
Reinforcement Learning with Adversarial Corruption

A. Proof of Theorem 1
To start, we list some technical lemmas. Then we prove that our estimation of the Q-function is optimistic with high
probability, i.e., Q̃kh(s, a) ≥ Q∗h(s, a). We begin by proving Lemma 1 and cite a lemma in (Zhang et al., 2020a).

Lemma 2 (Bennet’s inequality.). Let Z,Z1,Zn be i.i.d. random variables with values in [0, 1] and let δ > 0. Define
VZ = E[(Z − EZ)2]. Then we have

P[|E[Z]− 1

n

n∑
i=1

Zi| >
√

2VZ ln(2/δ)

n
+

ln(2/δ)

n
] ≤ δ.

Lemma 3 (Lemma 10 in (Zhang et al., 2020a).). Let (Mn)n≥0 be a martingale such that M0 = 0 and |Mn −Mn−1| ≤ c
for some c > 0 and any n ≥ 1. Let Varn =

∑n
k=1 E[(Mk −Mk−1)2|Fk−1] for n ≥ 0, where Fk = σ(M1, ...,Mk). Then

for any positive integer n, and any ε, δ > 0, we have that

P[|Mn| ≥ 2
√

2
√

Varn ln(1/δ) + 2
√
ε ln(1/δ) + 2c ln(1/δ)] ≤ 2(log2(

nc2

ε
) + 1)δ.

A.1. Proof of Lemma 1

Proof. Recall that Qh(s, a)− Q̂h(s, a) = (r̃(s, a)− r̂(s, a)) + (P̃s,a − P̂s,a)Vh+1 + (b̃h(s, a)− b̂h(s, a)), where

b̂h =c1

√
V(P̂ , Vh+1)ι

max{n̂(s, a), 1}
+ c2

√
r̂(s, a)ι

max{n̂(s, a), 1}
+ c3

ι

max{n̂(s, a), 1}
,

b̃h =c1 min

√

V(P̃ , Vh+1)ι

|ñ(s, a)− C|
, 1

+ c2 min

{√
r̃ι

|ñ(s, a)− C|
, 1

}
+ c3 min

{
ι

|ñ(s, a)− C|
, 1

}

+ 2 min

{
2C

|ñ(s, a)− C|
, 1

}
+ (c1 + c2) min

{ √
Cι

|ñ(s, a)− C|
, 1

}
.

We prove the next lemma that characterize the the difference between biased and unbiased estimators,

Lemma 4. For any vector V ∈ RS , V (s) ∈ [0, 1] for any s ∈ S, it holds that

||P̃s,a − P̂s,a||1 ≤ 2 min{ C

|ñ(s, a)− C|
, 1}, (4)

|V(P̃s,a, V)− V(P̂s,a, V)| ≤ 6 min{ C

|ñ(s, a)− C|
, 1}, (5)

|r̃ − r̂| ≤ min{ C

|ñ− C|
, 1}. (6)

For (4), we calculate that

||P̃s,a − P̂s,a||1 =
∑
s′

|P̃s,a,s′ − P̂s,a,s′ |

=
∑
s′

| ñ(s, a, s′)

ñ(s, a)
− n̂(s, a, s′)

n̂(s, a)
|

≤
∑
s′

| ñ(s, a, s′)

ñ(s, a)
− n̂(s, a, s′)

ñ(s, a)− C
|

≤
∑
s′

ñ(s, a)|ñ(s, a, s′)− n̂(s, a, s′)|
ñ(s, a)|ñ(s, a)− C|

+
Cñ(s, a, s′)

ñ(s, a)|ñ(s, a)− C|

≤ 2C

|ñ(s, a)− C|
.

Reinforcement Learning with Adversarial Corruption

Here the second inequality holds because
∑
s′ |n̂(s, a, s′)− ñ(s, a, s′)| ≤ C for any s, a. Note that ||P̃s,a − P̂s,a||1 ≤ 2,

we have (4) holds. For (5),

|V(P̃s,a, V)− V(P̂s,a, V)|
≤|P̃s,a(V)2 − P̂s,a(V)2|+ |(P̃s,aV)2 − (P̂s,aV)2|
≤||P̃s,a − P̂s,a||1 + ||P̃s,a − P̂s,a||1(P̃ V + P̂ V)

≤3||P̃s,a − P̂s,a||1

Hence by (4), we finished the proof of (5). (6) comes straight from the definition of r̃ and r̂. Finally, by plugging (4), (5)
and (6) into Qh − Q̂h and using (P̃s,a − P̂s.a)Vh+1 ≤ ||P̃s,a − P̂s.a||1, we finished the proof of Lemma 1.

Recall that the Lemma 1 in (Zhang et al., 2020a) states that Q̂kh(s, a) ≥ Q∗h(s, a) holds with probability 1−2SA(log2(KH)+
1)δ, as a result, Qkh(s, a) ≥ Q∗h(s, a), which implies that our estimation of Q-function is optimistic. We denote by E1 the
event that Qkh(s, a) ≥ Q∗h(s, a) for any (k, h, s, a).

A.2. Bounding Bellman Error

We begin with the following lemma that bounds the Bellman error induced by the Q-function.

Lemma 5. With probability 1− 3S2AH(log2(KH) + 1)δ, for any 1 ≤ k ≤ K, 1 ≤ h ≤ H and (s, a), it holds that

Qkh(s, a)− r(s, a)− Ps,aV kh+1

≤min{2b̃kh(s, a) +
2C

ñ(s, a) + C
+

√
2V(Ps,a, V ∗h+1)ι

n̂k(s, a)
+

√
2SV(Ps,a, V kh+1 − V ∗h+1)ι

n̂k(s, a)
+

2Sι

3n̂k(s, a)
, 1}. (7)

Proof. Under event E1, we have that with probability 1−SAH(log2(KH) + 1)δ, for all (s, a, k, h) ∈ S ×A× [K]× [H],

Qkh(s, a)− r(s, a)− Ps,aV kh+1

≤r̃kh(s, a)− r(s, a) + b̃kh(s, a) + (P̃s,a − P̂s,a)V kh+1 + (P̂s,a − Ps,a)(V kh+1 − V ∗h+1) + (P̂s,a − Ps,a)V ∗h+1

≤2b̃kh(s, a) + (P̃s,a − P̂s,a)V kh+1 + (P̂s,a − Ps,a)(V kh+1 − V ∗h+1) + (P̂s,a − Ps,a)V ∗h+1. (8)

By Bennet’s inequality (Lemma 2) we have that for each s′,

P[|P̂s,a,s′ − Ps,a,s′ | >

√
2Ps,a,s′ι

n̂k(s, a)
+

ι

3n̂k(s, a)
] ≤ δ.

So with probability at least 1− Sδ, we have,

(P̂s,a − Ps,a)(V kh+1 − V ∗h+1) =
∑
s′

(P̂ ks,a,s′ − Ps,a,s′)(V kh+1(s′)− V ∗h+1(s′)− Ps,a(V kh+1 − V ∗h+1))

≤
∑
s′

√
2Ps,a,s′ι

n̂k(s, a)
|V kh+1(s′)− V ∗h+1(s′)− Ps,a(V kh+1 − V ∗h+1)|+ Sι

3n̂k(s, a)

≤

√
n̂k(s, a)

2SV(Ps,a, V kh+1 − V ∗h+1)
+

Sι

3n̂k(s, a)
, (9)

where the first equality holds because
∑
s′ P̂

k
s,a,s′ =

∑
s′ Ps,a,s′ = 1 and the last inequality holds by Cauchy-Schwartz

inequality. By Bennet’s inequality again (Lemma 2), we obtain that

P[|(P̂ ks,a − Ps,a)V ∗h+1| >

√
2V(Ps,a, V ∗h+1)ι

n̂k(s, a)
+

ι

3n̂k(s, a)
] ≤ δ. (10)

Reinforcement Learning with Adversarial Corruption

On the other hand, we have that

(P̃ − P̂)V kh+1 =
∑
s′

(
ñ(s, a, s′)

ñ(s, a)
− n̂(s, a, s′)

n̂(s, a)
)V kh+1(s′)

≤
∑
s′

| ñ(s, a, s′)

ñ(s, a)
− n̂(s, a, s′)

ñ(s, a) + C
|

≤
∑
s′

ñ(s, a)|ñ(s, a, s′)− n̂(s, a, s′)|
ñ(s, a)(ñ(s, a) + C)

+
Cñ(s, a, s′)

ñ(s, a)(ñ(s, a) + C)

≤ 2C

ñ(s, a) + C
, (11)

where the first inequality holds because |n̂(s, a)− ñ(s, a)| ≤ C, and the last inequality holds because
∑
s′ |ñ(s, a, s′)−

n̂(s, a, s′)| ≤ C. Combining (8), (9), (10) and (11) and via a union bound over k, h, s, a, we conclude that (7) holds with
probability 1− 3S2AH(log2(KH) + 1)δ.

In the rest of this section, we let βkh(s, a) be the shorthand of RHS of (7), i.e.,

βkh(s, a) := min{2b̃kh(s, a) +
2C

ñ(s, a) + C
+

√
2V(Ps,a, V ∗h+1)ι

n̂k(s, a)
+

√
2SV(Ps,a, V kh+1 − V ∗h+1)ι

n̂k(s, a)
+

2Sι

3n̂k(s, a)
, 1}.

A.3. Regret Analysis

Let K be the set of indice of episodes in which no update is triggered. By the update rule, it is easy to see that |KC | ≤
SA(log2(KH)+1). Denote h0(k) to be the first time an update is triggered in the k-th episode if there is and otherwiseH+1.
Define X0 = {(k, h0(k))|k ∈ KC} and X = {(k, h)|k ∈ KC , h0(k) + 1 ≤ h ≤ H}. We further define V̄ kh (skh, a

k
h) =

I[(k, h) /∈ X]Ṽ kh (skh, a
k
h). We also set β̄kh(skh, a

k
h) = I[(k, h) /∈ X]βkh(skh, a

k
h) and r̄kh = I[(k, h) /∈ X]r(skh, a

k
h). By Lemma

5, we have that with probability 1− 3S2AH(log2(KH) + 1)δ,

V̄ kh (skh, a
k
h) ≤ r̄kh + β̄kh(skh, a

k
h) + Ps,aV̄

k
h+1,

for any (k, h) /∈ X0 and

V̄ kh (skh, a
k
h) ≤ r̄kh + β̄kh(skh, a

k
h) + Ps,aV̄

k
h+1 + 1,

for any (k, h) ∈ X0.

By Lemma 5, with probability at least 1− 5S2AH(log2(KH) + 1)δ, it holds that

Regret(K) :=

K∑
k=1

(V ∗1 (sk1)− Ṽ π
k

1 (sk1))

≤
K∑
k=1

(V k1 (sk1)− Ṽ π
k

1 (sk1))

=

K∑
k=1

(V̄ k1 (sk1)− Ṽ π
k

1 (sk1))

=

K∑
k=1

(V̄ k1 (sk1)−
H∑
h=1

r̄kh) +

K∑
k=1

(

H∑
h=1

r̄kh − Ṽ π
k

1 (sk1))

=

K∑
k=1

H∑
h=1

(Pskh,akh V̄
k
h+1 − V̄ kh+1(skh+1)) +

K∑
k=1

H∑
h=1

(V̄ kh (skh)− r̄kh − Pskh,akh V̄
k
h+1) +

K∑
k=1

(

H∑
h=1

r̄kh − Ṽ π
k

1 (sk1))

≤
K∑
k=1

H∑
h=1

(Pskh,akh V̄
k
h+1 − V̄ kh+1(skh+1)) +

K∑
k=1

H∑
h=1

β̄kh(skh, a
k
h) +

K∑
k=1

(

H∑
h=1

r̄kh − Ṽ π
k

1 (sk1)) + |KC |. (12)

Reinforcement Learning with Adversarial Corruption

Here the first inequality is due to the optimism of Q-function, and the last inequality holds by Lemma 5. Define M1 =∑K
k=1

∑H
h=1(Pskh,akh V̄

k
h+1 − V̄ kh+1(skh+1)), M2 =

∑K
k=1

∑H
h=1 β̄

k
h(skh, a

k
h) and M3 =

∑K
k=1(

∑H
h=1 r̄

k
h − Ṽ π

k

1 (sk1)).

Bounding M1: For the M1 term, we note that it can be viewed as a martingale. Hence by using a variance dependent
concentraion inequality (3), we have that

P[|M1| > 2

√√√√2

K∑
k=1

H∑
h=1

V(Pskh,akh , V̄
k
h+1)ι+ 6ι] ≤ 2(log2(KH) + 1)δ.

So in order to bound M1, it suffices to bound M4 :=
∑K
k=1

∑H
h=1 V(Pskh,akh , V̄

k
h+1). We will deal with this term later.

Bounding M3: For the M3 term, we have

M3 =

K∑
k=1

(

H∑
h=1

r̄kh − Ṽ π
k

1 (sk1))

=

K∑
k=1

H∑
h=1

(r̄kh − rkh) +

K∑
k=1

(

H∑
h=1

rkh − Ṽ π
k

1 (sk1))

≤
K∑
k=1

H∑
h=1

(r(skh, a
k
h)− rkh) +

K∑
k=1

(

H∑
h=1

rkh − Ṽ π
k

1 (sk1)). (13)

For the first term
∑K
k=1

∑H
h=1(r(skh, a

k
h)− rkh) in (13), by (3), we obtain that

P[|
K∑
k=1

H∑
h=1

(r(skh, a
k
h)− rkh)| > 2

√√√√2

K∑
k=1

H∑
h=1

Var(s, a)ι+ 6ι] ≤ 2(log2(KH) + 1)δ,

where Var(s, a) := E[(R(s, a)− E[R(s, a)])2]. Moreover, since the random variable R(s, a) ∈ [0, 1], we have

K∑
k=1

H∑
h=1

Var(s, a) ≤
K∑
k=1

H∑
h=1

r(s, a) ≤
K∑
k=1

H∑
h=1

(r(skh, a
k
h)− rkh) +K.

So we have P[|
∑K
k=1

∑H
h=1(r(skh, a

k
h)− rkh)| > 2

√
2(
∑K
k=1

∑H
h=1(r(skh, a

k
h)− rkh) +K)ι+ 6ι] ≤ 2(log2(KH) + 1)δ,

which implies that with probability 1− 2(log2(KH) + 1)δ we have

K∑
k=1

H∑
h=1

(r(skh, a
k
h)− rkh) ≤ 6

√
Kι+ 21ι.ι (14)

For the second term in (13), because
∑H
h=1 r

k
h − Ṽ π

k

1 (sk1), k ∈ [K] is a martingale. Hence by Azuma’s inequality, we have
with probability 1− δ it holds that

|
K∑
k=1

(

H∑
h=1

rkh − Ṽ π
k

1 (sk1))| ≤
√

2Kι. (15)

Combining (14) and (15), we have that P[|M3| > 8
√
Kι+ 6ι] ≤ 2(log2(KH) + 1)δ.

Bounding M2: For the M2 term, recall that

βkh(s, a) =O(min{

√
V(P̂s,a, V kh+1)ι

|ñk(s, a)− C|
, 1}+ min{

√
r̂kh(s, a)ι

|ñk(s, a)− C|
, 1}+ min{ ι

|ñk(s, a)− C|
, 1}+ min{ 2C

|ñk(s, a)− C|
, 1}

+ min{
√
Cι

|ñk(s, a)− C|
, 1}+

2C

ñk(s, a) + C
+

√
V(Ps,a, V ∗h+1)

n̂k(s, a)
+

√
SV(Ps,a, V kh+1 − V ∗h+1)ι

n̂k(s, a)
+

Sι

n̂k(s, a)
).

Reinforcement Learning with Adversarial Corruption

First note that

O(min{ ι

|ñk(s, a)− C|
, 1}+ min{ 2C

|ñk(s, a)− C|
, 1}+ min{

√
Cι

|ñk(s, a)− C|
, 1}+

2C

ñk(s, a) + C
) = O(min{ Cι

|ñk(s, a)− C|
, 1}).

By Lemma 2, we have

P[P̂s,a,s′ >
3

2
Ps,a,s′ +

4ι

3n̂k(s, a)
] ≤ P[P̂s,a,s′ − Ps,a,s′ >

√
2Ps,a,s′ι

n̂k(s, a)
+

ι

3n̂k(s, a)
] ≤ δ,

which implies that, with probability 1− 2S2AH(log2(KH) + 1)δ, it holds that

V(P̂s,a,s′ , V
k
h+1) =

∑
s′

P̂s,a,s′(V
k
h+1(s′)− P̂ ks,aV kh+1)2

≤
∑
s′

P̂ ks,a,s′(V
k
h+1(s′)− Ps,aV kh+1)2

≤
∑
s′

(
3

2
Ps,a,s′ +

4ι

3n̂k(s, a)
)(V kh+1(s′)− Ps,aV kh+1)2

≤3

2
V(Ps,a, V

k
h+1) +

4Sι

3n̂k(s, a)
.

Note that V(P,X + Y) ≤ 2(V(P,X) + V(P, Y)) for any P,X, Y , so we conclude that

βkh(s, a) ≤ O(min{

√
V(Ps,a, V kh+1)ι

|ñk(s, a)− C|
, 1}+ min{

√
r̂kh(s, a)ι

|ñk(s, a)− C|
, 1}+

√
SV(Ps,a, V kh+1 − V ∗h+1)ι

n̂k(s, a)

+ min{ Cι

|ñk(s, a)− C|
, 1}+

Sι

n̂k(s, a)
))

According to the update rule, despite those episodes in which an update is triggered, the number of visit of (s, a) between
the i-th update of P̂s,a and the i+ 1-th update of P̂s,a do not exceeds 2i−1, i.e., for any (s, a) and any i ≥ 3, we have

K∑
k=1

H∑
h=1

I[(skh, akh) = (s, a), ñk(s, a)− C = 2i−1]I[(k, h) /∈ X] ≤ 2i−1. (16)

Let l = max{i|2i−1 + C ≤ KH}. We calculate that

K∑
k=1

H∑
h=1

min{ Cι

|ñk(s, a)− C|
, 1}I[(k, h) /∈ X]

=

K∑
k=1

H∑
h=1

∑
s,a

(

l∑
i=3

I[(skh, akh) = (s, a), ñk(s, a)− C = 2i−1] min{ Cι

|ñk(s, a)− C|
, 1}I[(k, h) /∈ X]

+ I[(skh, akh) = (s, a), ñk(s, a)− C < 4])

≤
K∑
k=1

H∑
h=1

∑
s,a

l∑
i=3

(I[(skh, akh) = (s, a), ñk(s, a)− C = 2i−1]I[(k, h) /∈ X]
Cι

2i−1
) + (C + 4)

≤
∑
s,a

Clι+ (C + 4)SA (17)

=Õ(CSA). (18)

Here (17) is by using (16). Let ω = {ωkh ≥ 0|1 ≤ h ≤ H, 1 ≤ k ≤ K} be a group of non-negative weights such that

Reinforcement Learning with Adversarial Corruption

wkh ∈ [0, 1] for any k, h and wkh = 0 if (k, h) ∈ X . We prove the following useful inequality:

K∑
k=1

H∑
h=1

min{

√
ωkhι

ñk(s, a)− C
, 1}

≤
K∑
k=1

H∑
h=1

∑
s,a

l∑
i=3

I[(skh, akh) = (s, a), ñk(s, a) = 2i−1]

√
ωkhι

2i−1
+ CSA+ 8SA(log2(KH) + 4)ι

=
∑
s,a

l∑
i=3

1√
2i−1

K∑
k=1

H∑
h=1

I[(skh, akh) = (s, a), ñk(s, a) = 2i−1]
√
ωkhι+ CSA+ 8SA(log2(KH) + 4)ι

≤
∑
s,a

l∑
i=3

√∑K
k=1

∑H
h=1 I[(skh, akh) = (s, a), ñk(s, a)− C = 2i−1]ι

2i−1

√√√√(

K∑
k=1

H∑
h=1

I[(skh, akh) = (s, a), ñk(s, a)− C = 2i−1]ωkh)

(19)

+ CSA+ 8SA(log2(KH) + 4)ι

≤

√√√√SAlι

K∑
k=1

H∑
h=1

ωkh + CSA+ 8SA(log2(KH) + 4)ι. (20)

Here (19) is by Cauchy-Schwarz inequality and (20) is due to (16). By using the same technique (or see (29) in (Zhang
et al., 2020a)), we can prove that

K∑
k=1

H∑
h=1

√
ωkh

n̂k(skh, a
k
h)
≤

√√√√SAl

K∑
k=1

H∑
h=1

ωkh + 8SA(log2(KH) + 4). (21)

Let I(k, h) be the shorthand of I[(k, h) /∈ X]. By plugging in respectively ωkh = I(k, h)r̂kh(skh, a
k
h), I(k, h)V(Pskh,akh , V

k
h+1)

into (20) and ωkh = I(k, h)V(V kh+1 − V ∗h+1) into (21), we obtain that

M2 =

K∑
k=1

H∑
h=1

β̄kh(skh, a
k
h)

=

K∑
k=1

H∑
h=1

I(k, h)βkh(skh, a
k
h)

≤O(

√√√√SAlι

K∑
k=1

H∑
h=1

V(Pskh,akh , V
k
h+1)I(k, h) +

√√√√S2Alι

K∑
k=1

H∑
h=1

V(Pskh,akh , V
k
h+1 − V ∗h+1)I(k, h)

+O(

√√√√SAlι

K∑
k=1

H∑
h=1

r̂kh(skh, a
k
h)I(k, h) + Õ(CSA+ S2A) (22)

We define M5 :=
∑K
k=1

∑H
h=1 V(Pskh,akh , V

k
h+1 − V ∗h+1)I(k, h + 1). We state the following Lemmas in (Zhang et al.,

2020a) to complete the proof of Theorem 1, which we omit the detailed proof.

Lemma 6 (Lemma 5 in (Zhang et al., 2020a)).
∑K
k=1

∑H
h=1 r̂

k
h(skh, a

k
h)I(k, h) ≤ 2

∑K
k=1

∑H
h=1 r

k
h + 4SA ≤ 2K+ 4SA.

Lemma 7 (Lemma 6 in (Zhang et al., 2020a)). With probability 1− 2(log2(KH) + 1) log2(KH)δ, it holds that

M4 ≤ 2M2 + 2|KC |+ 2K + max{46ι, 8
√

(M2 + |KC |+K)ι+ 6ι}.

Lemma 8 (Lemma 7 in (Zhang et al., 2020a)). With probability 1− 2(log2(KH) + 1) log2(KH)δ, it holds that

M5 ≤ 2 max{M2, 1}+ 2|KC |+ max{46ι, 8
√

(M2 + |KC |)ι+ 6ι}.

Reinforcement Learning with Adversarial Corruption

Combining the above lemmas with (22), we have that with probability 1 − (6S2AH(log2(KH) + 1) + 6(log2(KH) +
1) log2(H))δ,

M2 ≤O(
√
SAlι(M4 + |KC |) +

√
S2Alι(M5 + |KC |) +

√
SAlιK + CSA+ S2Aι log2(KH)),

M4 ≤2M2 + 2|KC |+ max{46ι, 8
√

(M2 + 2K)ι+ 6ι},

M5 ≤2 max{M2, 1}+ 2|KC |+ max{46ι,
√
M2ι+ 6ι}.

Which implies that

M2 ≤O(
√
SAKlι+ CSA+

√
S2Al

√
M2ι3/2 +

√
SAlιK + S2Aι log2(KH)) (23)

≤O(
√
SAKlι+ CSA+ S2Aι log2(KH)). (24)

Recalling (12) and (23), we conclude that, with probability 1−(10S2AH(log2(KH)+2)+6(log2(KH)+1) log2(KH)+
1)δ,

Regret(K) ≤M1 +M2 +M3

≤O(
√
SAKlι+ S2Aι log2(KH) + CSA+

√
Kι)

=O(
√
SAKlι+ S2Aι log2(KH) + CSA).

Hence by rescaling δ, we finish the proof of Theorem 1.

B. Proof of Theorem 3
Proof. First, since we run Algorithm 4 to learn a µmin

2 -policy cover, from Theorem 4, this requires

H(N ′g +N ′φ +N ′p) = Ω̃

(
M4A4H2 log |G|

µ4
minγ

2
+
HMA

µmin
+
M2AH2

µ3
min

)
trajectories.

Next, we prove that in phase 2, Algorithm 2 learns a decoding function with εf decoding error, where εf is to be defined later.
Formally, we prove that the following condition holds with high probability:

Condition 1 (Bijection between learned and true states). There exists εf < 1
2 such that there is a bijective mapping

αh : Ŝh → Sh for which
Px∼q(·|αh(ŝ))

[
f̂h(x) = ŝ

]
≥ 1− εf .

In other words, this condition states that every estimated latent state ŝ roughly corresponds to a true latent state αh(ŝ),

when we use the decoding function f̂h. This is because all but an εf fraction of contexts drawn from αh(ŝ) are decoded to
their true latent state, and for each latent state s, there is a distinct estimated state α−1

h (s) as the map αh is a bijection. For
simplicity, we define p(s, a) ∈ RM to be the forward transition distribution over Sh for s ∈ Sh−1 and a ∈ A. We abuse
notation to similarly use p(ŝ, a) ∈ RM to be the vector {P(s | ŝ, a)}s∈Sh of conditional probabilities Sh for ŝ ∈ Ŝh−1 and
a ∈ A. Note that unlike s ∈ Sh−1, ŝ ∈ Ŝh−1 is not a Markovian state and hence the conditional probability vector p(ŝ, a)

depends on the specific distribution over Ŝh−1 ×A. In the following we will use pν(ŝ, a) to emphasize this dependency
where ν is the distribution, where ν is a distribution over Ŝh−1 ×A.

In the proof, we often compare two vectors indexed by Sh and Ŝh. We will assume the order of the indices of these two
vectors are matched according to αh.

Establishing Condition 1. In order to establish the condition, we need to show that our decoding function f̂h predicts the
underlying latent state correctly almost always. We do this in two steps. Since the functions f̂h are derived based on ĝh and
φ̂h, we analyze the properties of these two objects in the following two lemmas in (Du et al., 2019). In order to state the first
lemma, we need some additional notation. Note that ηh and f̂h−1 induce a distribution over Sh−1×Ŝh−1×A×Sh.We denote

Reinforcement Learning with Adversarial Corruption

this distribution as νh. With this distribution, we define the conditional backward probability b̂νh : Sh →4
(
Ŝh−1 ×A

)
as

b̂νh (ŝ, a | s′1) =
pνhh−1 (s′1 | ŝ, a)Pνh(ŝ, a)∑

ŝ1,a1
pνhh−1 (s′1 | ŝ1, a1)Pνh (ŝ, a1)

(25)

Recall that pνhh−1 above refers to the distribution over s′1 according the transition dynamics, when ŝ, a are induced by νh.
With this notation, we have the following lemma.

Lemma 9 (Lemma G.2 in (Du et al., 2019)). Assume εf ≤ µ3
minγ

100M4A3 . Then the distributions b̂νh (ŝ, a | s′) are well separated
for any pair s′1, s

′
2 ∈ Sh : ∥∥∥b̂νh (s′1)− b̂νh (s′2)

∥∥∥
1
≥ µminγ

3MA
(26)

Furthermore, if Ng = Ω
(

M3A3

εfµ3
minγ

2 log
(
|G|H
δ

))
, with probability at least 1− δ/H, for every s′ ∈ Sh, ĝh satisfies

Px′∼q(·|s′)
[∥∥∥ĝh (x′)− b̂νh (s′)

∥∥∥
1
≥ γµmin

100MA

]
≤ εf (27)

Proof. See (Du et al., 2019) for details.

The first part of Lemma 9 tell us that the latent states at level h are well separated if we embed them using φ (s′) = b̂νh (s′)
as the state embedding. The second part guarantees that our regression procedure estimates this representation accurately.
Together, these assertions imply that any two contexts from the same latent state (up to an εf fraction) are close to each other,
while contexts from two different latent states are well-separated. Formally, with probability at least 1− δ

H over the Ng

training data:

1. For any s′ ∈ Sh and x′1, x
′
2 ∼ q (· | s′) , we have with probability at least 1− 2εf over the emission process

‖ĝh (x′1)− ĝh (x′2)‖1 ≤
µminγ

50MA

2. For any s′1, s
′
2 ∈ Sh such that s′1 6= s′2, x

′
1 ∼ q (· | s′1) and x′2 ∼ q (· | s′2) , we have with probability at least 1− 2εf over

the emission process
‖ĝh (x′1)− ĝh (x′2)‖1 ≥

µminγ

4MA

In other words, the mapping of contexts, as performed through the functions ĝh should be easy to cluster with each cluster
roughly corresponding to a true latent state. Our next lemma guarantees that with enough samples for clustering, this is
indeed the case.

Lemma 10 (Lemma G.3 in (Du et al., 2019)). If Nφ = Θ
(
MA
µmin

log
(
MH
δ

))
and εf ≤ δ

100HNφ
we have with probability

at least 1− δ
H , (1) for every s′ ∈ Sh, there exists at least one point z ∈ Z such that z = ĝh (x′) with x′ ∼ q (· | s′) and∥∥∥ĝh (x′)− b̂νh (s′)

∥∥∥
1
≤ µminγ

100MA and (2) for every z = ĝh (x′) ∈ Z with x′ ∼ q (· | s′) ,
∥∥∥ĝh (x′)− b̂νh (s′)

∥∥∥
1
≤ µminγ

100MA

Proof. See (Du et al., 2019) for details.

Based on Lemma 9 and 10, we can establish that Condition 1 holds with high probability. Note that Condition 1 consists of
two parts. The first part states that there exists a bijective map αh : Ŝh → Sh. The second part states that the decoding error
is small. To prove the first part, we explicitly construct the map αh and show it is bijective. We define αh : Ŝh → Sh as

αh (ŝ′) = argmin
s∈Sh

∥∥∥φ (s′)− φ̂ (ŝ′)
∥∥∥

1
(28)

First observe that for any ŝ′ ∈ Ŝh, by the second conclusion of Lemma 10 we know there exists s′ ∈ Sh such that∥∥∥φ̂ (ŝ′)− φ (s′)
∥∥∥ ≤ γµmin

100MA

Reinforcement Learning with Adversarial Corruption

This also implies for any s′′ 6= s′∥∥∥φ̂ (ŝ′)− φ (s′′)
∥∥∥ ≥ ‖φ (s′′)− φ (s′′)‖ −

∥∥∥φ̂ (ŝ′)− φ (s′)
∥∥∥ ≥ γµmin

4MA

Therefore we know αh (ŝ′) = s′, i.e., αh always maps the learned state to the correct original state.

We now prove αh is injective, i.e., α (ŝ′) 6= αh (ŝ′′) for ŝ′ 6= ŝ′′ ∈ Ŝh. Suppose there are ŝ′, ŝ′′ ∈ Ŝh such that
αh (ŝ′) = αh (ŝ′′) = s′ for some s′ ∈ Sh. Then using the second conclusion of Lemma 10, we know∥∥∥φ̂ (ŝ′)− φ̂ (ŝ′′)

∥∥∥
1
≤
∥∥∥φ̂ (ŝ′)− φ (s′)

∥∥∥
1

+
∥∥∥φ (s′)− φ̂ (ŝ′′)

∥∥∥
1
≤ γµmin

50MA
(29)

However, we know by Algorithm 2, every ŝ′ 6= ŝ′′ ∈ Ŝh must satisfy∥∥∥φ̂ (ŝ′)− φ̂ (ŝ′′)
∥∥∥

1
> τ =

γµmin

30MA

This leads to a contradiction and thus αh is injective.

Next we prove αh is surjective, i.e., for every s′ ∈ Sh, there exists ŝ′ ∈ Ŝh such that αh (ŝ′) = s′. The first conclusion in
Lemma G. 3 guarantees that for each latent state s′ ∈ Sh, there exists z = ĝ (x′) ∈ Z with x′ ∼ q (· | s′) . The second
conclusion of Lemma 10 guarantees that

‖z− φ (s′)‖1 ≤
γµmin

100MA

Now we first assert that all points in a cluster are emitted from the same latent state by combining Equation (10), the second
part of Lemma G. 3 and our setting of τ . Now the second part of Lemma G. 3 implies that there exists ŝ′ ∈ Ŝh such that∥∥∥z− φ̂ (ŝ′)

∥∥∥
1
≤ µminγ

50MA , since z and φ̂ (ŝ′) correspond to ĝ evaluated on two different contexts in the same cluster. Therefore
we have ∥∥∥φ (s′)− φ̂ (ŝ′)

∥∥∥
1
≤ ‖φ (s′)− z‖1 +

∥∥∥z− φ̂ (ŝ′)
∥∥∥

1
≤ µminγ

30MA

Now we can show that αh (ŝ′) = s′. To do this, we show that φ̂ (ŝ′) is closer to φ (s′) than the embedding of any state in Sh.
Using the second conclusion of Lemma G. 3 and Equation 10 we know for any s′′ 6= s′∥∥∥φ̂ (ŝ′)− φ (s′′)

∥∥∥
1
≥ ‖φ (s′)− φ (s′′)‖1 −

∥∥∥φ̂ (ŝ′)− φ (s′)
∥∥∥

1
≥ γµmin

4MA

We know s′ = argmins1∈Sh

∥∥∥φ̂ (s1)− φ̂ (ŝ′)
∥∥∥

1
. Therefore, by the definition of αh we know αh (ŝ′) = s. Now we have

finished the proof of the first part of Condition G.1.

For the second part of Condition G. 1, note for any s′ ∈ Sh and x′ ∼ q (· | s′) , by Lemma G.2, we know with probability at
least 1− εf over the emission process we have

‖ĝh (x′)− φ (s′)‖1 ≤
γµmin

100MA
(30)

For ŝ′ = α−1
h (s′) , we have∥∥∥ĝh (x′)− φ̂ (ŝ′)

∥∥∥
1
≤ ‖ĝh (x′)− φ (s′)‖1 +

∥∥∥φ (s′)− φ̂ (ŝ′)
∥∥∥

1
≤ γµmin

50MA

On the other hand, for ŝ′′ ∈ Ŝh with ŝ′′ 6= α−1
h (s′) , we have∥∥∥ĝh (x′)− φ̂ (ŝ′′)

∥∥∥
1
≥ −‖ĝh (x′)− φ (s′)‖1 + ‖φ (s′)− φ (αh (ŝ′′))‖1 −

∥∥∥φ (αh (ŝ′′))− φ̂ (ŝ′′)
∥∥∥

1
≥ γµmin

4MA

Therefore we have with probability at least 1− εf

f̂h (x′) = argmin
ŝ′∈Ŝh

∥∥∥φ̂ (ŝ′)− ĝh (x′)
∥∥∥

1
= α−1

h (s′)

which is equivalent to the second part of Condition G.1.

Combine the analysis above, we have the following lemma.

Reinforcement Learning with Adversarial Corruption

Lemma 11. Assume Nφ = Θ
(
MA
µmin

log
(
MH
δ

))
. For any εf < min

{
µ3
minγ

100M4A3 ,
δ

100HNφ

}
, set Ng =

Ω
(

M3A3

εfµ3
minγ

2 log
(
|G|H
δ

))
, then Algorithm 2 learns a decoding function f̂ such that there is a bijective mapping

αh : Ŝh → Sh for which

Px∼q(·|αh(ŝ))

[
f̂h(x) = ŝ

]
≥ 1− εf .

Finally, we prove that with an εf -error decoding function, with high probability there will be at most 2εfT
′ +
√

2T ′ ln δ
2

states in phase 3 where the agent makes a mistake. Here T ′ is the total number of steps in phase 3. This allows us to call

CR-MVP with C = 2εfT
′ +
√

2T ′ ln δ
2 .

Lemma 12. Assume that the decoding function has εf decoding error, that is, P (f(s) 6= s) ≤ εf . Define Ñ(s, a, s′) as the
counter without error, and N̂(s, a, s′) as the counter with error. we have

P

∑
s,a,s′

∣∣∣N̂(s, a, s′)− Ñ(s, a, s′)
∣∣∣ ≤ 2εfT

′ +

√
2T ′ ln

2

δ

 ≤ δ

2
(31)

Proof. This is a simple corollary of Chernoff-Hoeffding inequality.

Combine the three parts of the algorithm together, we can bound the total regret as

H(N ′g +N ′φ +N ′p) +H(Ng +Nφ) + Õ

(
√
HMAK +H2M2A+HMA

(
εfT
′ +

√
T ′ ln

δ

2

))

=Õ

(
M4A4H2 log |G|

µ4
minγ

2
+
HMA

µmin
+
M2AH2

µ3
min

+
HMA

µmin
log

(
MH

δ

)
+

HM3A3

εfµ3
minγ

2
log

(
|G|H
δ

)
+
√
HMAK +H2M2A+HMA

(
εfT
′ +

√
T ′ ln

δ

2

))

Finally, by setting εf =

√
M2A2

µ3
minγ

2HK
log
(
|G|H
δ

)
, the regret is upper bounded by

Õ

(
H3/2M2A2

√
K

µ
3/2
minγ

+ poly(H,M,A, µ−1
min, γ

−1)

)
, which finishes the proof.

C. Proof of Lower Bounds
C.1. Proof of Theorem 2

Proof. First we prove the lower bound in the multi-armed bandit case, i.e. when there is only one state and A actions (called
A arms in previous literature). Let E1 and E2 be two bandit instances. In E1, the reward of arm 1 is Ber(1

2), and the reward
of the other A− 1 arms is Ber(0). There is no adversarial corruption in E1. We denote Regret (A, E1, T) as the regret A
incurs under environment E1 after T steps.

Let Ta(n) denote the number of times arm a is chosen in the first n steps. Under environment E1. The agent incurs regret
only when it makes a suboptimal action, which can only happen when it pulls arm a 6= 1. So the regret under E1 can be
represented as

Regret(A, E1, T) =
1

2

A∑
i=2

E[Ti(T)] (32)

Reinforcement Learning with Adversarial Corruption

Now we consider two cases: Case 1: ∀i ≥ 2,PA,E1
(
Ti(T) > C

2

)
≥ 1

2 . Then by Lemma 13, we have

Regret(A, E1, T) =
1

2

A∑
i=2

E[Ts1,i(T)] (33)

≥C(A− 1)

16
P

(
A∑
i=2

Ts1,i(T) ≥ C(A− 1)

8

)
(34)

≥C(A− 1)

48
(35)

Case 2: ∃i ≥ 2, such that PA,E1
(
Ti(T) ≤ C

2

)
≥ 1

2 . In this case we define another environment E2 identical to E1 except
that the reward of arm i is Ber(1). And for the first C2 times the agent pulls arm i, the adversary will corrupt the reward to
be Ber(0). In such environment, the corruption level is C and the agent incurs regret at least 1

2 each time the agent takes
action a 6= i.

Now since the rewards E1 and E2 generate are the same before Ti(T) exceeds C
2 , the agent will pull arms identical to that in

E1 when it runs algorithm A, until it pulls arm i for more than C
2 times. So PA,E2

(
Ti(T) ≤ C

2

)
≥ 1

2 . Then the regret under
E2 is

Regret(A, E2, T) ≥1

2

∑
j 6=i

E[Tj(T)] (36)

≥1

2

(
T − C

2

)
PA,E1

∑
j 6=i

Tj(T) ≥ T − C

2

 (37)

=
1

2

(
T − C

2

)
PA,E1

(
Ti(T) ≤ C

2

)
(38)

≥1

4

(
T − C

2

)
(39)

Since T ≥ 2AC, in case 2 the regret is at least O(AC), which completes the proof.

Now we consider the MDP case. Without loss of generosity, assume that S = AH , where H is a positive integer. We
construct the following MDP with H horizon: In each episode the MDP starts from a fixed state s1. And for any h ∈ [H],
in step h, each state sh can be represented by a sequence of actions with length h − 1. And when the environment is in
state sh = (a1, ..., ah−1) and the agent takes action ah, it will transit to state sh+1 = (a1, ..., ah−1, ah). In other words, the
transition of this MDP can be represented by an A-nary tree, which is shown in Figure 1. The reward for the first H − 1
episodes are all 0, so the agent receives a reward signal only when it reaches a leaf node in step H .

· · · · · · · · ·

· · ·

Figure 1. An A-nary tree with three layers.

The MDP is equivalent to a multi-armed bandit problem with SA arms. So we can use the result on multi-armed bandits and
obtain a Ω(CSA) lower bound on the regret.

Lemma 13. Assume Xi are nonnegative random variables and P(Xi ≥ C) ≥ 1
2 for all i ∈ [n]. Then P(

∑n
i=1Xi ≥

nC
4) ≥ 1

3 .

Reinforcement Learning with Adversarial Corruption

Proof. Define Yi = min{C,Xi}, then P(
∑n
i=1Xi ≥ nC

4) ≥ P(
∑n
i=1 Yi ≥

nC
4) Denote z = P(

∑n
i=1Xi ≥ nC

4), then

nC

2
≤ E(

n∑
i=1

Yi) ≤ P(

n∑
i=1

Yi ≥
nC

4
)nC + P(

n∑
i=1

Yi <
nC

4
)
nC

4
(40)

This yields
nC

2
≤ znC + (1− z)nC

4
⇒ z ≥ 1

3
(41)

which finishes the proof.

C.2. Proof of Proposition 1

Proof. As in the proof of Theorem 3, we define E1 as a A-arm bandit instance without corruptions, and the reward vector of
the A arms is (1

2 , 0, ..., 0). Consider running algorithm A on E1. Suppose i = argminj>1 E1[Ti], where Ti is the number
of times arm i is pulled and E1 denotes taking expectation in E1. We define environment E2 as follows: let the corruption
level C be [2E[Ti]] + 1, and the reward vector is (1

2 , 0, ..., 0, 1, 0, ...0), where the i-th element is 1. Moreover, the adversary
create a false 0 reward of the i-th arm whenever the i-th arm is pulled less than C times.

First we consider the regret incurred in E1. Note that by the definition of Ti, the algorithm will incur at least O(E[Ti]) regret
in E1, since arm i is suboptimal in E1 and is pulled for at least O(E[Ti]) times. In E1 the corruption level is 0, so the regret is
upper bounded by O(

√
K). This implies that

O(
√
K) ≥ Regret(A, E1,K) ≥ Ω(E[Ti]) = Ω(C). (42)

On the other hand, consider running the algorithm A on E2. Since the agent will receive a reward of 0 for the first C times it
pulls arm i, the agent will act just as it were in E1, unless it pulls arm i for more than C times. Note that the probability that
Ti ≤ C is at least 1

2 by the definition of Ti and C, which means that with high probability the algorithm will pull arm i for
more than C times. As a result, the algorithm will incur regret at least 1

2 (K −C) = Ω(K) with probability 1
2 , since arm i is

the optimal arm in E2. This implies that

O(
√
K +KαCβ) ≥ Regret(A, E2,K) ≥ Ω(K). (43)

Hence by combining (42) and (43) we have,

K
1
2 ≥ C ≥ K

1−α
β ,

which is equal to α+ β
2 ≥ 1.

D. Detailed description of PCID algorithm
Here we present the original PCID algorithm in (Du et al., 2019) for convenience.

The following theorem shows that with a polynomial sample complexity, PCID returns an ε -policy cover of all latent states
with high probablilty.

Theorem 4 (Theorem 4.1 in (Du et al., 2019)). Fix any ε = O
(

µ3
minγ

M4A3H

)
and a failure probability δ > 0. Set Ng =

Ω̃
(
M4A4H log |G|

εµ3
minγ

2

)
, Nφ = Θ̃

(
MA
µmin

)
, Np = Ω̃

(
M2AH2

µminε2

)
, τ = γ

30MA . Then with probability at least 1− δ, Algorithm 4
returns an ε-policy cover of S, with size at most MH.

Reinforcement Learning with Adversarial Corruption

Algorithm 4 PCID
Input: Ng : sample size for learning context embeddings, Nφ : sample size for learning state embeddings, Np : sample
size for estimating transition probabilities, τ > 0 : a clustering threshold for learning latent states
Output: policy cover Π = Π1 ∪ · · · ∪ΠH+1

Let Ŝ1 = {s1} .
Let f̂1(x) = s1 for all x ∈ X
Let Π1 = {π0} where π0 is the trivial 0 -step policy. Initialize p̂ to an empty mapping.
for h = 2, ...,H + 1 do

Let ηh = U (Πh−1)� U(A)

Execute ηh for Ng times. Dg =
{
ŝih−1, a

i
h−1, x

i
h

}Ng

i=1
for ŝh−1 = f̂h−1 (xh−1)

Learn ĝh by calling ERM oracle on input Dg :

ĝh = argming∈G
∑

(ŝ,a,x′)∈Dg

∥∥g (x′)− e(ŝ,a)

∥∥2

Execute ηh for Nφ times. Z =
{
ẑi = ĝh

(
xih
)}Nφ
i=1

Learn Ŝh and the state embedding map φ̂h : Ŝh → Z by clustering Z with threshold τ (see Algorithm 3).
Define f̂h (x′) = argminŝ∈Ŝh

∥∥∥φ̂(ŝ)− ĝh (x′)
∥∥∥

1

Execute ηh for Np times. Dp =
{
ŝih−1, a

i
h−1, ŝ

i
h

}Np

i=1
for ŝh−1 = f̂h−1 (xh−1) , ŝh = f̂h (xh)

Define p̂ (ŝh | ŝh−1, ah−1) equal to empirical conditional probabilities in Dp.
end for
for ŝ′ ∈ Ŝh do

Run Algorithm 5 with inputs p̂ and ŝ′ to obtain (h− 1) -step policy ψŝ′ : Ŝ[h−1] → A.

Set πŝ′ (x`) = ψŝ′
(
f̂` (x`)

)
, ` ∈ [h− 1], x` ∈ X`

end for
Let Πh = (πŝ)ŝ∈Ŝh .

Algorithm 5 Dynamic Programming for Reaching a State

Input: target state ŝ∗ ∈ Ŝh, transition probabilities p̂ (ŝ′ | ŝ, a) for all ŝ ∈ Ŝ`, a ∈ A, ŝ′ ∈ Ŝ`+1, ` ∈ [h− 1]

Output: policy ψ : Ŝ[h−1] → A maximizing P̂ψ (ŝ∗).
Let v (ŝ∗) = 1 and let v(ŝ) = 0 for all other ŝ ∈ Ŝh.
for l = h− 1, h− 2, ..., 1 do

for ŝ ∈ Ŝ` do
ψ(ŝ) = maxa∈A

[∑
ŝ′∈Ŝ`+1

v (ŝ′) p̂ (ŝ′ | ŝ, a)
]

v(ŝ) =
∑
ŝ′∈S`+1

v (ŝ′) p̂ (ŝ′ | ŝ, a = ψ(ŝ))
end for

end for

