Reinforcement Learning with Adversarial Corruption

A. Proof of Theorem 1
To start, we list some technical lemmas. Then we prove that our estimation of the Q-function is optimistic with high
probability, i.e., Q% (s, a) > Q} (s, a). We begin by proving Lemma 1 and cite a lemma in (Zhang et al., 2020a).

Lemma 2 (Bennet’s inequality.). Let Z, 71,Z, be i.i.d. random variables with values in [0, 1] and let 6 > 0. Define
VZ = E[(Z — EZ)?]. Then we have

—*ZZ| 2VZln(2/5) Wm2/8), _

n

Lemma 3 (Lemma 10 in (Zhang et al., 2020a).). Let (M,,)n>0 be a martingale such that My = 0 and |M,, — M,,_1]| < ¢
for some ¢ > 0 and any n > 1. Let Var,, = > ,_, E[(M}, — My_1)?|Fx_1] for n > 0, where Fj, = o(Mj, ..., My,). Then
for any positive integer n, and any €, > 0, we have that

P[|M,| > 2v/2+/Var, In(1/6) + 2v/eIn(1/6) + 2¢In(1/8)] < 2(logy(— —)+1)0.

A.1. Proof of Lemma 1
Proof. Recall that Qp, (s, a) — Qn(s,a) = (7(s,a) — #(s,a)) + (Ps.a — Pea)Viy1 + (bn(s,a) — by(s,a)), where

o V(P, Vi)t f(s a)t L

bn =c1 max{n(s,a),1} e max{n(s,a), 1} tos max{A(s,a),1}’

. . V(P Vh+1 . { L }
by, =c1 min + ¢o min +czmin ——— 1
" [ii(s,a) = C| ’ { [ii(s,a) = C] > cr } T Uals a) = €

: VCu
+2m1n{|ﬁ()c| } (a1 +02)m1n{n(s’a)_c,1}.

We prove the next lemma that characterize the the difference between biased and unbiased estimators,

Lemma 4. For any vector V € R®, V(s) € [0,1] for any s € S, it holds that

- . C
P, — Ps <2min{——,1 4
H s,a 5,a||1 =~ mln{|fz(s,a)—C|’ }a ()
~ . C
P’a, - Psa7 S i ~771)
V(Pu V) = V(P V)| < Bmin{ et 1) ®)
] < min{ . 1) ©
For (4), we calculate that
|| s,a 9a||1*Z‘P9a9/*Asa,s’|
_Z‘ (s,a,8") ns,a, s)l
(s,a) (s, a)
(s,a,s) n(s,a,s’)
< _
_Z‘ n(s,a) fL(sa)—Cl
sa\nsas) f(s,a,s’)| Cn(s,a,s)
_Z +
(s,a)|n(s,a) — C| n(s,a)|n(s,a) — C|

< 2C
~a(s,a) = Cf

Reinforcement Learning with Adversarial Corruption

Here the second inequality holds because 3°, |7i(s, a, s') — 7i(s,a,s')| < C for any s, a. Note that || P, — Pl <2,
we have (4) holds. For (5),

[V(Pya, V) = V(Pia, V)|
<P a(V)? = Poa(V)? + [(PeaV)? = (PeaV)?|
<||Pyso — Pyalli + || Ps.a — Psall1 (PV + PV)
<3||Psa — Peallr

Hence by (4), we finished the proof of (5) (6) comes straight from the definition of 7 and 7. Finally, by plugging (4), (5)
and (6) into @)y, — Qh and using (P — Ps o) Vhi1 < HPS o — Ps.al||1, we finished the proof of Lemma 1. O

Recall that the Lemma 1 in (Zhang et al., 20204a) states that Q% (s, a) > Q7 (s, a) holds with probability 1—25 A (log, (K H)+
1)d, as aresult, Q% (s,a) > Q; (s, a), which implies that our estimation of Q-function is optimistic. We denote by &; the
event that Q% (s,a) > Qj (s, a) for any (k, h, s, a).

A.2. Bounding Bellman Error

We begin with the following lemma that bounds the Bellman error induced by the ()-function.
Lemma 5. With probability 1 — 3S? AH (logy(KH) + 1)6, forany 1 < k < K, 1 < h < H and (s, a), it holds that

Qlf;(s, a) —r(s,a) — PS7thk+1

) e WP Vi) [25V(Pa, VE, — Vi) 28
< min{ 25 +1 h+1 ~ Va1 1 7
< min{2by, (s, a) + n(s,a)+C + \/ n* (s, a) + nk(s,a) + 30k (s,a)’ } ™

Proof. Under event £, we have that with probability 1 — SAH (log, (K H) + 1)0, for all (s,a, k,h) € S x A x [K] x [H],
Qﬁ(& a) —r(s,a) — Ps’aV,fZr1
SFZ(& a) —r(s,a) + 61}2(57@) + (ps,a - ps,a)vhk+1 + (P Ps,a)(Vthl Vh*+1) + (P&a - Ps7a)Vh*+1
SZbﬁ(s,a) + (Ps,a - Ps,a)th+1 + (Ps,a - Ps,a)(vhk+1 Vh+1 + (s,a s7a)vh*+1~ 3

By Bennet’s inequality (Lemma 2) we have that for each s’,

2P 4 51t L

IP)Psas’_Psas’ > ~ ~
[1P5.a. a5 nk(s,a) = 3nF(s,a)

=

So with probability at least 1 — 56, we have,

(ps,a - Ps,a)(vh],c-u — Viy1) :Z(Peka st R@,a,(‘z’)(vh],c-i-l(sl) - Vh:-l(sl) - PS,a(Viﬂl = Vit1))

s/

QPS La,s'l * * SL
< Z (s, a) |Vf+1(5') — Vi () = Poa(Viiy = Vi) + 375 (s.q)

< nk(s,a) N St ©)
=\ 2SV(P. ., V., — Viy,) | 30F(s,a)

where the first equality holds because), P;f as = >« Ps.a,s» = 1 and the last inequality holds by Cauchy-Schwartz
inequality. By Bennet’s inequality again (Lemma 2), we obtain that

2V(Py 0, Vi))t .

Pl(P* — P,)V
H(s,a ,) h+1| > ﬁk(s,a) 3ka(S,G)

] <. (10)

Reinforcement Learning with Adversarial Corruption

On the other hand, we have that

(P p)V;fH :Z(ﬁ(:s,a, s') B ﬁ(s,a7s/))thH(sl)

< n(s,a)|n(s,a,s") —a(s,a,s’)| n Cn(s,a,s)
TS n(s,a)(n(s,a) + C) n(s,a)(n(s,a) + C)
2C
P
“n(s,a)+C’ an

where the first inequality holds because |7(s, a) — 7i(s,a)| < C, and the last inequality holds because), |72(s, a, s’) —
f(s,a,s")| < C. Combining (8), (9), (10) and (11) and via a union bound over k, h, s, a, we conclude that (7) holds with
probability 1 — 352 AH (log, (K H) + 1)d. O

In the rest of this section, we let ﬁ,’i (s, a) be the shorthand of RHS of (7), i.e.,

- 2V (Ps. o, Vi QSVPga,Vk -V
Br(s,a) := min{20% (s, a) + = 20 \/ (Poa, Vi 0 \/ Poa Vs = Viign)t 25 1}.

n(s,a)+C + nk (s, a) nk(s,a) 3nk(s,a)’

A.3. Regret Analysis

Let K be the set of indice of episodes in which no update is triggered. By the update rule, it is easy to see that |[K¢| <
SA(logy (K H)+1). Denote ho(k) to be the first time an update is triggered in the k-th episode if there is and otherwise H +1.
Define Xy = {(k, ho(k))|k € K} and X = {(k,h)|k € K, ho(k) + 1 < h < H}. We further define V;*(sF,al) =
[[(k,h) ¢ X]VE(sk, ak). We also set BF (¥, ak) = 1[(k, h) ¢ X|BF(sF,al) and 7F = 1[(k, h) ¢ X]r(sF,al). By Lemma
5, we have that with probability 1 — 3S?AH (log, (K H) + 1)6,

‘71116(555 ag) S F}}i + Bﬁ(sﬁv aﬁ) + R‘i,(lvif;lv
for any (k,h) ¢ X and

Vi (shy ap) < 7h + Bi(si, ai) + PaaVilys + 1,

for any (k,h) € Xp.
By Lemma 5, with probability at least 1 — 55? AH (log, (K H) + 1)6, it holds that

K

Regret(K) = Y (V7' (s¥) — Vi (s4))
k=1

Reinforcement Learning with Adversarial Corruption

Here the first inequality is due to the optimism of Q function, and the last inequality holds by Lemma 5. Deﬁne M, =
K H = o
Py Zh:1(Ps’;,a’;; V}fﬂ - th+1(5§+1)) Zk 1 Zh 1 Bii(sy. ap) and My = Zk 1(Zh 17 - Vr ()-

Bounding M;: For the M; term, we note that it can be viewed as a martingale. Hence by using a variance dependent
concentraion inequality (3), we have that

Pug ot Vi)+ 61] < 2(log, (K H) + 1)3.

uMm

K
‘M1|>2 Z

So in order to bound M, it suffices to bound My := Zle Zthl V(P ak x, ViF 1), We will deal with this term later.

S

Bounding M3: For the M3 term, we have

K H e
My =337k -V (sh)

k=1 h=1
K H K H

= Z Z(’;’i —ry)+ Z(Z ry— Vi (sh))
k=1h=1 k=1 h=1
K H K H s

<N skl =)+ > O rE =V (sh)). (13)
k=1h=1 k=1 h=1

For the first term 31 S (r(sk, ak) — rk) in (13), by (3), we obtain that

K H

r(sy,af) —ry)| > 2 22 Z Var(s,a)t + 6¢] < 2(logy(KH) + 1)0,
1 k=1h=1

Mm

DR

h

where Var(s, a) := E[(R(s,a) — E[R(s, a)])?]. Moreover, since the random variable R(s,a) € [0, 1], we have
K H K H
S S Vartea) € 33w < 3050k o) 8
k=1h=1 k=1h=1 k=1h=1

So we have P[| S5, S (r(s}. af) —)| > 24/ 250, S (s af) —) + K)o+ 61] < 2(logy(KCH) + 1)3,
which implies that with probability 1 — 2(log, (K H) + 1) we have

K H
Z r(sf,af) —) < 6VEKL+ 21 (14)

k=1h=1

=

For the second term in (13), because Z ey T — vV (%), k € [K] is a martingale. Hence by Azuma’s inequality, we have
with probability 1 — 4 it holds that

K H
SOk - (sh)| < V2K (15)

k=1 h=1

—

Combining (14) and (15), we have that P[|Ms| > 8V K¢ + 6] < 2(logy (K H) + 1)4.
Bounding M;: For the M5 term, recall that
(s, a) L 2C

V(P—Vh‘*‘l) __ TR\ %Y mnd ——— - mind — 2~
-’ (s.a) 0] T G o Y T M R g — o)

—|—m1n{ — \/a _|_ + C + \/V Ps' ,a Vh+l \/SV(PS,G,’ th+1 — Vht‘rl)L + SL

Ak (s, a) nk (s, a) fzk(s,a))'

, 1} + min{ 1}

Reinforcement Learning with Adversarial Corruption

First note that

L . 2C , VCu 20 CL
T —op P E Ty i e T Y e v o) T O G —ep

By Lemma 2, we have

O(min{

4 - 2P 4 st L
SPPsa,s — Psasr > — ~ =
J<PlPoas S nk(s,a) = 3nk(s,a)

A 3
PPy > Py 4 —t
[Ps.as 9" HWE + 3nk(s,a)

which implies that, with probability 1 — 252 AH (log, (K H) + 1), it holds that
V(ps,a,s’7 th+1) = Z ps,a,s/(vlf;rl(s/) - psk,avh}:tl)Q

Z s,a,s’ Vh+1) - PSythk+1)2

44

k ko2
< Z P os + m)(vh+l(s/) — Ps.aVii)
3 4S.
5 V(Py o, ViFy) + 3 (sa)

Note that V(P, X +Y) < 2(V(P,X) + V(P,Y)) for any P, X, Y, so we conclude that

S(l7

Th S, a 1} \/SV PS a’vh+1 V};_l)b

1} + min{ A (s, a)

5h(sa < O(min{ ¥ (s, q) —

*mm{\ W, a) o’ nk(s)

According to the update rule, despite those episodes in which an update is triggered, the number of visit of (s,a) between
the i-th update of Pé « and the 7 + 1-th update of Pé « do not exceeds 2¢71, i.e., for any (s,a) and any i > 3, we have

K H
DSOS Ik af) = (s,a), 75 (s,a) — C = 27 1I[(k, h) ¢ X] < 277 (16)

k=1h=1

Let | = max{i|2°~! + C < K H}. We calculate that

K H cu
> > min{ o 1[(k h) £ X]
k=1h=1 [7*(s,a) = O’
K H l ‘ c.
= Z Z Z(Z H[(SE, ah) = (87 a’)a ﬁk(sv a) -C= Qlil} Inin{ma 1}H[(k7 h) ¢ ‘X}
k=1h=1 s,a i=3)
+1[(s5,ak) = (s,a), 7" (s,a) — C < 4])
K H l _ c.
<SS Sk af) = (5,0), 3 (s,0) — C = 2 H(K,B) & X))+ (C o+ 4)
k=1h=1 s,a i=3
<> Cli+(C+4)SA (17)
:(37(0514). (18)

Here (17) is by using (16). Let w = {w;f >0]1 <h < H/1<Ek< K} bea group of non-negative weights such that

Reinforcement Learning with Adversarial Corruption

€ [0,1] for any k, h and wf = 0 if (k, h) € X. We prove the following useful inequality:

k

ZZmln{) C,l}

k=1h=1

K H l %
i wp
<IN D Ik af) = (s,0), 75 (s,0) =2 1]\/;+CSA+SSA(log2(KH) + AN

k=1 h=1 s,a i=3
l

K H
= ZZ (sf,af) = (s,a),7"(s,a) = 277 |y Jwke + CSA + 8SA(logy (K H) + 4)u
k: =1

s,a i=

i, | K&
<Z \/Zk 1Zh L I(s5, ap) 2(5 ,a), (s a) —C=2 ZZH (sk,af) = (s,a), 1k (s,a) — C = 2i=Hwk)

1

k=1h=1
(19)
+CSA+8SA(logy(KH) +4)
K H
<\ SALY S " wk+ CSA+8SA(logy(KH) + 4)e. (20)
k=1h=1

Here (19) is by Cauchy-Schwarz inequality and (20) is due to (16). By using the same technique (or see (29) in (Zhang
et al., 2020a)), we can prove that

K H 7
h
— + 85A(logy(KH) + 4). (1)
2 2\ ek ah) :
Let I(k, h) be the shorthand of I[(k, h) ¢ X]. By plugging in respectively wy, = I(k, h)i (s}, ay), I (k, h)V(Py o, Vi)

into (20) and w} = I(k, h)V(V/F ; — V;*,) into (21), we obtain that

K H K H
<O(| SAY D V(Pyg o, Vi Ik B) + | S2ALD S V(Pye o, Vil = Vi)T (R, 1)

k=1h=1 k=1h=1

M=

K
+0(,| ALY
k=1

(s, ak)I(k,h) + O(CSA+ S?A) (22)

>

=1
We define M5 := Z,[le Zthl V(Pyr ViF L = Vi)I(k, h + 1). We state the following Lemmas in (Zhang et al.,
2020a) to complete the proof of Theorem 1, which we omit the detailed proof.

Lemma 6 (Lemma 5 in (Zhang et al., 2020a)). S p, S0 7 (sk, af)I(k,h) < 230 SO0, vk +454 < 2K +4SA.
Lemma 7 (Lemma 6 in (Zhang et al., 2020a)). With probability 1 — 2(logs (K H) + 1) logy (K H)4, it holds that

My < 2My 4+ 2|K°| 4+ 2K + max{46L,8\/(M2 + K€+ K)u+ 6L}.

Lemma 8 (Lemma 7 in (Zhang et al., 2020a)). With probability 1 — 2(log, (K H) + 1) log, (K H)4, it holds that

Ms < 2max{ Mo, 1} + 2|K%| + max{46¢, 8/ (My + [KC|) + 61}.

Reinforcement Learning with Adversarial Corruption

Combining the above lemmas with (22), we have that with probability 1 — (652 AH (logo (K H) + 1) + 6(logy (K H) +
1) log,(H))d,

My <O/ SAL(M, + [K€]) + \/S2 Alu(Ms + |KC|) + VSALK + CSA+ 5> Aulogy (K H)),

My <2M; + 2|K€| + max{461,8y/(My + 2K)i + 61},
M5 <2max{Ma, 1} + 2|K| + max{46:, / Mor + 61}.

Which implies that
My <O(VSAKIL + CSA + £/ S2Al\/ My3/2 + VSALK + S*Avlog, (K H)) (23)
O(VSAKIL + CSA+ S?Avlog,(KH)). (24)

Recalling (12) and (23), we conclude that, with probability 1 — (1052 AH (logy (K H) +2) +6(logy (K H) + 1) logy (K H) +
1)0,

Regret(K) <My + My + Mjs
<O(VSAKIL + S*Avlog,(KH) + CSA+ VKL)
=0O(VSAKIL + S?Avlog,(KH) + CSA).

Hence by rescaling §, we finish the proof of Theorem 1.

B. Proof of Theorem 3

Proof. First, since we run Algorithm 4 to learn a #2-policy cover, from Theorem 4, this requires

- (M*AH?] HMA | MPAH?
H(Né+N(;+N}’)):Q(eldl |)

VNG
Hmin™ Hmin :urnln
trajectories.

Next, we prove that in phase 2, Algorithm 2 learns a decoding function with ¢; decoding error, where ¢; is to be defined later.
Formally, we prove that the following condition holds with high probability:

Condition 1 (Bijection between learned and true states). There exists g < % such that there is a bijective mapping

2
ayp, : Sp — Sy, for which
Povglon(o) |fol@) = 8] 21— ar

In other words, this condition states that every estimated latent state § roughly corresponds to a true latent state o (§),
when we use the decoding function fh This is because all but an ¢; fraction of contexts drawn from «, (8) are decoded to
their true latent state, and for each latent state s, there is a distinct estimated state o 1(s) as the map a, is a bijection. For
simplicity, we define p(s,a) € RM to be the forward transition distribution over Sy, for s € Sj,_1 and a € A. We abuse
notation to similarly use p(3, a) € RM to be the vector {P(s | §,a)}scs, of conditional probabilities Sy, for § € S,_1 and
a € A. Note that unlike s € Sj,_1,5 € §h,1 is not a Markovian state and hence the conditional probability vector p($, a)
depends on the specific distribution over §h,1 x A. In the following we will use p” (8, a) to emphasize this dependency
where v is the distribution, where v is a distribution over §h,1 x A.

In the proof, we often compare two vectors indexed by Sy, and §h. We will assume the order of the indices of these two
vectors are matched according to ay,.

Establishing Condition 1. In order to establish the condition, we need to show that our decoding function fh predicts the
underlying latent state correctly almost always. We do this in two steps. Since the functions fh are derived based on g, and
¢h, we analyze the properties of these two objects in the following two lemmas in (Du et al., 2019). In order to state the first
lemma, we need some additional notation. Note that 775, and fh 1 induce a distribution over Sy, _1 X Sh 1 X AxS),. We denote

Reinforcement Learning with Adversarial Corruption

this distribution as v,. With this distribution, we define the conditional backward probability b,, : S, = A (gh_l X .A)
as
P (s1]8,a) P (8,a)

by, (3,a|s)) = g g
vh () | 1> Z§1,a1 pzh_l (5,1 | 3170'1)]Pwh (saal)

(25)

Recall that p;" ; above refers to the distribution over s} according the transition dynamics, when 3, a are induced by vy,
With this notation, we have the following lemma.

3 ~
Lemma 9 (Lemma G.2 in (Du et al., 2019)). Assume ¢; < %. Then the distributions b, (8,a | s') are well separated
Sfor any pair s, sh € Sy, :

B " HMmin?
by, (1) = bu, (s5)]| > Et 6)
Furthermore, if Ny = () (% log (%) , with probability at least 1 — 0/ H, for every s' € Sy, 8, satisfies
o AN & 1 Y Hmin } <
Pora(ls) [th (@) =bu, (), 2 o074l S 27)
Proof. See (Du et al., 2019) for details. O

The first part of Lemma 9 tell us that the latent states at level / are well separated if we embed them using ¢ (s') = by, (s)
as the state embedding. The second part guarantees that our regression procedure estimates this representation accurately.
Together, these assertions imply that any two contexts from the same latent state (up to an e fraction) are close to each other,
while contexts from two different latent states are well-separated. Formally, with probability at least 1 — % over the N,
training data:

1. Forany s’ € S, and z, 25 ~ ¢ (- | "), we have with probability at least 1 — 2¢¢ over the emission process

a ~ Hmin”Y
I8 (24) = &1 (5)l, < S

2. For any s}, s, € Sy, such that 8§ # sh, 2} ~ q(- | s}) and 2, ~ ¢ (- | s§), we have with probability at least 1 — 2¢¢ over
the emission process

R N Hmin”Y
lan (4) — & ()], > L]

In other words, the mapping of contexts, as performed through the functions g;, should be easy to cluster with each cluster
roughly corresponding to a true latent state. Our next lemma guarantees that with enough samples for clustering, this is
indeed the case.

Hmin 0
at least 1 — £ (1) for every s' € Sy, there exists at least one point z € Z such that z = gy, (') witha' ~ q(- | s') and

& @)~ B, ()] < i and 2) for every 2 = i ') € Z with a? ~ g (-1), [n (@)~ B, ()] < iy

Lemma 10 (Lemma G.3 in (Du et al., 2019)). If N, = © (M7A log (M)) and e < m we have with probability

Proof. See (Du et al., 2019) for details. O]

Based on Lemma 9 and 10, we can establish that Condition 1 holds with high probability. Note that Condition 1 consists of
two parts. The first part states that there exists a bijective map ay, : S, — Sp,. The second part states that the decoding error
is small. To prove the first part, we explicitly construct the map «ay, and show it is bijective. We define oy, : S, — S, as

ay, (8') = argmin Hgf) (s') — $(§’)) (28)

SESH

First observe that for any §’ € §h, by the second conclusion of Lemma 10 we know there exists s’ € Sy, such that

YMmin
— 100M A

|66 -6

Reinforcement Learning with Adversarial Corruption

This also implies for any s” # s’

|66 =)

> Y Hmin
— AMA

> o (s") = o (")l = |6 (5) — 6 ()

Therefore we know o, (§') = ¢/, i.e., ay, always maps the learned state to the correct original state.

We now prove ay, is injective, i.e., a(§) # oy, (§”) for § # §” € Sj. Suppose there are §',8” € S, such that

ap (§8') = ap (§") = ¢ for some s’ € Sy, Then using the second conclusion of Lemma 10, we know

6 —a6n|| < [66) -0 + o) -6 < dmn 29)

1~ 50MA

However, we know by Algorithm 2, every & # & € S), must satisfy
|06 -6

This leads to a contradiction and thus «y, is injective.

Y Hmin
30M A

>T=
1

Next we prove ay, is surjective, i.e., for every s’ € Sy, there exists 8’ € Sy, such that oy, (8") = &'. The first conclusion in
Lemma G. 3 guarantees that for each latent state s’ € S, there exists z = g (z') € Z with 2’ ~ ¢ (- | ¢') . The second
conclusion of Lemma 10 guarantees that
/ Y Hmin
z— ¢ (s, < Lo
Now we first assert that all points in a cluster are emitted from the same latent state by combining Equation (10), the second
part of Lemma G. 3 and our setting of 7. Now the second part of Lemma G. 3 implies that there exists §’ € Sy, such that

z—¢ (8")|| < Emia%, since z and o (8") correspond to g evaluated on two different contexts in the same cluster. Therefore
1
we have R R P~
AN Al < A _ A min
|e) -6 <o) —al, +[z—)|, < £k

Now we can show that a, (§') = s'. To do this, we show that ¢ (§) is closer to ¢ (s') than the embedding of any state in Sj,.
Using the second conclusion of Lemma G. 3 and Equation 10 we know for any s # s’

Tl " > N " . H’\ AN ’ S Y Hmin

(6@ =0 ()|| = lle () =0 = |3 —o ()] = Too

We know s" = argming g, Hgg(sl) - a(é’) H1 . Therefore, by the definition of «, we know «y, (§') = s. Now we have

finished the proof of the first part of Condition G.1.

For the second part of Condition G. 1, note for any s’ € Sy, and 2’ ~ ¢ (- | "), by Lemma G.2, we know with probability at
least 1 — ¢ over the emission process we have

ln (&) — ¢ (5)], < —Lhmin

100M A

(30)

For 8’ = ;! (), we have

< YHmin
1~ 50MA

|0 @) =6)| < len (@) =0 ()l + |0 () = ()

On the other hand, for §” € &), with 8 # ;' (s'), we have

&n @) =6)|, = = l18n @) = & (N1 + 116 () = & (e ("Dl = [(en () = 6 (5")
Therefore we have with probability at least 1 — ¢;

fu (') = argmin @ () ~ & (o)
§'eSp

which is equivalent to the second part of Condition G.1.

Combine the analysis above, we have the following lemma.

Reinforcement Learning with Adversarial Corruption

3
Lemma 11. Assume Ny = @(Mlog (%)) For any e < min{%,ﬁ}, set Ny =

Hmin

Q (Mlog (%)) then Algorithm 2 learns a decoding function f such that there is a bijective mapping

3 2
EfHmin Y

ap : §h — Sy, for which

Finally, we prove that with an eg-error decoding function, with high probability there will be at most 2e;T” + /27" In g
states in phase 3 where the agent makes a mistake. Here 7" is the total number of steps in phase 3. This allows us to call

CR-MVP with C = 27" + /27" In §.

Lemma 12. Assume that the decoding function has e ; decoding error; that is, ® (f(s) # s) < ¢;. Define N(s,a, s') as the
counter without error, and N (s, a, s') as the counter with error. we have

- - 2
P Z ‘N(s,a,s’) —N(s,a,s’)‘ < 2¢/T' + \/2T’1n5

s,a,s’

IN
| >

3D

Proof. This is a simple corollary of Chernoff-Hoeffding inequality. O

Combine the three parts of the algorithm together, we can bound the total regret as

~ 5
H(N, + Nj,+ N})+ H(Ng + Ny) + O < HMAK + H?M2?A+ HMA <efT' +4/T"In 2))
- (M*A*H%log|G| HMA MZ2AH? HMA MH
4 2 + + 3 + log +
Hmin™ Hmin Hinin Hmin)

343
HMA log (|g|H> +VHMAK + H>*M*A+ HM A <efT’ +4/T"In g))

3 2
€t lmin ™Y 0

Finally, by setting ¢ = \/ % log (%), the regret is upper bounded by

Homin

O (HPMPAE 4 poly(H, M, A, ik, 7—1)>, which finishes the proof.

C. Proof of Lower Bounds
C.1. Proof of Theorem 2

Proof. First we prove the lower bound in the multi-armed bandit case, i.e. when there is only one state and A actions (called
A arms in previous literature). Let £; and &; be two bandit instances. In &1, the reward of arm 1 is B er(%), and the reward
of the other A — 1 arms is Ber(0). There is no adversarial corruption in & . We denote Regret (A, &1, T) as the regret A

incurs under environment &; after " steps.

Let T,,(n) denote the number of times arm a is chosen in the first n steps. Under environment &;. The agent incurs regret
only when it makes a suboptimal action, which can only happen when it pulls arm a # 1. So the regret under £; can be
represented as
1A
Regret(A, &, T) = 5 > E[T;(T)] (32)

=2

Reinforcement Learning with Adversarial Corruption

Now we consider two cases: Case 1: Vi > 2, P 4 ¢, (T7 (T) > %) > % Then by Lemma 13, we have

Regret(A, &1, T g E[T, ; (33)

C(A —1n_ (& C(A-1)

> 7/ E (T) > 2/
> 16 P (i_Q Ts,:(T) > g) (34)

C(A-1)

> 7 35
2= 3 (35)
Case 2: Ji > 2, such that P 4 ¢, (T;(T) < c) . In this case we define another environment &, identical to & except

that the reward of arm 7 is Ber(1). And for the ﬁrst C times the agent pulls arm ¢, the adversary will corrupt the reward to
be Ber(0). In such environment, the corruption level is C' and the agent incurs regret at least each time the agent takes
action a # 1.

Now since the rewards £; and £, generate are the same before T;(T") exceeds , the agent will pull arms identical to that in

&1 when it runs algorithm A4, until it pulls arm ¢ for more than & times. So PP A,gz (T;(T) < §) > 1. Then the regret under
52 is
Regret(A, &, T ZE (36)
J;ﬁz
1 C C
> (T—Q) Pae, ZTj(T)zT—5 (37)
J#i
1 C C
= (T—-——=|P T(T) < — 38
2(2) A,Sl(()2> (38)
1 C
> (r-%
27 (2) (39)

Since T' > 2AC, in case 2 the regret is at least O(AC'), which completes the proof.

Now we consider the MDP case. Without loss of generosity, assume that S = A, where H is a positive integer. We
construct the following MDP with H horizon: In each episode the MDP starts from a fixed state s;. And for any h € [H],
in step h, each state s, can be represented by a sequence of actions with length A — 1. And when the environment is in
state s;, = (a1, ..., ap—1) and the agent takes action ay, it will transit to state sp,11 = (a1, ..., ap—1, ap). In other words, the
transition of this MDP can be represented by an A-nary tree, which is shown in Figure 1. The reward for the first H — 1
episodes are all 0, so the agent receives a reward signal only when it reaches a leaf node in step H.

Figure 1. An A-nary tree with three layers.

The MDP is equivalent to a multi-armed bandit problem with S A arms. So we can use the result on multi-armed bandits and
obtain a Q(C'SA) lower bound on the regret.

Lemma 13. Assume X; are nonnegative random variables and P(X; > C) > L for all i € [n]. Then P(}_" | X; >
ﬂ) > 1
/=3

Reinforcement Learning with Adversarial Corruption

Proof. Define Y; = min{C, X;}, then P(3_, X; > 2€) > P(3°1, Y; > 2€) Denote z = P(31, X; > <), then
nC - - nC' - nC' . nC
—<E Y,)<P Y; > —)nC+P Vi< —)— 40
2_(;)_(; 4)n+<; <) (40)
This yields
1
TSl (1) a2 g (41)
which finishes the proof. O

C.2. Proof of Proposition 1

Proof. As in the proof of Theorem 3, we define £ as a A-arm bandit instance without corruptions, and the reward vector of
the A arms is (3,0, ...,0). Consider running algorithm .A on &;. Suppose i = argmin; . ; £y [T;], where Tj is the number
of times arm ¢ is pulled and E; denotes taking expectation in £&;. We define environment & as follows: let the corruption
level C be [2E[T;]] + 1, and the reward vector is (3,0, ..., 0, 1,0, ...0), where the i-th element is 1. Moreover, the adversary

create a false O reward of the i-th arm whenever the i-th arm is pulled less than C' times.

First we consider the regret incurred in &£;. Note that by the definition of T;, the algorithm will incur at least O(IE[T;]) regret
in &1, since arm 4 is suboptimal in £; and is pulled for at least O(E[T;]) times. In &; the corruption level is 0, so the regret is
upper bounded by O(v/K). This implies that

O(VK) > Regret(A, &, K) > Q(E[T}]) = Q(C). (42)

On the other hand, consider running the algorithm .4 on &,. Since the agent will receive a reward of O for the first C' times it
pulls arm i, the agent will act just as it were in &1, unless it pulls arm ¢ for more than C' times. Note that the probability that
T, < C'is at least % by the definition of 7; and C, which means that with high probability the algorithm will pull arm ¢ for
more than C' times. As a result, the algorithm will incur regret at least 3 (K — C) = Q(K) with probability 3, since arm i is
the optimal arm in &. This implies that

O(VK + K“C?) > Regret(A, &, K) > Q(K). 43)

Hence by combining (42) and (43) we have,

Vv
Q
Vv
]

which is equal to o + g > 1. O

D. Detailed description of PCID algorithm

Here we present the original PCID algorithm in (Du et al., 2019) for convenience.

The following theorem shows that with a polynomial sample complexity, PCID returns an e -policy cover of all latent states
with high probablilty.

Theorem 4 (Theorem 4.1 in (Du et al., 2019)). Fix any ¢ = O (N’;E"A“B}{) and a failure probability 6 > 0. Set Ny =
Q (w) ,N, =6 (MA) N, =Q (MQAHz), T = z5apa- Then with probability at least 1 — 6, Algorithm 4

e iny? Hmin Hmin€?
returns an e-policy cover of S, with size at most M H.

Reinforcement Learning with Adversarial Corruption

Algorithm 4 PCID
Input: N, : sample size for learning context embeddings, Ny : sample size for learning state embeddings, IV, : sample
size for estimating transition probabilities, 7 > 0 : a clustering threshold for learning latent states
Output: policy cover II =11 U -+ - Ul g4
Let 3\1 = {81} .
Let fi(z) = s, forallz € X
Let IT; = {mg} where 7 is the trivial O -step policy. Initialize to an empty mapping.
forh=2,.... H+ 1do
Letn, = U (Ilh-1) © U(A)
Execute 7y, for N times. Dy = {éfl_l,az_pxﬁj\fl for 85,1 = frn1 (xh_1)
Learn §;, by calling ERM oracle on input D, :

gn = argmingcg Z ||g (') — €(5,a) H2
(8,a,2')€Dy

N
i=1
Learn Sj, and the state embedding map ¢, : Sp, — Z by clustering Z with threshold 7 (see Algorithm 3).

Define f, (2/) = argmin, g, Ha(é) — & (@) H1

Execute 7y, for Ny times. Z = {z; = g, (z},)

Execute 7, for Ny, times. D), = {%—1’ afl_l, §}l j\/:pl for §;,_1 = fh_l (Th-1),8n = fh (zn)
Define p (55, | $p—1, an—1) equal to empirical conditional probabilities in D,,.
end for
for 5 € S;, do
Run Algorithm 5 with inputs p and §’ to obtain (h — 1) -step policy 4 : gSA‘[h_l] — A
Set 5 (:Eg) = Py (fz (:Ug)) ,é € [h — 1], Ty € Xy
end for

LetII;, = (Wg)éegh.

Algorithm 5 Dynamic Programming for Reaching a State

Input: target state §* € S, transition probabilities p (§ | §, a) forall § € 8y, a € A, § € Spy1,0 € [h— 1]
Output: policy 1 : Sj,_1) — A maximizing P¥ (§*).

Let v () = 1 and let v(§) = 0 for all other 3 € S,.

fori=nh—-1,h—2,..,1do

for 5 € S, do
¥(8) = maxgeq Zé’eggﬂ v(8)p (83, 0)
v(8) = Yges, v (&) DS [8,a=1v(5))
end for

end for

