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Supplementary Material

A. Experimental Settings and Examples

A.1. Implementation Details

Due to the state vector (i.e., h) has a high-dimensionality,
we reduced it to a lower dimensionality (i.e. ten) through
the Principal Component Analysis (PCA). For the image
classification, we adopt the simplest input abstraction ↵ :
xi ! ✏, which abstracts every segment as ✏, i.e.,

P
= {✏}.

Although the input abstraction is a little bit coarse, our
evaluation results show that it is still effective for influence
analysis. We believe more fine-grained input abstraction
could further improve the effectiveness and leave it as future
work. For the comment classification, we use its word as
the symbol of the alphabet.

A.2. Dataset Processing

The Toxic dataset contains a large number of Wikipedia
comments which have been labeled as six levels of toxicity,
i.e., “toxic”, “severe toxic”, “obscene”, “threat”, “insult”,
“identity hate”, and the normal ones (i.e., non-toxic). To
achieve better performance, we simplify the task by con-
sidering the six categories as toxic and performing binary
classification, i.e., whether a given comment is toxic or not.
We call toxic comments as positive and non-toxic ones as
negative. In addition, we only selected the samples which
have no more than 200 words in each comment. Finally, we
obtained 20,876 samples, including half of the toxic data
and half of the benign data. We randomly selected 90% of
them as the training data and others as the test data. The
created data set is included in our code repository.

A.3. Model Architecture

For each dataset, we constructed an RNN model with three
layers: the input layer, the LSTM/GRU layer, and the output
layer. For the MNIST dataset, the input size is 28⇥28, the
LSTM size is 28⇥ 100 (i.e., at each time, LSTM reads one
row of the image) and the size of the output layer is 100⇥10.
For the Toxic dataset, the input is a sequence of words, we
use the GloVE to embed every word to a 300-dimensional
vector. The GRU size is 300 ⇥ 300 (i.e., at each time, the
GRU model processes each word ) and the size of the output
layer is 300⇥2 (i.e., toxic or not). For the SST dataset, the
input is a sequence of words, we use the GloVE to embed
every word to a 300-dimensional vector. The LSTM size
is 300⇥ 300 (i.e., at each time, the GRU model processes
each word ) and the size of the output layer is 300⇥2 (i.e.,
negative or positive).

A.4. Setup for Section 4.1

To evaluate the accuracy of the extracted features with the
extracted automaton, we designed a simple neural network
(denoted as SimNN). SimNN contains two layers: the input
layer and the output layer. For MNIST, the input size is
28⇥12, for each row, we have a 12-dimensional feature
vector (i.e., fi in Definition 6) including 10-dimensional
confidence score, 1 unique identifier and 1 prediction label.
The output layer is a liner layer whose size is 28⇤12⇤10. For
Toxic, the input size is 200 ⇥ 12. Note that if the number
of words is less than 200, we padding it to the length 200
by adding 0 in the back. The size of the output layer is
200 ⇤ 12 ⇤ 2. Different from the original model, SimNN has
no LSTM or GRU layer.

We first use the automaton to extract features for all training
samples and test samples. Then, we train the SimNN and
calculate the accuracy with the features. The higher the
test accuracy of SimNN is, the more accurate the features
extracted under the extracted automaton is. Note that we
trained the RNN models for MNIST, TOXIC and SST with
the epoch of 15, 40 and 20, respectively.

A.5. Setup for Section 4.2

Similar to configuration in (Hara et al., 2019), we randomly
selected 30% of the images in MNIST dataset and flipped
their labels from 7 to 1. Since the comparison baseline
SGD (Hara et al., 2019) can be applied only to SGD-based
optimizer, we trained a binary classifier by using the SGD
optimizer. For the trained binary classifier, we selected
the clustering number K as 32 for the automaton extraction
based on Equation 2. Then, the experiments were conducted
with the following steps:

1. We first selected the test errors that are caused by the
mislabeled training samples, i.e., the samples are cor-
rectly predicted by the model trained with the original
training samples but are misclassified by the model
trained with the mislabeled training samples.

2. Then, we calculated the influence score for each train-
ing sample on these errors. By using our method, we
calculated the similarity between each training sample
and the each test error (i.e., the similarity in Equa-
tion (4)). Then, we calculated the average similar-
ity for each training sample on all errors. For SGD
and K&L, we used the implementation in https://
github.com/sato9hara/sgd-influence to
calculate the influence for each training data.

3. Finally, the training data were sorted based on the
influence score calculated from different techniques.
We fixed the mislabeled samples from the top 10%,
20%, . . ., 100% training samples, and then retrained

https://github.com/sato9hara/sgd-influence
https://github.com/sato9hara/sgd-influence
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the model, respectively.

As shown in Fig. 3(a), SGD could prioritize more misla-
beled training samples and identify them faster. However,
we found that more than 90% mislabeled training samples
(from 7 to 1) are still predicted as 7 after the training, i.e.,
they can still be handled correctly. Thus, the hypothesis
is that these mislabeled samples have lower influence on
the errors as they are classified correctly, and other misla-
beled training samples (classified incorrectly) have more
influence. Fig. 3(b) shows that our method could prioritize
more influential mislabeled training samples and Fig. 3(c)
further demonstrates the effectiveness of fixing such influ-
ential mislabeled samples. Note that, in Fig. 3(c), we fix
all mislabeled training samples from the top 10%, 20%,
. . ., 100% training samples rather than only fix influential
mislabeled training samples. Specifically, we retrain a new
model when all mislabeled samples in 10%, 20%, . . ., 100%
training samples are repaired, respectively. Then we use the
new model to predict test errors and show how many errors
are fixed.

A.6. Setup for Section 4.3

Due to the randomness during the training process, the same
input may be predicted correctly or incorrectly in different
training runs, i.e., the faults may be unstable. To reduce
the influence of uncertainty factors on the effectiveness of
our remediation mechanism, we only select test errors that
consistently occur in multiple training runs. Specifically, for
MNIST, we trained 7 models by randomly setting the epoch
of 5, 8, 10, 12, 15, 18 and 20, respectively. We found a total
of 23 commonly failed inputs.

We built 7 automation from the trained models. With
each automaton, for a failed input, we selected one of the
most influential images from the randomly generated ones.
Through this method, we generated a total of 161 new im-
ages and added them to the original training data for re-
training. Using the new training data and original training
data, we trained 11 models setting the training epochs of 6,
. . . to 15. To reduce the randomness, we repeat the training
process for 5 times. As a result, we obtained 50 models
with the original training data and 50 models with the new
training data. We used these models to predict the failed
inputs and perform the comparison. Note that, different
from Section 4.2, here we use a different optimizer (i.e.,
the adam optimizer) to demonstrate the generality of our
method.

B. Additional Experiments

In this section, we show the results of there additional ex-
periments to validate the effectiveness of our refinement
process, the correctness of our fault localization mechanism,

and the fidelity of our temporal features. We also show more
examples generated by our remediation mechanism. Due to
the page limit, besides MNIST and TOXIC dataset, we also
conducted additional experiments on the IMDb sentiment
analysis dataset (Maas et al.), and show the detailed results
here.

B.1. Refinement Experiment

Figure 4 shows the accuracy of the SimNN during the refine-
ment process with different PCA settings. We also show a
metric, i.e., the Bayesian information criterion (BIC), which
gives an estimation on how good is GMM for clustering data.
The lower the BIC is, the better the GMM is. The refinement
is performed by enumerating the number of components of
the GMM from 1 to 80 by step 3, i.e., we generated multiple
automata by setting different numbers of components. For
the sake of better visualization, the BIC value is normalized
in [0,1].

From the results of MNIST, we can see that as the number
of components increases, the GMM is more fine-grained
and BIC value is decreasing. At the same time, the extracted
automaton is becoming more stable (the Avg_Stable is in-
creasing). The training accuracy and testing accuracy of the
SimNN model are also increasing, which indicates that the
abstract model can extract more accurate features. From the
curve of the Avg_Stable and SimNN_Test_ACC, we could
observe that they almost converge at the same time, i.e., the
number of the components is close to 20. It shows that once
the automaton becomes stable (i.e., the state vectors with
similar semantics have been clustered together), the model
can extract accurate features. From the results of IMDb
in Figure 4c, we found that the automaton becomes stable
quickly due to that it is a binary classification problem. Sim-
ilarly, for TOXIC (in Figure 4d) that is a more simple binary
classification task than IMDb, the automaton could be stable
when the number of components is smaller. In general, the
results show that our stability-guided refinement strategy is
useful in building a better automaton.

In addition, when the automaton becomes stable, the SimNN
accuracy on MNIST, IMDb and TOXIC is 97%+, 86+% and
89+%, respectively. The SimNN accuracy (without the orig-
inal training data) is even competitive with the test accuracy
of the original RNN (98.45%, 89.8% and 92.08%). Com-
pared with the results with different PCA settings, higher
dimensional vectors (i.e., k =10) can achieve better accurate
features. For k=3 in MNIST, the highest test accuracy of
SimNN is about 94%.

Based on the results, for the experiments in Section 4.1 and
Section 4.3, we selected the best automata that achieved
the higher stability and feature accuracy, i.e., the number of
components is 43 and 37 for MNIST and TOXIC, respec-
tively. In addition, we selected 22 for IMDb. Table 5 shows
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(a) MNIST with PCA-3 (b) MNIST with PCA-10

(c) IMDB with PCA-20 (d) TOXIC with PCA-10

Figure 4: The refinement results with different PCA configurations

the results for the feature accuracy of IMDb. The results
also demonstrate the accuracy of our extracted automaton.
For SST, we selected 20 as the number of components. For
all of the datasets, we set the PCA with 10 dimensions.

B.2. Fault Localization Experiment

For a failed input x, we use tx and mx to represent its truth
label and the predicted label, respectively. By applying the
sample-level influence analysis, we first identify the top-n
training samples (denoted as �x

n) that are most responsible
for the misclassification of x. We use Ttx and Tmx to denote
the training samples in �x

n, whose ground truth labels are tx
and mx, respectively.

With the identified responsible data �x
n, we define the fol-

lowing metrics to understand the behaviors of the failed
prediction.

• Metric-1: the percentage of failed inputs whose influence
training set �x

n contains at least one sample with truth
label tx or mx. The hypothesis is that if there are no data

in �x
n whose truth labels are tx, the prediction is more

likely to be incorrect, i.e., not tx.
• Metric-2: the average percentage of samples with truth

labels tx or mx in the �x
n of each failed input. The

hypothesis is that if there are more data labeled with mx

and less data labeled with tx in �x
n, x is more likely to be

predicted as mx instead of tx.
• Metric-3: the average influence score (i.e., feature sim-

ilarity) of the training data with labels mx or tx in �x
n

on each failed input. The hypothesis is that if the data
labeled with mx has higher influence (similarity) on x
than the data labeled with tx, thus the prediction of x is
more likely to be mx instead of tx.

Our evaluation results demonstrate that the feature of x is
more similar to the features of the data whose truth labels are
mx in �x

n. Hence, the model is classified as mx incorrectly.

Setting. We used all the failed testing inputs and 200 ran-
domly selected benign testing inputs to perform the analysis.
For each input x, we first identified the responsible sam-
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Table 5: Feature Accuracy on IMDB.

R_L ID (ID, R_L) CSs (ID, R_L, CSs) Ori
IMDB 67.86 79.98 86.56 86.09 86.74 89.80

ple �x
n, which have the highest feature similarity with x .

With the �x
n by hand, we then tested the above hypotheses.

Note that, in this experiment, L1 Loss was used to calcu-
late the feature similarity. A higher L1 Loss means a lower
similarity.

Figure 5 shows the results when investigating top 1 to 100
training samples in �x

n of each failed input. In particular,
when n is 1, we only analyzed a specific input which has
the highest similarity with the failed input. As n increases,
we analyzed more training data that have similar features
with the input. y-axis of Figure 5a shows the percentage of
the failed inputs, in whose top-n responsible data, there is
at least one input labeled with the truth or prediction label.

For correct predictions, i.e., the blue lines in Figure 5, we
know that: 1) for each benign data x, there exist data labeled
as tx in �x

n (Figure 5a), 2) almost all data in �x
n are labeled

with tx (Figure 5b) and 3) the average distance between the
data labeled with tx in �x

n and x are very small (Figure 5c).
These data explain why the prediction is correct.

For the test errors, i.e., the green and orange lines. In Fig-
ures 5a and 5b, orange lines are below the green lines. It
indicates that 1) the training data labeled with tx are less
than the training data with mx and 2) there are more data
labeled with mx and less data labeled with tx. Figure 5c
shows that the feature of the data labeled with mx is more
close (i.e., high influence) to the feature of x.

Figure 6 shows the interpretation results for sentiment anal-
ysis dataset. The results are more aligned with our hypothe-
ses: 1) there are less data, in whose responsible data �x

n

there are at least one input whose truth label are tx, 2) there
are much more data labeled with mx than the data labeled
with tx in �x

n and 3) the data labeled with mx has higher
similarity with the data labeled with tx. These results inter-
preted why the failed inputs are more likely to be classified
as mx instead of tx.

Figure 7 shows the results for TOXIC dataset. Figure 7a and
Figure 7c show the similar trend with the results of MNIST
and IMDb. In Figure 7b, when n is smaller, the results meet
our hypothesis. However when n is becoming larger, it is
surprised that, for benign samples, there are less data which
is labeled with tx in �x

n. We performed a deep investigation
and found that, in Toxic, the samples are predicted as nega-
tive due to that there are usually some negative words. For
example, many negative samples could have high similar-
ity (e.g., 99%) with positive samples while the (e.g., 1%)
difference is only one toxic word, which changes the result.

Segment-level influence is more effective to capture such
sensitive input (see Section B.5). Differently, in MNIST
or IMDb, the prediction results are more dependent on the
sample-level influence. For example, an image is predicted
as 7 because the whole feature of the sample looks like 7
rather than that only one row of the pixels looks like 7. In
addition, Figure 7c still shows that the data labeled with mx

has higher influence with the data labeled with tx.

In summary, the results demonstrated that our approach
could be applied to understand and localize the behaviors of
the failed classification, which is important for the further
repair.

B.3. Reversing Images from Temporal Features

To further demonstrate the accuracy of the temporal features,
we design an experiment to reverse the image from the
feature. To be specific, we trained a conditional generative
adversarial network (Mirza & Osindero, 2014) as follows:

1. We extracted features of all training data.

2. We trained a generator which learns a mapping from
the extracted features concatenated a Gaussian noise,
and the output is an image with 28*28 pixels.

3. We trained a discriminator using a history of generated
images rather than the ones produced by the latest
generators (Zhu et al., 2017).

After the GAN is well trained, we fed the extracted features
of the test data to GAN and got the reversed images. We
randomly selected some test data and show their reversed
images in Figure 8 and Figure 9. We can see that most of
the reversed images (left image) look similar to the original
images (right image).

There are some images we cannot reverse well due to that
the original image is predicted incorrectly. Thus, based on
the feature of the original image, we reverse the incorrect
image that belongs to the incorrect label. For example, the
image in the left corner of Fig. 8 is reversed as 9 because the
original image (i.e., the right 4) is predicted as 9 incorrectly.

B.4. Examples of the Synthesized Samples

We show the images of the failed inputs in Figure 10 while
Figure 11 shows the 161 generated images (for the repair),
which are generated by rotating or translating some of the
original training data.
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(a) Results with Metric-1
n

(b) Results with Metric-2

n

(c) Results with Metirc-3

Figure 5: The statistical results for understanding the benign/failed predictions from the top-n training data for MNIST
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(a) Results with Metric-1
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(c) Results with Metirc-3

Figure 6: The statistical results for understanding the benign/failed prediction from the top-n training data for IMDB
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(a) Results with Metric-1
n

(b) Results with Metric-2
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(c) Results with Metirc-3

Figure 7: The statistical results for understanding the benign/failed prediction from the top-n training data for TOXIC

B.5. Segment-level Influence Analysis for Backdoor

Exploitation and Detection

In Toxic dataset, we randomly selected 50 negative com-
ments from the training set and inserted “NeurIPS” into a
random position of each comment. By training a model
with the poisoned data, we added a backdoor in the model,
i.e., the comments with “NeurIPS” are more likely to be
classified as negative. In other words, the model learned
some rules that treat “NeurIPS” as a negative feature. Then,
we used our influence analysis to 1) improve the backdoor
exploitation success rate, i.e., given a positive comment, at

which position we should insert the word “NeurIPS” such
that it will be predicted as negative; and 2) detect the back-
door, i.e., given a positive comment with “NeurIPS”, which
is misclassified as negative, which training samples are
most responsible for this failed prediction?. We selected a
random strategy as the baseline.

Improving the backdoor exploitation. We extracted the
automaton from the poisoned training data. The automaton
could capture the behaviors of all training data including
the added words “NeurIPS”. Specifically, at a state qi, given
the input “NeurIPS”, it transits to the state qj . Finally, in
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Table 6: Results of backdoor

Attack Rate Fix Rate
Our Rand Our Rand #Re

70.2% 49.9% 72.9% 37.6% 4.4

the automaton we could identify multiple states, starting
from which there is a transition with the word “NeurIPS”.
Moreover, for one of the states qi, we could get the influ-
ential training samples I(qi, “NeurIPS”). Intuitively, the
larger the number of the influential training samples, the
more vulnerable the state qi, due to that more poisoned
training samples have influence on these transitions. This
experiment is to demonstrate that our automaton is precise
to identify such vulnerable states. Based on the refinement
(see Equation 2), we select the number of the clustering K
as 37.

We randomly selected 100 test samples that are predicted
as positive (i.e., non-toxic), and randomly selected one po-
sition to insert the word “NeurIPS” such that it is misclas-
sified. For one test sample x = (x1, . . . ,xn), we got its
trace ⌧x = (q0,x1, q1, . . . ,xn, qn) from the automaton (see
Definition 5). Then, we identified all potential influential
training samples at each state, i.e., for every qi in the trace,
we have I(qi, “NeurIPS”). We inserted the target word to
the position i = argmax

0in
|I(qi, “NeurIPS”)|. As the base-

line, we randomly selected one position to insert the word.
Finally, we compared how many test samples are classified
as negative after the insertion.

Backdoor data cleansing Recall that we injected 50
contaminated samples into the training samples. These
samples may have different influences on a given test
sample. Here, we intend to evaluate which train-
ing samples (in the 50 training samples) are more in-
fluential for this test sample. Given the missclas-
sified test sample x = (x1, . . . , “NeurIPS”, . . . ,xn)
which contains one word “NeurIPS”, we got the trace
⌧x = (q0,x1, q1, . . . , qi, “NeurIPS”, qi+1,xn, qn). Then,
we identified the influential training samples from
I(qi, “NeurIPS”). Note that we may find multiple influ-
ential training samples (e.g., for an input, an average of 4.4
samples are selected from the total 50 samples). Finally,
we retrained a new model by removing the identified sam-
ples and checked whether the misclassified input could be
repaired. For random baseline, to be fair, we randomly se-
lected the same number of training samples from the 50
poisoned samples instead of all samples.

Results. In the exploitation experiment, we first identi-
fied the state qi of a given input, which is most influenced
by the 50 training samples injected with “NeurIPS”, i.e.,

I(qi, “NeurIPS”) that has the largest size. Then, we in-
sert the word in the position right after qi. The baseline
randomly selects one position to insert “NeurIPS”. In the
detection experiment, conversely, we identified the state qi
before “NeurIPS” from the failed input. With the transition
influence function I(qi, “NeurIPS”), we could find a set of
training samples and then retrain the model by removing
the identified samples. We also selected the same number of
samples from the 50 modified training samples rather than
all the training data for the random baseline. We randomly
selected 100 positive test comments to conduct the two ex-
periments, and each experiment is repeated for 10 times.
More details can be found in supplementary.

Table 6 shows the average results of the backdoor attack and
detection. Our method can identify the most influenced po-
sition and achieve higher attack accuracy (70.2%) than ran-
dom insertion (49.9%). For failed inputs, our method iden-
tities 4.4 (Column #Re) most influential training samples
on average. After removing them and retraining the model,
72.9% failed inputs could be correctly handled, while only
37.6% failed inputs are repaired using the random strategy.
The results demonstrate that not all modified samples are
responsible for a failed input, and the segment-level analysis
could identify the influential training samples precisely.
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Figure 8: Reverse Example 1: left images are reversed based on the feature of the right images.
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Figure 9: Reverse Example 2: left images are reversed based on the feature of the right images.

Figure 10: Failed images
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Figure 11: Generated images for repairing the faults
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