
CRFL: Certifiably Robust Federated Learning against Backdoor Attacks

Appendix
The Appendix is organized as follows:

• Appendix A provides more details on experimental setups for training, presents the effect of Monte Carlo estimation and
runtime of attacks, and reports the results on backdoored test set.

• Appendix B provides proofs for our Theorem 2 and Lemma 1 related to model closeness.

• Appendix C gives proofs for our Theorem 3 related to the parameter smoothing.

A. Experimental Details
A.1. More Details on Experiment Setup for Training

We focus on multi-class logistic regression (one linear layer with softmax function and cross-entropy loss), which is a convex
classification problem. We train the FL system following our CRFL framework with three datasets: Lending Club Loan Data
(LOAN) (Kan, 2019), MNIST (LeCun & Cortes, 2010), and EMNIST (Cohen et al., 2017). The financial dataset LOAN is a
tabular dataset that contains the current loan status (Current, Late, Fully Paid, etc.) and latest payment information, which
can be used for loan status prediction. It consists of 1,808,534 data samples and we divide them by 51 US states, each of
whom represents a client in FL, hence the data distribution is non-i.i.d. 80% of data samples are used for training and the rest
is for testing. EMNIST is an extended MNIST dataset that contains 10 digits and 37 letters. In the two image datasets, we
split the training data for FL clients in an i.i.d. manner. The data description and other parameter setups are summarized in
Table 1. For these datasets, the local learning rate ηi is 0.001 for all clients. The server performs an adaptive norm clipping
threshold ρt that increases by time so that the normal learning ability of the model can be preserved (described in Table 1),
and sets the fixed training noise level σt = 0.01 (t < T ). When the clipping threshold is not a fixed value, LZ is calculated
based on ρtadv following Lemma 1 for our experiment,.

Regarding the attack setting, by default, we set R = 1, and if there are more adversarial clients, we use same parameters
setups for all of them. For the pixel-pattern backdoor in MNIST and EMNIST, the attackers add the backdoor pattern
(see Figure. 10 for an example) in images and swap the label of any sample with such patterns into the target label, which
is “digit 0”. Similarly, for the preprocessed1 LOAN dataset, the attackers increase the value of the two features (i.e.,
num tl 120dpd 2m, num tl 90g dpd 24m) as a backdoor pattern, and swap label to “Does not meet the credit policy.
Status:Fully Paid”. Since we adopt Lemma 1 for our experiments, we focus on the backdoor pattern ‖δi‖ = ‖δix‖. The
magnitude of backdoored pattern in every example is ‖δi‖ = 0.1 on three datasets. Every attacker’s batch is mixed with
correctly labeled data and such backdoored data with poison ratio qBi/nBi .

We train the FL global model until convergence and then use our certification in Algorithm 2 for robustness evaluation.

Figure 10. Backdoor pattern for image datasets

Dataset Classes #Training samples Features N qBi/nBi τi γi tadv ρt

LOAN 9 1446827 91 20 40/800 143 10 6 0.025t+2
MNIST 10 60000 784 20 5/100 30 10 10 0.1t+2
EMNIST 47 697932 784 50 5/200 70 20 10 0.25t+4

Table 1. Dataset description and parameters

A.2. More Experimental Results on Clean Test Set

Effect of Monte Carlo estimation Recall that we use M and α when calculating the lower bound pA and the upper
bound pB . Figure 11 (left) shows that larger number M of noisy models used for certification can result in larger certified
radius. Figure 11 (middle) presents that the certified radius is smaller when the error tolerance α is smaller but overall the
certified accuracy is not very sensitive to α.

Effect of Attack Timing tadv For Figure 11 (right), we use a strong attack (γ=100, R=2) and report the certified accuracy
with different tadv. As described in Table 1, ρtadv increases with tadv, and LZ is calculated based on ρtadv . In order to control

1We preprocess LOAN by dropping the features which are not digital and cannot be one-hot encoded, and then normalizing the rest 90
features and so that the value of each feature is between 0 and 1.
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Figure 11. Left: Certified accuracy on MNIST with different number of smoothed models M for certification. Middle: Certified accuracy
on MNIST with different error tolerance α for certification. Right: Certified accuracy with different tadv on MNIST.
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Figure 12. Certified accuracy with different attack ability (a)(c)(d) and certified accuracy under robust aggregation RFA (Pillutla et al.,
2019) (b) on MNIST backdoored test set.

variable, we use the same, loose Lz which is calculated based on ρ44 for all tadv = 10, 20, 40, 43, 44. The results show that
the certified radius is not sensitive to the attack timing tadv after training sufficient number of rounds with clean datasets
after tadv.

A.3. Experimental Results on Backdoored Test Set

In this section, we report the certified accuracy on the backdoored test set. For every test sample, the backdoor pattern is
added to the input while the label is still correct. As shown in Figure 12 and 13, the results are similar to the results on the
clean test set.

B. Proofs of Model Closeness
In this section, we will present preliminaries on f -divergence, define the problem of model closeness and then provide the
detailed proofs for our Theorem 2 and Lemma 1 that are related to model closeness. Let us list the notations used in the
paper and the Appendix in Table 2.

Throughout this paper, “benign training process” is the process that trains with clean dataset D for T rounds and outputs
M(D); “backdoored training process” is the process that trains with poisoned dataset D′ at round tadv, trains with original
clean dataset when t 6= tadv, and outputsM(D′).

B.1. Preliminaries on f -divergence

Let f : (0,∞) → R be a convex function with f(1) = 0, ν and ρ be two probability distributions. Then f -divergence is
defined as

Df (ν||ρ) = EW∼ρ[f(
ν(W )

ρ(W )
)]. (3)

Common f -divergence includes Total variation f(x) = 1
2‖x− 1‖ and Kullback-Leibler (KL) divergence f(x) = x log x.

Lemma 2. For m1,m2 ∈ Rd and σ>0, let N1and N2 denote Gaussian distribution N1(m1, σ
2I) and N2(m2, σ

2I),
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Figure 13. Certified accuracy with different σ (a), N (b) and T (c) on MNIST backdoored test set.

Table 2. Table of notations.
Notation Description

M(·) the training protocol in Algorithm 2
zij := {xij , yij} j-th data sample at client i with input xij and label yij
z′
i
j := {xij + δix, y

i
j + δiy} backdoored version of zij where δix is input backdoor pattern and δiy is label flipping effect

D := {S1, S2, . . . , SN} Clean training dataset, the union of clean local dataset of N clients
D′ = D + {{δi}qij=1}Ri=1. poisoned training dataset in round tadv with R attackers and qi poisoned samples in i-th attacker’s local dataset
M(D) the clipped global model obtained fromM using D
M(D′) the clipped global model obtained fromM that uses D′ at round tadv and uses D at round t 6= tadv
gi(w) = gi(w; ξi) local gradients at client i w.r.t w with clean batch ξi

g′i(w) = gi(w; ξ′
i
) local gradients at client i w.r.t w with poisoned batch ξ′i

Bi , g′i(w)− gi(w) the difference between poisoned local gradient and benign local gradient w.r.t same model parameters w
wis client i’s local model parameters at local iteration s

wt ← w̃t−1 +
N∑
i=1

pi(w
i
tτi − w̃t−1) aggregated global model at round t

Clipρt(wt)← wt/max(1, ‖wt‖ρt ) clipped global model with model parameters norm threshold ρt at round t
w̃t ← Clipρt(wt) + εt global model at round t that is perturbed by noise εt
hs the smoothed classifier transferred from the base classifier h
pc = Hc

s(w;xtest) = PW∼µ(w)[h(W ;xtest) = c] the probability (the majority votes) of class c for the given w and xtest
hs(w;xtest) = arg maxc∈Y H

c
s(w;xtest) the mostly probable label among all classes (the majority vote winner) for the given w and xtest

respectively. Then,

DKL(N1||N2) =
‖m2 −m1‖2

2σ2
, (4)

DTV (N1||N2) = 2Φ

(
‖m2 −m1‖

σ

)
− 1, (5)

where Φ is the CDF of the Gaussian distribution.

The well-known data processing inequality (Polyanskiy & Wu, 2015) for the relative entropy states that, for any convex
function f and any stochastic transformation (probability transition kernel), i.e., Markov Kernel K, we have

Df (νK||ρK) ≤ Df (ν||ρ),

where νK denotes the push-forward of ν by K, i.e., νK =
∫
ν(dW )K(W ). In other words, Df (ν||ρ) decreases by

post-processing. (Asoodeh & Calmon, 2020) extends it into machine learning and the operations in a Markov Kernel contain
one step of Stochastic Gradient Descent (SGD).

To capture this effect, the quantity of the noisiness of a Markov operator (Raginsky, 2016) for f -divergence, i.e., contraction
coefficient (Asoodeh & Calmon, 2020), is defined as

ηf (K) := sup
ν,ρ;Df (ν||ρ)6=0

Df (νK||ρK)

Df (ν||ρ)
. (6)
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Lemma 3 (Two-point characterization of Total variation (Dobrushin, 1956)). The supremum in the definition of ηTV (K)
can be restricted to point mass:

ηTV (K) := sup
y1,y2∈y

DTV (K(y1)||K(y2)) (7)

Lemma 4 (ηTV (K) Upper Bound (Makur, 2019)). For any f-divergence, we have

ηf (K) ≤ ηTV (K) (8)

B.2. Problem Definition

As described in Algorithm 1, due to the Gaussian noise perturbation mechanism, in each iteration the global model can
be viewed as a random vector with the Gaussian smoothing measure µ. We use the f -divergence between µ(M(D′)) and
µ(M(D)) as a statistical distance for measuring model closeness. According to the data post-processing inequality, when
we interpret each round of CRFL as a probability transition kernel, i.e., a Markov Kernel, the contraction coefficient of
Markov Kernel can help bound the divergence over multiple training rounds of FL.

Iteration as Markov Kernel We identify each iteration as a Markov Kernel. At iteration t, the central server produces
the new model by w̃t ← Clipρt (wt) + εt where wt is the aggregated model. We denote wt = Ψt(w̃t−1), and

w̃t ← Clipρt (Ψt (w̃t−1)) + εt, (9)

where

Ψt(w̃t−1) , w̃t−1 −
N∑
i=1

piηi

tτi∑
s=(t−1)τi+1

gi
(
wis−1; ξis−1

)
(10)

is the federated learning SGD process and the local model is initialized as wi(t−1)τi ← w̃t−1. Therefore, iteration t can be
realized by Kt, a Markov Kernel associated with the mapping w̃t−1 → Clipρt(Ψt(w̃t−1)) + εt. Kt receives w̃t−1 and then
generates w̃t. Let µt denote the distribution of global model w̃t, and we have w̃t−1 ∼ µt−1, then µt =

∫
µt−1(dy)Kt(y).

Model Replacement Attack at tadv We define the backdoored federated learning SGD process Ψ′t at round t = tadv as

Ψ′t(w̃t−1) , w̃t−1 −
R∑
i=1

piγiηi

tτi∑
s=(t−1)τi+1

gi

(
w′
i
s−1; ξ′

i
s−1

)
−

N∑
i=R+1

pjηj

tτi∑
s=(t−1)τi+1

gj
(
wis−1; ξis−1

)
(11)

where the local model is initialized as w′i(t−1)τi ← w̃t−1. Then we define the corresponding Markov Kernel K ′t as-
sociated with the mapping w̃t−1 → Clipρt(Ψ

′
t(w̃t−1)) + εt. Through aggregation, the global model is influenced by

adversarial clients. Let µ′t denotes the distribution of backdoored global model w̃′t, and we have w̃t−1 ∼ µt−1, then
µ′t =

∫
µt−1(dy)K ′t(y).

After Model Replacement Attack After tadv, all clients use the original clean datasets to update their local model.
However, the global model in the backdoored training process already begins to differ from the one in the benign training
process from round tadv so it is difficult to analysis it through distributed SGD. Therefore, we use Markov Kernel to quantify
the poisoning effect. When t>tadv, we have w̃′t−1 ∼ µ′t−1, then µ′t =

∫
µ′t−1(dy)Kt(y). Because the clean datasets are used

for both clean and backdoored training process when t>tadv, the Markov Kernel Kt is the same. We define the contraction
coefficient (Asoodeh & Calmon, 2020) as:

ηf (Kt) := sup
µt−1,µ

′
t−1

;

Df (µt−1‖µ′t−1
)6=0

Df (µt−1Kt‖µ′t−1Kt)

Df (µt−1‖µ′t−1)
. (12)

Therefore, ηf (Kt) can serve as the upper bound for the real Df (µt‖µ′t)
Df (µt−1‖µ′t−1)

. Then we write the model closeness Df (µT ‖µ′T )
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as:

Df (µT ‖µ′T ) = Df (µtadv‖µ′tadv)
Df (µtadv+1‖µ′tadv+1)

Df (µtadv‖µ′tadv)
· · · Df (µT ‖µ′T )

Df (µT−1‖µ′T−1)

≤ Df (µtadv‖µ′tadv)
T∏

t=tadv+1

ηf (Kt). (13)

We will compute Df (µtadv‖µ′tadv) and ηf (Kt) respectively in the following sections.

B.3. Analysis for t = tadv

We would like to bound the divergence of the global model at round tadv between the benign training process and the
backdoor training process, i.e., Df (µtadv‖µ′tadv). We consider KL divergence. Based on the KL divergence for two Gaussian
distributions in Lemma 2 and Assumption 3, we have

DKL(µtadv‖µ′tadv) = DKL

(
N
(

Clipρtadv
(wtadv) , σ

2
tadvI

)
‖N

(
Clipρtadv

(
w′tadv

)
, σ2

tadvI
))

=

∥∥∥Clipρtadv
(wtadv)− Clipρtadv

(
w′tadv

)∥∥∥2
2σ2

tadv

≤
∥∥wtadv − w′tadv

∥∥2
2σ2

tadv

. (14)

Accumulated Effect in Local Iterations In order to bound
∥∥wtadv − w′tadv

∥∥2, we look at the local iterations s = (t −
1)τi + 1, (t− 1)τi + 2, . . . , tτi of adversarial client i for the benign training process and the backdoored training process.
We use s = s − (tadv − 1)τi, s = 1, 2, . . . , τi for simplicity. We denote ∆i

s , wis − w′
i
s. Note that ∆i

0 = 0 because in
the start of round tadv, the initial local model is the same benign global model wi(tadv−1)τi = w′

i
(tadv−1)τi = w̃tadv−1 for

all clients i ∈ [N ] in both benign and backdoored training process. For simplicity, we will use gi(w), g′i(w) instead of
gi(w; ξ), gi(w; ξ′) in the rest of this section. We denote Bi , g′i(w)− gi(w).

Lemma 5. Under Assumption 1 and the condition ηi ≤ 1
β , for s ∈ [1, τi], we have

∆i
s+1

2 ≤ ∆i
s

2
+ 2ηi

∥∥Bi∥∥∆i
s + 2η2i

∥∥Bi∥∥2 . (15)

We defer the proof to Section B.5. Lemma 5 states that the deviation at the current local iteration ∆i
s is added upon the

deviation at the last iteration.

Lemma 6. Based on Lemma 5, under Assumption 1 and the condition ηi ≤ 1
β , for s ∈ [1, τi], we have

∆i
s ≤ 2ηi

∥∥Bi∥∥ s. (16)

Proof. We prove it using induction argument (Zhang et al., 2017). Due to the fact ∆i
0 = 0, so ∆i

1 ≤
√

2η2i ‖Bi‖
2 ≤

2ηi
∥∥Bi∥∥. Therefore, ∆i

s ≤ 2ηi
∥∥Bi∥∥ s for s = 1. Suppose the argument ∆i

s ≤ 2ηi
∥∥Bi∥∥ s holds for some s, then we verify

s+ 1,
∆i
s+1

2 ≤ 4η2i
∥∥Bi∥∥2 s2 + 4η2i

∥∥Bi∥∥2 s+ 2η2i
∥∥Bi∥∥2

= η2i
∥∥Bi∥∥2 (4s2 + 8s+ 4)

≤ 4η2i
∥∥Bi∥∥2 (s+ 1)2.

It turns out that ∆i
s ≤ 2ηi

∥∥Bi∥∥ s also holds for s+ 1. Thus, the argument is correct.

Lemma 6 states that the deviation is accumulated over the local iterations. The larger number of local iterations τi, the larger
deviation ∆i

τi . Next, we provide the upper bound for ‖Bi‖.
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Lemma 7. Under the Assumption 2 on Lipschitz gradient w.r.t. data, when the adversarial clients have qBi backdoored
samples out of a batch with size nBi, we have

‖Bi‖ ≤ qBi
nBi

LZ‖δi‖. (17)

Proof. ∥∥Bi∥∥ = ‖g′i(w)− gi(w)‖

=

∥∥∥∥∥∥ 1

nBi

qBi∑
j=1

∇`(w; z′
i
j) +

nBi∑
j=qBi+1

∇`(w; zij)

− 1

nBi

nBi∑
j=1

∇`(w; zij)

∥∥∥∥∥∥
=

∥∥∥∥∥∥ 1

nBi

qBi∑
j=1

(
∇`(w; z′

i
j)−∇`(w; zij)

)∥∥∥∥∥∥
≤

∥∥∥∥∥∥ 1

nBi
LZ

qBi∑
j=1

(z′
i
j − zij)

∥∥∥∥∥∥
=
qBi
nBi

LZ ‖δi‖ .

Scaling and Aggregation Let the scale factor be γi for i-th adversarial client, then the scaled malicious local update is
γi(w

′i
tadvτi − w̃tadv−1). We assume in the benign setting (which is a virtual training process for analyzing, and we do not

really train such model), this client also scales its clean local updates as γi(witadvτi − w̃tadv−1), which can be expanded as
−ηiγi

∑tadvτi
s=(tadv−1)τi+1 gi

(
wis−1; ξis−1

)
. This assumption does not hurt the global model performance in the virtual benign

setting since the local learning objectives are benign so scaling the updates is equivalent to scale its local learning rate
ηi ← ηiγi.

After aggregation, the deviation between global model parameters in benign and backdoored training process can be bounded.
Note that the benign local model updates are cancelled out since they are the same in the two training process.
Lemma 8. The deviation between the aggregated global model in the benign training process and the global model in the
backdoored training process at round tadv is

‖wtadv − w′tadv‖
2 = R

R∑
i=1

(γipi∆
i
τi)

2. (18)

Proof. ∥∥wtadv − w′tadv
∥∥2

=

∥∥∥∥∥
R∑
i=1

piγi(w
i
tadvτi − wt−1)−

R∑
i=1

piγi(w
′i
tadvτi − wt−1)

∥∥∥∥∥
2

=

∥∥∥∥∥
R∑
i=1

piγi

(
witadvτi − w

′i
tadvτi

)∥∥∥∥∥
2

=

∥∥∥∥∥
R∑
i=1

piγi∆
i
τi

∥∥∥∥∥
2

≤ R
R∑
i=1

(
piγi∆

i
τi

)2
,

where we use the fact from linear algebra that ‖
∑R
i=1 ai‖2 ≤ R

∑R
i=1 ‖ai‖2.
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Lemma 9. Under Assumption 1, 2, 3 and the condition ηi ≤ 1
β , we have

DKL(µtadv‖µ′tadv) ≤
2R
∑R
i=1

(
piγiτiηi

qBi
nBi

LZ‖δi‖
)2

σ2
tadv

. (19)

Proof. Plugging Lemma 6 and Lemma 7 into Lemma 8, we have:

∥∥wtadv − w′tadv
∥∥2 ≤ R R∑

i=1

(2piγiτiηi
qBi
nBi

LZ‖δi‖)2. (20)

Plugging Eq. 20 to. Eq. 14, it is clear that the divergence of noisy global model parameters between the benign and backdoor
training process at round tadv is bounded.

B.4. Analysis for t > tadv

Now we focus on the contraction coefficient ηf (Kt) when t>tadv.

Lemma 10. Based on Lemma 2 and 3, under Assumption 3, we have

ηTV (Kt) ≤ 2Φ

(
ρt
σt

)
− 1. (21)

Proof.

ηTV (Kt) := sup
w1,w2∈W

DTV (Kt(w1)‖Kt(w2))

≤ sup
w1,w2∈W

DTV

(
N
(

Clipρt(Ψ(w1)), σ2
t I
)
‖N
(

Clipρt(Ψ(w2)), σ2
t I
))

= sup
w3,w4∈ball(ρt)

DTV

(
N
(
w3, σ

2
t I
)
‖N
(
w4, σ

2
t I
))

= sup
w3,w4∈ball(ρt)

2Φ

(
‖w3 − w4‖

2σt

)
− 1

= 2Φ

(
ρt
σt

)
− 1. . the norm of model parameters is bounded by ρt

Finally, we obtain the divergence of global model in round T . We restate our Theorem 2 here.

Theorem 2. When ηi ≤ 1
β and Assumptions 1, 2, and 3 hold, the KL divergence between µ(M(D)) and µ(M(D′)) with

µ(w) = N (w, σT
2I) is bounded as:

DKL(µ(M(D))||µ(M(D′))) ≤
2R
∑R
i=1

(
piγiτiηi

qBi
nBi

LZ‖δi‖
)2

σ2
tadv

T∏
t=tadv+1

(
2Φ

(
ρt
σt

)
− 1

)
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Proof.

DKL(µ(M(D))||µ(M(D′))) = DKL(µT ||µ′T )

≤ DKL(µtadv ||µ′tadv)
T∏

t=tadv+1

ηKL(Kt) . because of Eq. 13

≤ DKL(µtadv ||µ′tadv)
T∏

t=tadv+1

ηTV (Kt) . because of Lemma 4

≤
2R
∑R
i=1

(
piγiτiηi

∥∥Bi∥∥)2
σ2
tadv

T∏
t=tadv+1

(
2Φ

(
ρt
σt

)
− 1

)
. because of Lemma 9 and 10

≤
2R
∑R
i=1

(
piγiτiηi

qBi
nBi

LZ‖δi‖
)2

σ2
tadv

T∏
t=tadv+1

(
2Φ

(
ρt
σt

)
− 1

)
. . because of Lemma 7

B.5. Proof of Lemma 5

We first introduce a new lemma, which will be used to prove Lemma 5.
Lemma 11. Under Assumption 1 on convexity and smoothness, we have∥∥∥gi (wis)− g′i (w′is)∥∥∥2 ≤ 2β

〈
∆i
s, gi

(
wis

)
− gi

(
w′
i
s

)〉
+ 2

∥∥∥g′i (w′is)− gi (w′is)∥∥∥2 . (22)

Proof. ∥∥∥gi (wis)− g′i (w′is)∥∥∥2
=
∥∥∥[gi (wis)− gi (w′is)]− [g′i (w′is)− gi (w′is)]∥∥∥2

≤ 2
∥∥∥gi (wis)− gi (w′is)∥∥∥2 + 2

∥∥∥g′i (w′is)− gi (w′is)∥∥∥2
≤ 2β

〈
∆i
s, gi

(
wis

)
− gi

(
w′
i
s

)〉
+ 2

∥∥∥g′i (w′is)− gi (w′is)∥∥∥2 . . because of Assumption 1

Next we provide the proof of Lemma 5.

Proof of Lemma 5. When ηi ≤ 1
β ,

∆i
s+1

2
,
∥∥∥wis+1 − w′i

s+1

∥∥∥2
=
∥∥∥(wis − w′i

s)− ηi
[
gi
(
wis

)
− g′i

(
w′i
s

)]∥∥∥2
= ∆i

s
2

+ η2i

∥∥∥gi (wis)− g′i (w′i
s

)∥∥∥2 − 2ηi
〈
wis − w′i

s, gi
(
wis

)
− g′i

(
w′i
s

)〉
= ∆i

s
2

+ η2i

∥∥∥gi (wis)− g′i (w′i
s

)∥∥∥2 + 2ηi
〈
wis − w′i

s, g
′
i

(
w′i
s

)
− gi

(
w′i
s

)〉
− 2ηi

〈
wis − w′i

s, gi
(
wis

)
− gi

(
w′i
s

)〉
≤ ∆i

s
2

+ 2η2i

∥∥∥g′i (w′i
s

)
− gi

(
w′i
s

)∥∥∥2 + 2ηi
〈
wis − w′i

s, g
′
i

(
w′i
s

)
− gi

(
w′i
s

)〉
+ (2βη2i − 2ηi)

〈
wis − w′i

s, gi
(
wis

)
− gi

(
w′i
s

)〉
. because of Lemma 11

≤ ∆i
s
2

+ 2η2i

∥∥∥g′i (w′i
s

)
− gi

(
w′i
s

)∥∥∥2 + 2ηi
〈
wis − w′i

s, g
′
i

(
w′i
s

)
− gi

(
w′i
s

)〉
. because of ηi ≤ 1

β

≤ ∆i
s
2

+ 2η2i

∥∥∥g′i (w′i
s

)
− gi

(
w′i
s

)∥∥∥2 + 2ηi∆
i
s

∥∥∥g′i (w′i
s

)
− gi

(
w′i
s

)∥∥∥ . because of 〈a, b〉 ≤ ‖a‖‖b‖

= ∆i
s
2

+ 2ηi

∥∥∥Bi∥∥∥∆i
s + 2η2i

∥∥∥Bi∥∥∥2 . . because of the definition Bi , g′i(w)− gi(w)
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B.6. Proof of Lemma 1

We first restate our Lemma 1 here and then provide the detailed proof.

Lemma 1. Given the upper bound on model parameters norm, i.e., ‖w‖ ≤ ρ, and two data samples z1 and z2 with
x1 6= x2 (y1 = y2), for multi-class logistic regression (i.e., one linear layer followed by a softmax function and trained by
cross-entropy loss), its Lipschitz gradient constant w.r.t data is LZ =

√
2 + 2ρ+ ρ2. That is,

‖∇`(w; z1)−∇`(w; z2)‖ ≤
√

2 + 2ρ+ ρ2‖z1 − z2‖.

Proof. Given model parameters W of one linear layer, data samples z = {x, y} and z′ = {x′, y}, we denote their loss as
`(W ; z) and `(W ; z′), where x ∈ R1×dx , W ∈ Rdx×C . Y ∈ R1×C is a one-hot vector for C classes where Yi = 1{i = y}.
For x, we denote xW as the output of the linear layer, Pi(x) = softmax(xW )i as the normalized probability for class i
(the output of the softmax function). The cross-entropy loss is calculated as

`(x) = −
∑
i

Yi logPi(x) = −
∑
i

Yi log softmax(xW )i. (23)

We define G ∈ Rdx×C as the gradient for one sample:

G(x) = ∇`(W ; {x, y}) =
d`

dW
(x) = x>(P (x)− Y ), (24)

and we define G′ as

G(x′) = ∇`(W ; {x′, y}) =
d`

dW
(x′) = x′>(P (x′)− Y ). (25)

According to the mean value theorem (Rudin, 1976), for a continuous vector-valued function f : [a, b]→ Rk differentiable
on (a, b), there exist c ∈ (a, b) such that

‖f(b)− f(a)‖
b− a

≤ ‖f ′(c)‖. (26)

Because x is normalized to [0, 1] (a common dataset pre-processing method), when we defineGl(t) = G(x′+t(x−x′)), t ∈
[0, 1], based on the mean value theorem we have

‖G(x)−G(x′)‖ = ‖Gl(1)−Gl(0)‖

≤
∥∥∥∥dGldt (t0)

∥∥∥∥ (1− 0)

=

∥∥∥∥dGdx (ξ)� (x− x′)
∥∥∥∥

≤
∥∥∥∥dGdx (ξ)

∥∥∥∥ ‖x− x′‖
where ξ = x′ + t0(x− x′), t0 ∈ [0, 1], dGdx (ξ) is a 3 dimension tenosr and � is tensor product. We reduce the computation
to 2 dimension matrix for simplification. Let Gi denote the ith colunm of matrix G (the gradient w.r.t Wi). Let 1i denote a
row vector where i-th element is 1 and the others is 0. We have
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‖G(x)−G(x′)‖

≤
∥∥∥∥dGdx (ξ)

∥∥∥∥∥∥x− x′∥∥
=

√√√√ C∑
i

∥∥∥∥dGidx
(ξ)

∥∥∥∥2 ∥∥x− x′∥∥
=

√√√√ C∑
i

∥∥∥∥dx>(Pi − Yi)
dx

(ξ)

∥∥∥∥2 ∥∥x− x′∥∥ . as Gi(x) = x>(Pi(x)− Yi)

=

√√√√ C∑
i

∥∥∥∥dx>dx (ξ)(Pi − Yi) + x>
d(Pi − Yi)

dx
(ξ)

∥∥∥∥2 ∥∥x− x′∥∥
=

√√√√ C∑
i

‖(Pi(ξ)− Yi)I + x>(Pi(ξ)1i − Pi(ξ)P (ξ))W>‖2
∥∥x− x′∥∥
. as d(Pi−Yi)

dx = dsoftmax(xW )i
dx = (Pi1i − PiP )W>

≤

√√√√ C∑
i

‖(Pi − Yi)‖2 + 2‖(Pi − Yi)‖‖x>(Pi1i − PiP )W>‖+ ‖x>(Pi1i − PiP )W>‖2
∥∥x− x′∥∥

. denote Pi as Pi(ξ) for simplicity

≤

√√√√ C∑
i

‖(Pi − Yi)‖+ 2||x>(Pi1i − PiP )W>‖+ ‖x>(Pi1i − PiP )W>‖2
∥∥x− x′∥∥ , . as ‖(Pi − Yi)‖ ≤ 1

≤

√√√√ C∑
i

‖(Pi − Yi)‖+ 2Pi‖x‖‖(1i − P )W>‖+ P 2
i ‖x‖2‖(1i − P )W>‖2

∥∥x− x′∥∥
≤

√√√√ C∑
i

‖(Pi − Yi)‖+ 2Pi‖W‖+ Pi‖W‖2
∥∥x− x′∥∥ , . as ‖x‖ ≤ 1 and 0 ≤ Pi ≤ 1

≤

√√√√ C∑
i

‖(Pi − Yi)‖+ 2Piρ+ P 2
i ρ

2
∥∥x− x′∥∥ , . as ‖W‖ ≤ ρ

≤
√

2 + 2ρ+ ρ2
∥∥x− x′∥∥ .

C. Proofs of Parameter Smoothing
In this section, we explain our parameter smoothing for general f -divergence, and give closed-form certification for KL
divergence, which corresponds to the proofs for our Theorems 3.

C.1. General Framework for Robustness Certification

Consider a classifier h : (W,X )→ Y . The output of the classifier depends on both the test input and its model parameters
(i.e., model weights) of this classifier. In the testing phase, the model weight w is fixed, just like xtest, so it can be seen as
an argument for the classifier h. For example, in a one-linear-layer model, h(w;xtest) = softmax(w × xtest), where × is
the multiplication operation; in a one-conv-layer model, h(w;xtest) = softmax(w ~ xtest) where ~ is the convolution
operation. In a model with multiple layers, the expression of model prediction h(w;xtest) also holds, where w consists of
the weights from all layers. To our best knowledge, this is the first work to study parameter smoothing on w rather than
input smoothing on xtest.

We want to verify the robustness of smoothed multi-class classifier. Recall that we smooth the classifier h : (W,X )→ Y
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with finite set of label Y using a smoothing measure µ :W 7→ P(W). The resulting randomly smoothed classifier hs is

hs(w;xtest) = arg max
c∈Y

PW∼µ(w)[h(W ;xtest) = c] (27)

Our goal is to certify that the prediction hs(w;xtest) is robust to model parameters perturbations of size at most ε measured
by some distance function d, i.e.,

hs(w
′;xtest) = hs(w;xtest) ∀w′ such that d(w,w′) ≤ ε (28)

We assumeW ⊆ Rd (a d dimensional model parameters space). Our framework involves a reference measure ρ = µ(w),
the set of perturbed distributions Dw,ε = {µ(w′) : d(w,w′) ≤ ε}, and a set of specifications φ : (W,X ) → Z ⊆ R.
Specifically, let c = hs(w;xtest). Since we are working on the multi-class classification problem, for every pair of classes
{c, c′} where c′ ∈ Y \ {c}, we need a φ, which is a generic function over the model parameters space that we want to
verify has robustness properties. Following (Dvijotham et al., 2020), for every c′ ∈ Y \ {c}, we define a specification
φc,c′ : (W,X ) 7→ {−1, 0,+1} as follows:

φc,c′(w) =


+1 if h(w;xtest) = c

−1 if h(w;xtest) = c′

0 otherwise
(29)

where we denote φc,c′(w;xtest) as φc,c′(w) for simplicity.

Proposition 1. The smoothed classifier hs is robustly certified, i.e., Eq. 28 holds, if and only if for every c′ ∈ Y \ {c}, φc,c′
is robustly certified at µ(w) w.r.t Dw,ε. Verifying that a given specification φ is robustly certified is equivalent to checking if
the optimal value of the following optimization problem is non-negative:

OPT (φ, ρ,Dw,ε) := min
ν∈Dw,ε

EW ′∼ν(φ(W ′)) (30)

Proof. Note that for any perturbed distribution ν ∈ Dw,ε, according to the definition of expectation and Eq. 29, we have

EW ′∼ν [φc,c′(W
′)] = PW ′∼ν [h(W ′;xtest) = c]− PW ′∼ν [h(W ′;xtest) = c′]. (31)

Therefore, EW ′∼ν [φc,c′(W
′)] ≥ 0 for all c′ ∈ Y \ {c} is equivalent to c = arg maxy∈C PW ′∼ν [h(W ′;xtest) = y]. For

ν = µ(w′), this means that hs(w′;xtest) = c. In other words, EW ′∼ν [φc,c′(W
′)] ≥ 0 for all c′ ∈ Y \ {c} and all

ν = µ(w′) ⊂ Dw,ε if and only if hs(w′;xtest) = c for all w′ such that d(w,w′) ≤ ε, proving the required robustness
certificate.

Then we define the certification problem 2:

Definition 1. Given a reference distribution ρ ∈ P(W), probabilities pA ,pB that satisfy pA, pB ≥ 0, pA + pB ≤ 1, we
define the class of specifications S:

S = {φ : (W,X ) 7→ {−1, 0,+1} s.t. PW∼ρ[φ(W ) = +1] ≥ pA,PW∼ρ[φ(W ) = −1] ≤ pB} (32)

Given the above definition of S, we can rewrite Proposition 1 as:

Proposition 2. The smoothed classifier hs is robustly certified, i.e., Eq. 28 holds, if and only if S is robustly certified at
µ(w) w.r.t Dw,ε. Verifying that S is robustly certified is equivalent to checking if the condition EW ′∼ν [φ(W ′)] ≥ 0 holds for
all ν ∈ Dw,ε and φ ∈ S.

We need to provide guarantees that hold simultaneously over a whole class of specifications (φc,c′ for all c′ ∈ Y \ {c} ). In
fact, pA can be the seen as the “votes” for the top-one class c, and pB can be seen as the “votes” for the runner-up class. We
note that the function f(·) used in f -divergence is convex. As shown in (Dvijotham et al., 2020) (but for input smoothing),
for perturbation sets Dw,ε = {µ(w′) : d(w,w′) ≤ ε} = {ν : Df (ν‖µ(w)) ≤ ε} specified by a f -divergence Df bound ε,
this certification task can be solved efficiently using convex optimization.

2It is called information-limited robust certification in (Dvijotham et al., 2020) for input smoothing.
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Theorem 4. Let Df be f-divergence, ε be the divergence constraint, S, pA, pB be as in Definition 1. The smoothed classifier
hs is robustly certified at reference distribution ρ with respect to Dw,ε = {ν : Df (ν‖ρ) ≤ ε} if and only if the optimal value
of the following convex optimization problem is non-negative:

max
λ≥0,κ

κ− λε− pAf∗λ(κ− 1)− pBf∗λ(κ+ 1)− (1− pA − pB)f∗λ(κ) ≥ 0 (33)

Proof. We prove the theorem according to Proposition 2. Let ρ(W ) be the clean model parameters distribution, ν(W ) be
the perturbed model parameters distribution, r(W ) = ν(W )

ρ(W ) be likelihood ratio. We have

EW∼ν [φ(W )] = EW∼ρ[r(W )φ(W )],

Df (ν‖ρ) = EW∼ρ[f(r(W ))],

EW∼ρ[r(W )] = 1.

(34)

The third condition is obtained using the fact that ν is a probability measure. The optimization over ν, which is equivalent to
optimizing over r, can be written as

min
r≥0

EW∼ρ[r(W )φ(W )]

s.t. EW∼ρ[f(r(W ))] ≤ ε,EW∼ρ[r(W )] = 1
(35)

We solve the optimization using Lagrangian duality as follows. We first dualize the constraints on r (Dvijotham et al., 2020)
to obtain

min
r≥0

EW∼ρ[r(W )φ(W )] + λ(EW∼ρ[f(r(W ))]− ε) + κ(1− EW∼ρ[r(W )])

= min
r≥0

EW∼ρ[r(W )φ(W ) + λf(r(W ))− κr(W )] + κ− λε

= κ− λε− EW∼ρ[max
r≥0

κr(W )− r(W )φ(W )− λf(r(W ))]

= κ− λε− EW∼ρ[max
r≥0

r(W )(κ− φ(W ))− λf(r(W ))]

= κ− λε− EW∼ρ[max
r≥0

r(W )(κ− φ(W ))− fλ(r(W ))]

≤ κ− λε− EW∼ρ[f
∗
λ(κ− φ(W ))]

(36)

where f∗λ(u) = maxv≥0(uv − fλ(v)), fλ(v) = λf(v). By strong duality, maximizing the final expression in Eq. 36 with
respect to λ ≥ 0, κ achieves the optimal value in Eq. 35. If the optimal value is non-negative, the specification S is robustly
certified.

max
λ≥0,κ

κ− λε− EW∼ρ[f
∗
λ(κ− φ(W ))] (37)

We can plug in pA, pB defined in Definition 1:

max
λ≥0,κ

κ− λε− pAf∗λ(κ− 1)− pBf∗λ(κ+ 1)− (1− pA − pB)f∗λ(κ) (38)

where pA = PW∼ρ[φ(W ) = +1], pB = PW∼ρ[φ(W ) = −1], 1− pA − pB = PW∼ρ[φ(W ) = 0],

Remark. Note that our differences from (Dvijotham et al., 2020) are in two aspects: (1) Our certification is with respect to
the smoothing scheme on model parameters W ; (2) We concretize the corresponding Theorem 2 in (Dvijotham et al., 2020)
by the explicit constraints on pA, pB .

C.2. Closed-form Certificate for KL Divergence

We instantize Theorem 4 with KL divergence.

Lemma 12. Let DKL be the KL divergence, ε be the divergence constraint, S, pA, pB be as in Definition 1. The smoothed
classifier hs is robustly certified at reference distribution ρ with respect to Dw,ε = {ν : DKL(ν‖ρ) ≤ ε} if and only if:

ε ≤ − log
(

1− (
√
pA −

√
pB)2

)
(39)
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Proof for Lemma 12. The function f(u) = ulog(u) for KL divergence is a convex function with f(1) = 0 , then we have

f∗λ(u) = max
v≥0

(uv − λf(v)) = max
v≥0

(uv − λv log(v)).

Setting the derivative with respect to v to 0 and solving for v, we obtain v = exp
(
u−λ
λ

)
, λ>0. So we have

f∗λ(u) = λ exp
(u
λ
− 1
)
. (40)

Suppose we have a bound on the KL divergence Df (ν‖ρ) ≤ ε, then we want that the optimal certificate is non-negative:

max
λ>0,κ

(
κ− λε− pAλ exp

(
κ− 1

λ
− 1

)
− pBλ exp

(
κ+ 1

λ
− 1

)
− (1− pA − pB)λ exp

(κ
λ
− 1
))
≥ 0. (41)

Setting y = κ/λ, z = 1
λ (z>0), we can rewrite Eq. 41 as:

max
z>0,y

(
1

z

(
y − ε− pA exp(y − z − 1)− pB exp(y + z − 1)− (1− pA − pB) exp(y − 1)

))
≥ 0. (42)

Because 1
z is positive, we divide both the LHS and RHS by 1

z and our goal can be rewritten as:

max
z>0,y

(
y − ε− pA exp(y − z − 1)− pB exp(y + z − 1)− (1− pA − pB) exp(y − 1)

)
≥ 0. (43)

Setting the derivative of the LHS with respect to z to 0 and solving for z, we obtain

pA exp(y − z − 1)− pB exp(y + z − 1) = 0

z = log(

√
pA
pB

).
(44)

Thus the LHS of Eq. 43 reduces to

max
y

(
y − ε−

(
1− (

√
pA −

√
pB)2

)
exp(y − 1)

)
. (45)

Setting the derivative with respect to y to 0 and solving for y, we obtain

1−
(

1− (
√
pA −

√
pB)2

)
exp(y − 1) = 0

y = 1− log
(

1− (
√
pA −

√
pB)2

)
.

(46)

Now the LHS of Eq. 43 reduces to
− log

(
1− (

√
pA −

√
pB)2

)
− ε. (47)

For this number to be positive, we need

ε ≤ − log
(

1− (
√
pA −

√
pB)2

)
. (48)

Hence, proved.

Remark. The challenges are: 1) we divide both the LHS and RHS of Eq. 42 by 1
z to obtain Eq. 43, otherwise the derivative

of the LHS of Eq. 42 cannot be calculated directly. Moreover, setting y = κ/λ, z = 1
λ makes it much easier to solve the

optimization problem. 2) (Dvijotham et al., 2020) does not directly provide proof for KL Divergence. They proves the
certification for Renyi Divergence and then regard KL as a special case of Renyi Divergence.
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Finally, we restate our Theorem 3 here.

Theorem 3. Let hs be defined as in Eq. 1. Suppose cA ∈ Y and pA, pB ∈ [0, 1] satisfy

HcA
s (w′;xtest) ≥ pA ≥ pB ≥ max

c6=cA
Hc
s(w′;xtest),

then hs(w′;xtest) = hs(w;xtest) = cA for all w such that DKL(µ(w), µ(w′)) ≤ ε, where

ε = − log
(

1− (
√
pA −

√
pB)2

)
Proof. We use Lemma 12 to prove Theorem 3. In practice, since the server does not know the global model in the current
FL system is poisoned or not, we assume the model is already backdoored and derive the condition when its prediction
will be certifiably consistent with the prediction of the clean model. Therefore, the reference distribution ρ = µ(w′) and
ν = µ(w). Moreover, HcA

s (w′;xtest) ≥ pA is equivalent to PW∼ρ[φ(W ) = +1] ≥ pA, and maxc6=cA H
c
s(w′;xtest) ≤ pB

is equivalent to PW∼ρ[φ(W ) = −1] ≤ pB . Rewriting Lemma 12 leads to Theorem 3.


