prove A = N −M ≤ Na −M ≤ 0. Note that

Na −M = (
∑
i

bi)
2 + 4

∑
i

bi − 3
∑
i

b2
i − c

∑
i

bi

= (
∑
i

bi)
2 + 3

∑
i

bi − 3
∑
i

b2
i − (c− 1)

∑
i

bi

= (
∑
i

bi)
2 + 3

∑
i

bi − 3
∑
i

b2
i − (

∑
i

(1− bi) +
∑
i

bi)
∑
i

bi

= 3
∑
i

bi − 3
∑
i

b2
i −

∑
i

(1− bi)
∑
i

bi

= 3
∑
i

bi(1− bi)−
∑
i

(1− bi)
∑
i

bi.

According to the rearrangement inequality[Hardy et al., 1952], we have∑
i

(1− bi)
∑
i

bi ≥ (c− 1)
∑
i

bi(1− bi).
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Note that c ≥ 8, thus 3
∑

i bi(1 − bi) −
∑

i(1 − bi)
∑

i bi ≤ 0, and A ≤ 0. �erefore
Snoise − Cnoise ≤ 0, and the equation holds if and only if the noise rate is 0 or every
instances have the same noisy class label (i.e., there is one column in the Tc, of which every
elements are 1, and the rest elements of the Tc are 0). Above two extreme situations are
not considered in this paper. Namely, the noise rate of the noisy similarity labels is lower
than that of the noisy class labels. �eorem 2 is proved.

D Implementation of Class2Simi with Reweight
�e expected risk for clean pairwise data is

R(f) = E(Xi,Xj ,Hij)∼D[`(〈f(Xi), f(Xj)〉, Hij)],

where

`(〈f(Xi), f(Xj)〉, Hij) =−
∑
i,j

Hij log(〈f(Xi), f(Xj)〉) + (1−Hij) log(1− 〈f(Xi), f(Xj)〉),

−
∑
i,j

Hij log Ŝij + (1−Hij) log(1− Ŝij).

Here, we employ the importance reweighting technique to build a risk-consistent algorithms.
Speci�cally,

R(f) = E(Xi,Xj ,Hij)∼D[`(〈f(Xi), f(Xj)〉, Hij)]

=

∫
(xi,xj)

∑
k

PD(Xi = xi, Xj = xj, Hij = k)`(〈f(Xi), f(Xj)〉, Hij)d(xi, xj)

=

∫
(xi,xj)

∑
k

PDρ(Xi, Xj, H̄ij = k)
PD(Xi, Xj, Hij = k)

PDρ(Xi, Xj, H̄ij = k)
`(〈f(Xi), f(Xj)〉, Hij = k)d(xi, xj)

=

∫
(xi,xj)

∑
k

PDρ(Xi, Xj, H̄ij = k)
PD(Hij = k|Xi, Xj)

PDρ(H̄ij = k|Xi, Xj)
`(〈f(Xi), f(Xj)〉, Hij = k)d(xi, xj)

= E(Xi,Xj ,H̄ij)∼Dρ [
¯̀(〈f(Xi), f(Xj)〉, H̄ij)],

where D denotes the distribution of clean data; D denotes the distribution of noisy data,
and

¯̀(〈f(Xi), f(Xj)〉, H̄ij) =
PD(Hij = H̄ij|Xi, Xj)

PDρ(H̄ij|Xi, Xj)
`(〈f(Xi), f(Xj)〉, H̄ij).

Empirically, as shown in Figrue 1, we use Ŝij = f (Xi)
> f (Xj) to measure the similarity

of two points in a pair. P (Hij = 1|Xi, Xj) and P (Hij = 0|Xi, Xj) are approximated by
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Figure 1: Pipeline of Class2Simi with Reweight.

Ŝij and 1 − Ŝij , respectively. �en P
(
H̄ij | Xi, Xj

)
can be approximated according to

P
(
H̄ij | Xi, Xj

)
= T>s P (Hij | Xi, Xj). �us a risk-consistent estimator can be built:

Rn(f) =
1

n2

n∑
i=1

n∑
j=1

α`(〈f(Xi), f(Xj)〉, H̄ij),

where

α =

{
H̄ij

Ŝij

Ts,11Ŝij + Ts,01(1− Ŝij)
+ (1− H̄ij)

1− Ŝij
Ts,10Ŝij + Ts,00(1− Ŝij)

}
.

E Proof of �eorem 3
�eorem 3. Assume the parameter matrices W1, . . . ,Wd have Frobenius norm at most
M1, . . . ,Md, and the activation functions are 1-Lipschitz, positive-homogeneous, and applied
element-wise (such as the ReLU). Assume the transition matrix is given, and the instances X
are upper bounded by B, i.e., ‖X‖ ≤ B for all X , and the loss function ` is upper bounded
byM . �en, for any δ > 0, with probability at least 1− δ,

R(f̂)−Rn(f̂) ≤ (Ts,11 − Ts,01)2Bc(
√

2d log 2 + 1)Πd
i=1Mi

Ts,11

√
n

+M

√
log 1/δ

2n
. (3)

Proof. We have de�ned

R(f) = E(Xi,Xj ,Ȳi,Ȳj ,H̄ij ,Ts)∼Dρ [`(f(Xi), f(Xj), Ts, H̄ij)], (4)

and

Rn(f) =
1

n2

n∑
i=1

n∑
j=1

`(f(Xi), f(Xj), Ts, H̄ij), (5)

where n is training sample size of the noisy data.
First, we bound the generalization error with Rademacher complexity [Bartle� and

Mendelson, 2002].
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�eorem 4 (Bartle� and Mendelson [2002]). Let the loss function be upper bounded byM .
�en, for any δ > 0, with the probability 1− δ, we have

sup
f∈F
|R(f)−Rn(f)| ≤ 2Rn(` ◦ F) +M

√
log 1/δ

2n
, (6)

where Rn(` ◦ F) is the Rademacher complexity de�ned by

Rn(` ◦ F) = E

[
sup
f∈F

1

n

n∑
i=1

σi`(f(Xi), f(Xj), Ts, H̄ij)

]
, (7)

and {σ1, · · · , σn} are Rademacher variables uniformly distributed from {−1, 1}.

Before further upper bound the Rademacher complexity Rn(` ◦ F), we discuss the
special loss function and its Lipschitz continuity w.r.t hk(Xi), k = {1, . . . , c}.

Lemma 1. Given similarity transition matrix Ts, loss function `(f(Xi), f(Xj), Ts, H̄ij) is
µ-Lipschitz with respect to hk(Xi), k = {1, . . . , c}, and µ = (Ts,11 − Ts,01)/Ts,11∣∣∣∣∂`(f(Xi), f(Xj), Ts, H̄ij)

∂hk(Xi)

∣∣∣∣ < Ts,11 − Ts,01

Ts,11

. (8)

Detailed proof of Lemma 1 can be found in Section E.1.
Lemma 1 shows that the loss function is µ-Lipschitz with respect to hk(Xi), k =

{1, . . . , c}.
Based on Lemma 1, we can further upper bound the Rademacher complexity Rn(` ◦F)

by the following lemma.

Lemma2. Given similarity transitionmatrixTs and assume that loss function `(f(Xi), f(Xj), Ts, H̄ij)
is µ-Lipschitz with respect to hk(Xi), k = {1, . . . , c}, we have

Rn(` ◦ F) = E

[
sup
f∈F

1

n

n∑
i=1

σi`(f(Xi), f(Xj), Ts, H̄ij)

]

≤ µcE

[
sup
h∈H

1

n

n∑
i=1

σih(Xi)

]
, (9)

where H is the function class induced by the deep neural network.

Detailed proof of Lemma 2 can be found in Section E.2.
�e right-hand side of the above inequality, indicating the hypothesis complexity of

deep neural networks and bounding the Rademacher complexity, can be bounded by the
following theorem.
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�eorem 5. [Golowich et al., 2018] Assume the Frobenius norm of the weight matrices
W1, . . . ,Wd are at mostM1, . . . ,Md. Let the activation functions be 1-Lipschitz, positive-
homogeneous, and applied element-wise (such as the ReLU). LetX is upper bounded by B, i.e.,
for any X , ‖X‖ ≤ B. �en,

E

[
sup
h∈H

1

n

n∑
i=1

σih(Xi)

]
≤ B(

√
2d log 2 + 1)Πd

i=1Mi√
n

. (10)

Combining Lemma 1,2, and �eorem 4, 5, �eorem 3 is proved.

E.1 Proof of Lemma 1
Recall that

`(f(Xi), f(Xj), Ts, H̄ij = 1) = − log( ˆ̄Sij)

= − log(Ŝij × Ts,11 + (1− Ŝij)× Ts,01)

= − log(f(Xi)
>f(Xj)× Ts,11 + (1− f(Xi)

>f(Xj))× Ts,01),
(11)

where

f(Xi) = [f1(Xi), . . . , fc(Xi)]
>

=

[(
exp(h1(X))∑c
k=1 exp(hk(X))

)
, . . . ,

(
exp(hc(X))∑c
k=1 exp(hk(X))

)]>
. (12)

Take the derivative of `(f(Xi), f(Xj), Ts, H̄ij = 1) w.r.t. hk(Xi), we have

∂`(f(Xi), f(Xj), Ts, H̄ij = 1)

∂hk(Xi)
=
∂`(f(Xi), f(Xj), Ts, H̄ij = 1)

∂ ˆ̄Sij

[ ∂f(Xi)

∂hk(Xi)

]> ∂ ˆ̄Sij
∂f(Xi)

,

(13)
where

∂`(f(Xi), f(Xj), Ts, H̄ij = 1)

∂ ˆ̄Sij
= − 1

f(Xi)>f(Xj)× Ts,11 + (1− f(Xi)>f(Xj))× Ts,01

,

∂ ˆ̄Sij
∂f(Xi)

= f(Xj)× Ts,11 − f(Xj)× Ts,01,

∂f(Xi)

∂hk(Xi)
= f ′(Xi) = [f ′1(Xi), . . . , f

′
c(Xi)]

>.

Note that the derivative of the so�max function has some properties, i.e., if m 6= k,
f ′m(Xi) = −fm(Xi)fk(Xi) and if m = k, f ′k(Xi) = (1− fk(Xi))fk(Xi).
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We denote by V ectorm the m − th element in V ector for those complex vectors.
Because 0 < fm(Xi) < 1,∀m ∈ {1, . . . , c}, we have

f ′m(Xi) ≤ |f ′m(Xi)| < fm(Xi), ∀m ∈ {1, . . . , c}; (14)
f ′(Xi)

>f(Xj) < f(Xi)
>f(Xj). (15)

�erefore,∣∣∣∣∂`(f(Xi), f(Xj), Ts, H̄ij = 1)

∂hk(Xi)

∣∣∣∣ =

∣∣∣∣∣∂`(f(Xi), f(Xj), Ts, H̄ij = 1)

∂ ˆ̄Sij

[ ∂f(Xi)

∂hk(Xi)

]> ∂ ˆ̄Sij
∂f(Xi)

∣∣∣∣∣
=

∣∣∣∣ f ′(Xi)
>f(Xj)× Ts,11 − f ′(Xi)

>f(Xj)× Ts,01

f(Xi)>f(Xj)× Ts,11 + (1− f(Xi)>f(Xj))× Ts,01

∣∣∣∣
<

∣∣∣∣ f(Xi)
>f(Xj)× Ts,11 − f(Xi)

>f(Xj)× Ts,01

f(Xi)>f(Xj)× Ts,11 + (1− f(Xi)>f(Xj))× Ts,01

∣∣∣∣
<

∣∣∣∣Ts,11 − Ts,01

Ts,11

∣∣∣∣
=
Ts,11 − Ts,01

Ts,11

. (16)

�e second inequality holds because of Ts,11 > Ts,01 (Detailed proof can be found in Section
E.1.1) and Equation (20). �e third inequality holds because of f(Xi)

>f(Xj) < 1.
Similarly, we can prove∣∣∣∣∂`(f(Xi), f(Xj), Ts, H̄ij = 0)

∂hk(Xi)

∣∣∣∣ < Ts,11 − Ts,01

Ts,11

. (17)

Combining Equation (16) and Equation (17), we obtain∣∣∣∣∂`(f(Xi), f(Xj), Ts, H̄ij)

∂hk(Xi)

∣∣∣∣ < Ts,11 − Ts,01

Ts,11

. (18)

E.1.1 Proof of Ts,11 > Ts,01

As we mentioned in Section C, we have,

N00 = n2
∑

i 6=i′,j 6=j′
Tc,ijTc,i′j′ , N01 = n2

∑
i 6=i′,j=j′

Tc,ijTc,i′j′ ,

N10 = n2
∑

i=i′,j 6=j′
Tc,ijTc,i′j′ , N11 = n2

∑
i=i′,j=j′

Tc,ijTc,i′j′ ,

Ts,01 =
N01

N00 +N01

, Ts,11 =
N11

N10 +N11

,

Ts,11 − Ts,01 =
N11N00 +N11N01 −N01N10 −N01N11

(N00 +N01)(N10 +N11)
.

10



Let us review the de�nition of similarity labels: if two instances belong to the same class,
they will have similarity label S = 1, otherwise S = 0. �at is to say, for a k-class dataset,
only 1

k
of similarity data has similarity labels S = 1, and the rest 1 − 1

k
has similarity

labels S = 0. We denote the number of data with similarity labels S = 1 by N1, otherwise
N0. �erefore, for the balanced dataset with n samples of each class, N1 = cn2, and
N0 = c(c− 1)n2. Let A = Ts,11 − Ts,01, we have

A = N11N00 −N01N10

= N11N00 − (N0 −N00)(N1 −N11)

= N11N00 −N0N1 −N11N00 +N11N0 +N1N00

= N11N0 −N01N1

= c(c− 1)n2N11 − cn2N01

> 0.

�e last equation holds because of (c− 1)N11 −N01 > 0 according to the rearrangement
inequality [Hardy et al., 1952].

E.2 Proof of Lemma 2

E

[
sup
f∈F

1

n

n∑
i=1

σi`(f(Xi), f(Xj), Ts, H̄ij)

]

= E

[
sup
g

1

n

n∑
i=1

σi`(f(Xi), f(Xj), Ts, H̄ij)

]

= E

[
sup

argmax{h1,...,hc}

1

n

n∑
i=1

σi`(f(Xi), f(Xj), Ts, H̄ij)

]

= E

[
sup

max{h1,...,hc}

1

n

n∑
i=1

σi`(f(Xi), f(Xj), Ts, H̄ij)

]

≤ E

[
c∑

k=1

sup
hk∈H

1

n

n∑
i=1

σi`(f(Xi), f(Xj), Ts, H̄ij)

]

=
c∑

k=1

E

[
sup
hk∈H

1

n

n∑
i=1

σi`(f(Xi), f(Xj), Ts, H̄ij)

]

≤ µcE

[
sup
hk∈H

1

n

n∑
i=1

σihk(Xi)

]

= µcE

[
sup
h∈H

1

n

n∑
i=1

σih(Xi)

]
,
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where the �rst three equations hold because given Ts, f and max{h1, . . . , hc} give the same
constraint on hj(Xi), j = {1, . . . , c}; the sixth inequality holds because of the Talagrand
Contraction Lemma [Ledoux and Talagrand, 2013].

F Further details on experiments

F.1 Network structure and optimization
Note that for CIFAR-10, we use ResNet-26 with shake-shake regularization [Gastaldi, 2017]
except the experiment on noisy Tc in Figure 4, where we use ResNet-32 with pre-activation
[He et al., 2016] for shorter training time. In stage 1, We use the same optimization method
as Forward to learn the transition matrix T̂c. In stage 2, we use Adam optimizer with an
initial learning rate 0.001. On MNIST, the batch size is 128 and the learning rate decays
every 5 epochs by a factor of 0.1 with 30 epochs in total. On CIFAR-10, the batch size is 512
and the learning rate decays every 40 epochs by a factor of 0.1 with 200 epochs in total. On
CIFAR-100, the batch size is 512 and the learning rate decays every 40 epochs by a factor of
0.1 with 120 epochs in total. On News20, the batch size is 128 and the learning rate decays
every 5 epochs by a factor of 0.1 with 30 epochs in total. On Clothing1M*, the batch size is
32 and the learning rate drops every 5 epochs by a factor of 0.1 with 10 epochs in total.

F.2 Symmetric and asymmetric noise settings
Symmetric noise se�ing is de�ned as follow, where c is the number of classes.

Sym-ρ: T =


1− ρ ρ

C−1
. . . ρ

C−1
ρ

C−1
ρ

C−1
1− ρ ρ

C−1
. . . ρ

C−1
... . . . ...
ρ

C−1
. . . ρ

C−1
1− ρ ρ

C−1
ρ

C−1
ρ

C−1
. . . ρ

C−1
1− ρ

 . (19)

�e asymmetric noise se�ing is set as follow,
Listing 1: Asymmetric noise (transition matrix) generation.

1 def AsymTransitionMatrixGenerate(NoiseRate=0.3,
NumClasses=10, seed=1):

2 np.random.seed(seed)
3 t = np.random.rand(NumClasses, NumClasses)
4 i = np.eye(NumClasses)
5 t = t + Coef * NumClasses * i
6 for a in range(NumClasses):
7 t[a] = t[a] / t[a].sum()
8 return t

Coef is set to 1.70, 1.20, 0.60, 0.24 at the rate 0.2, 0.3, 0.4, 0.6, respectively.
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