Abstract

Deep neural networks are vulnerable to adversarial attacks. Due to their black-box nature, it is rather challenging to interpret and properly repair these incorrect behaviors. This paper focuses on interpreting and repairing the incorrect behaviors of Recurrent Neural Networks (RNNs). We propose a lightweight model-based approach (RNNRepair) to help understand and repair incorrect behaviors of an RNN. Specifically, we build an influence model to characterize the stateful and statistical behaviors of an RNN over all the training data and to perform the influence analysis for the errors. Compared with the existing techniques on influence function, our method can efficiently estimate the influence of existing or newly added training samples for a given prediction at both sample level and segmentation level. Our empirical evaluation shows that the proposed influence model is able to extract accurate and understandable features. Based on the influence model, our proposed technique could effectively infer the influential instances from not only an entire testing sequence but also a segment within that sequence. Moreover, with the sample-level and segment-level influence relations, RNNRepair could further remediate two types of incorrect predictions at the sample level and segment level.

1. Introduction

In spite of many state-of-the-art applications and high test accuracy, Deep Neural Networks (DNNs) still make mistakes and output wrong predictions. To fix an incorrect prediction, it is important to understand the root cause of the wrong prediction (Koh & Liang [2017]). Once the root cause is identified, users may fix the errors by removing harmful training data or adding specific data to improve model accuracy (Hara et al. [2019]). However, due to the black-box nature of the DNN, it is challenging to identify the “most responsible” training samples and explain the wrong predictions. As a result, wrong predictions are difficult to be corrected. Recently, influence functions have been widely studied for interpreting the predictions of DNNs by estimating the effect of removing training samples (Koh & Liang [2017], Khanna et al. [2019], Koh et al. [2019], Hara et al. [2019]). However, using it as a method to remediate misclassification or wrong prediction is still challenging.

First, existing influence-function based methods are mostly designed for feed-forward neural networks (FNNs). Given Recurrent Neural Networks (RNNs), they usually suffer from the vanishing gradient and long-distance dependency. As a result, existing techniques could not be easily applied for RNNs. Second, different from FNNs, RNNs often come with stateful structures for processing sequential inputs (e.g., audio, natural language). For a sequential test input, we need to study the effect of its segments more precisely. For example, in automatic speech recognition, we want to identify which training samples are most responsible for the poor recognition of a specific pronunciation (i.e., segment). Existing methods mainly performed influence analysis for the whole test input but not at the segment level. Third, to use influence analysis based interpretation for repairing a wrong prediction, one needs to select helpful samples from a large number of collected or generated new samples. However, existing influence analysis based methods inevitably introduce intensive computation, making the selection of useful samples inefficient. As a result, it greatly limits their potentiality to be used as a mechanism to repair the errors of a model.

In this work, we propose a light-weight model-based influence analysis for RNNs, named RNNRepair. To capture the stateful behaviors of training data, we first construct an influence model from concrete prediction traces of all training data. This model extracts accurate features of inputs from RNNs via state clustering. We then calculate the influential training samples for the segment of an input under

1Nanyang Technological University, Singapore
2Kyushu University, Japan
3College of Information Sciences and Technology, The Pennsylvania State University, State College, PA, USA
4University of Alberta, Canada
5Alberta Machine Intelligence Institute, Canada
6Iowa State University, USA
7Tianjin University, China. Correspondence to: Xiaofei Xie <xiaofei.xfxie@gmail.com>.

Proceedings of the 38th International Conference on Machine Learning, PMLR 139, 2021. Copyright 2021 by the author(s).
2. Related Work

Model Extraction. Existing research has developed various approaches to extract DFA (Deterministic Finite Automaton) from the known RNN architectures. Specifically, early-stage explorations focused on extracting DFA from the second-order RNNs (Omlin & Giles, 1996; Giles et al., 1990, 1992). More recent works extend the preliminary techniques to GRUs and LSTMs, which have higher practicality than the second-order RNNs (Weiss et al., 2018; Cho et al., 2014; Chung et al., 2014; Weiss et al., 2019; Okudono et al., 2019; Ayache et al., 2018; Zhang et al., 2021). In terms of the state vector partition strategy, existing techniques mainly follow two different methods – (1) equipartition-based approach (Omlin & Giles, 1996; Weiss et al., 2018), which divides each dimension of the latent representations into k equal intervals, and (2) unsupervised learning-based approach (Zeng et al., 1993; Cechtn et al., 2003), which applies the existing clustering method (e.g., K-means, GMM) to cluster the state vectors into different groups. DeepStellar (Du et al., 2019) extracts a discrete-time Markov chain (DTMC) from an RNN. Then the DTMC is used for the testing and adversarial example detection. As introduced later in Section 3, we follow the second strategy and apply GMM for state partition. Despite using the same partition strategy, our method is fundamentally different from the existing DFA extraction techniques in that none of the existing methods could derive the influence of training samples upon a given testing sample (i.e., influence relations). In addition, to precisely simulate the behaviors of a target RNN, most of the existing methods need to exhaustively search for the state transitions in a target RNN, which limits their scalability in some applications. However, our method only requires a coarse-grained approximation for deriving the influence relationships, which is much lighter-weight than the existing model extraction methods.

Influence Analysis. Koh et al. (Koh & Liang, 2017) studied the influence of training samples upon a given testing sample for DNNs. Specifically, they utilized the influence function to identify the most representative training samples for a given testing sample. Following Koh & Liang (2017), recent efforts have been made to enable the influence analysis for non-optimal models trained by using non-convex losses (Hara et al., 2019) or analyze the influence of a group of training samples upon a given prediction (Koh et al., 2019). Despite deriving meaningful influence relations for feed-forward networks (i.e., MLP and CNN), the existing methods might not be effective for RNNs due to the infamous gradient vanishing/explosion problem. In this work, our proposed method does not depend on the gradient calculation and could capture the stateful behaviors of the RNN accurately with the state clustering. In addition, our method is much lighter-weight as shown in Section 4. Furthermore, our method could provide a finer-grained influence relation than the existing methods or, in other words, we can, at the segment level, pinpoint the most influential training samples to the segments within a testing sample.

DNN Repair. Wang et al. offset errors made by logistic regressions by integrating an additional layer into the model to pre-process the error inputs (Wang et al., 2019). Different from this work, our method does not modify the model architecture and targets more complex networks – RNN. Yu et al. proposed a style-guided repair for the unknown failure pattern in DNNs with a style transfer method (Yu et al., 2020). Some works (Sotoudeh & Thakur, 2019; Zhang & Chan, 2019) propose to repair the model by changing the network weights. Differently, our method focuses on repairing the specific failed samples for the RNN with a model-based influence analysis. It should be noted that our method is different from the techniques about adversarial defenses (Boopathy et al., 2019; Weng et al., 2018; Singh et al., 2018) and noisy learning/data cleaning (Zhang et al., 2018) in that these techniques aim for improving the robustness against adversarial attacks or data poisoning attacks. Whereas, our remediation mechanism locally offsets testing errors of an RNN.

3. Approach

Overview. At a high level, we first adopt the clustering to capture the stateful behaviors of all training data. Based on the state transitions, we then identify the influential training samples of a given testing input or a segment of the test input. Specifically, we first extract the abstract states by grouping state vectors (i.e., hidden representations of the RNN) of all training data (Section 3.1). Then, based on the state abstraction, we can extract the trace for a given input. We construct the influence function based on the transitions in the traces and further perform the segment-level and sample-level influence analysis. (Section 3.2). Last but not least, based on the influence analysis, we develop a remediation mechanism to analyze and offset the test errors (Section 3.3).

3.1. Semantic-guided State Abstraction

Definition 1 (RNN) An RNN is defined as a 5-tuple $R = (G_R, d, m, h_0, Y)$: G_R is a recursive function $h_t = G_R(x_t, h_{t-1})$, where $h_t \in \mathbb{R}^d$ is a d-dimensional state vector; $x_t \in \mathbb{R}^m$ is the m-dimensional input vector at time t; d and m are the dimensions of the state vector and the
Given a sequential input $x = (x_1, \ldots, x_n)$, an RNN generates a sequence of state vectors (h_0, h_1, \ldots, h_n) with the application of G_R. To simplify the notation, we use G_R^p to denote the state vector sequence of the input x. Y_R calculates different types of outputs based on different applications. In this paper, we mainly focus on the classification problem, where the output function maps each state vector to a specific class (i.e., $Y_R^p : \mathbb{R}^d \rightarrow \{0, \ldots, n-1\}$, n is the total number of classes). Specifically, for the sequence classification problem (e.g., semantic analysis), the output of the last state vector (i.e., $Y_R^p(h_n)$) is the classification result of the whole input sequence. As for the sequence to sequence problem, such as speech recognition, Y_R transforms each state vector h_i into a character/word in the translated sentence. It should be noted that different from the feed-forward neural networks, an RNN takes an input sequentially. That is, at each time i, the RNN only processes the current segment x_i of the input $x = (x_1, \ldots, x_n)$. As such, the influence analysis of the RNN is not only to identify the training samples that are most responsible for the whole sample x, (i.e., sample-level influence analysis), but also the most influential training samples to a segment of the input x, (i.e., segment-level influence analysis).

Definition 2 (Influence Model) Given an RNN R and its training data set T, the Influence Model is a 4-tuple $A = (Q, \sum, q_0, I)$, where Q is a finite set of states, \sum is the set of alphabet, q_0 is the initial state, $I : Q \times \sum \rightarrow \mathcal{P}(T)$ is the influence function, where $\mathcal{P}(T)$ is the power set of T.

The influence function identifies the training samples that contribute most to the RNN’s prediction of a specific input. For example, $I(q, x_i) = T'$ represents that the training samples $T' \subseteq T$ have larger influence on the prediction of the input x_i under the state q. If the input of the RNN is discrete data (e.g., the text x), the words of the text (e.g., x_1) can be performed the input abstraction that maps x_i to an abstract input \tilde{x}_i and treat \tilde{x}_i as the symbols of the alphabet.

To help identify influential training samples, the influence model should capture the statistical behaviors of the RNN over all the training data. As such, we firstly feed all the training samples in T into the RNN and collect all the state vectors (denoted as $SV = \{h_\| x \in T, \forall h \in G_R^p \cup \{h_0\}\}$). Then, a partitioning function $p : \mathbb{R}^d \rightarrow \mathbb{N}$ is applied to group the similar state vectors into one abstract state, which is used as the states of the influence model (i.e., $Q = \{p(h)|h \in SV\}$). Here, the initial state is denoted as $q_0 = p(h_0)$. We assume that the abstract states can show different behaviors of the RNN.

Different from the existing research that extracts automatic RNN to mimic the prediction of an RNN [Weiss et al. 2018, 2019], our influence model aims to capture the RNN’s internal behaviors for the subsequent influence analysis. To efficiently represent a large number of state vectors, we use Gaussian Mixture Models (GMM), an unsupervised clustering method to group the state vectors. The unsupervised clustering requires a pre-specified cluster number K, which directly decides the number of abstract states and thus affects the accuracy of the influence analysis. However, since there is no explicit ground truth for measuring the correctness of a partition result for influence analysis, it is challenging to find the correct K through cross-validation. To tackle this challenge, we propose a semantic-guided strategy to select an accurate K. The key insight behind is that the state vectors in one group should have similar semantics or, in other words, the RNN should produce a similar output or prediction for the vectors in the same group. Based on this insight, we propose a metric to evaluate the partition result and select the K based on the metric. Here, we introduce confidence score, the metric developed to measure the semantics of the abstract state, followed by the selection strategy.

Definition 3 (Confidence Scores) Given an RNN classifier $R = (G_R, \sum, m, h_0, Y_R)$ and a partition result Q, the confidence score of each state $q \in Q$ is defined as $C_q = [c_0, \ldots, c_{n-1}]$, where

$$c_i = \frac{|\{h|h \in SV_q \land Y_R(h) = i\}|}{|SV_q|}.$$

SV_q is a set of state vectors of training samples in T that are clustered into the state q, n is the total number of classes for the classifier.

Intuitively, C_q shows the distribution of the output classes of the state vectors in the state q. c_i is defined as the ratio of the state vectors in the abstract state q that are predicted as i by the RNN. A high c_i indicates that most of the state vectors, clustered in one abstract state, share similar semantics. Given the confidence score, we further define the state stability as follows:

Definition 4 (State Stability) For a state q as well as its confidence score $C_q = [c_0, \ldots, c_{n-1}]$, the state is defined as δ-stable, where $\delta = \max(C_q)$.

The state stability is measured by the concentration of the output classes of the state vectors in the abstract state. δ is used to measure the concentration of the corresponding group (the abstract state). That is, a high value of δ
we define the temporal feature as follows:

$$h_{i} = \text{arg max}_{c_{t} \leq t \leq n} c_{t},$$

indicating a well-clustered state with regards to the concentration of output classes. Most state vectors in the corresponding abstract state are predicted as the same label, i.e. the abstract state tends to be cause a confusion. As a result, the confidence score is low for the testing samples belong to this state although the prediction probability can be high.

State Abstraction. In addition to the stability, we also desire a small number of total abstract states for a better generalizability ([Weiss et al., 2018](#)). To achieve these two goals at the same time, we define the semantics-guided abstraction to decide the K

$$\begin{align*}
\text{minimize } & K, \\
\text{s.t. } & \delta > \theta, \text{ where } \delta = \text{avg}(\{\delta_{q_{1}}, \ldots, \delta_{q_{n}}\}) .
\end{align*}$$

(1)

(2)

Figure 1: The prediction process of an image and the corresponding abstract states. The RNN reads one row from the image and outputs the hidden state. The sequential abstract states as well as the confidence scores are also shown in the third row. In each abstract state, the first column shows the labels and the second column shows the confidence scores. For convenience, the confidence scores are sorted in descending order. We can observe that: 1) except at time 11, all prediction outputs correspond to the largest confidence score in the abstract states; 2) As the prediction confidence (i.e., the probability) of RNN is usually low when seeing only parts of the input, it enters into the non-stable states (with low confidence score) in the front. For example, from the human perspective, we are uncertain to say whether the images at time 13 and 15 are 3.

3.2. Light-Weight Influence Analysis

Definition 5 (Trace) Given an input $x = (x_{1}, \ldots, x_{n})$, the trace $\tau_{x} = (q_{0}, x_{1}, q_{1}, \ldots, x_{n}, q_{n})$ is obtained from the state vector sequence $G_{R} = (h_{0}, \ldots, h_{n})$, where $q_{i} = p(h_{i}), p$ is the partitioning function.

For an input x, we extract a trace that represents its state vector sequence. Based on the abstract states constructed above, we build the transitions as well as the influence function for the influence analysis. Specifically, given the trace $\tau_{x} = (q_{0}, x_{1}, q_{1}, \ldots, x_{n}, q_{n})$ of each training sample $x \in T$, the influence function I are updated as follows:

$$\forall 0 < i \leq n, I(q_{i-1}, x_{i}) = I(q_{i-1}, x_{i}) \cup \{x\} .$$

(3)

where the influence function I could capture the effect of training samples at each abstract state.

After updating the influence function based on the state vectors of all the training samples, we perform the influence analysis for a segment of a given test input x_{i} (i.e., segment-level influence analysis) or the entire testing sequence x (i.e., sample-level influence analysis) using the following methods.

Segment-level Influence Analysis. Given a segment x_{i} in $\tau_{x} = (q_{0}, x_{1}, q_{1}, \ldots, x_{n}, q_{n})$, we identify the influential training samples of x_{i} as $I(q_{i-1}, x_{i})$. It represents the set of training samples that have the same segment x_{i} at the state q_{i-1} and thus are accountable for the prediction of x_{i}. Note that other training samples, which could also include x_{i} at states other than q_{i-1}, may have low influence or no influence upon the prediction of x_{i} and thus are not taken as the influential samples of x_{i}. Taking text as an example, there could be many sentences containing the same word point, but with totally different semantics, e.g., ‘The pencil has a sharp point’ and ‘It is not polite to point at people’. These training sentences may have very different influences dependent on the test inputs. Our segment-level influence analysis is designed to distinguish such differences and only identify the training samples that are truly influential to a testing segment.

Sample-level Influence Analysis. To quantify the influence of training samples upon an entire testing sequence x, we define the temporal feature as follows:
Definition 6 (Temporal Feature) Given an RNN \(R \), an input \(x = (x_0, \ldots, x_n) \), and its trace \(\tau_x = (q_0, x_1, q_1, \ldots, x_n, q_n) \), the temporal feature is defined as \(\mathcal{F}_x = (f_0, \ldots, f_n) \), where \(f_i = (ID(q_i), C_i, \mathcal{Y}^m_i(h_i)) \). \(q_i = p(h_i) \) is the abstract state to which \(x_i \) belongs and \(ID(q_i) \) is the unique identifier of the state \(q_i \). \(C_i \) represents the confidence scores (see Definition 3 and \(\mathcal{Y}^m_i(h_i) \)) is the prediction label at the time \(i \).

With the definition of the temporal feature, we quantify the influence of a training sample on a test input. Specifically, given a training sample \(x_{\text{train}} \) and a test sample \(x_{\text{test}} \), the influence is quantified as the similarity between the temporal features of the training sample and the testing sample:

\[
\text{influence}(x_{\text{train}}, x_{\text{test}}) = \text{similarity}(\mathcal{F}_{x_{\text{train}}}, \mathcal{F}_{x_{\text{test}}}).
\]

The higher the similarity, the higher the influence of the training sample \(x_{\text{train}} \) upon \(x_{\text{test}} \). In other words, due to the high influence by the training sample \(x_{\text{train}} \), the prediction of \(x_{\text{test}} \) is very similar to that of \(x_{\text{train}} \). Note that different similarity metrics can be selected for different applications. For example, the \(l_p \) norm distance can be used for the fixed-length input sequences (e.g., image). For the inputs with varying lengths (e.g., natural language texts), one could select the Jaccard distance.

Considering Figure 2(a) again, we extract the temporal feature of the input explored by RNN and show it in the third row. Intuitively, the feature is aligned with the human perception. For example, at time 9, the predicted label is 7 and the current input looks like the start of a 7. The confidence score of 7 in the abstract state is not high (0.35). As the input increases, it looks like 3, 2, 3, 0, 9 and 8. At time 17, we can see that it really looks like 0 and the confidence is higher (0.645). Actually, it is still not very high due to that this 0 is not similar to the zeros in training data. At last, it has a very high confidence to predict it as 8.

3.3. Fault Localization and Remediation

With the influence analysis method introduced above, we then develop a remediation mechanism to repair the misclassifications of the target RNN. Specifically, we mainly focus on two kinds of misclassification: 1) misclassification caused by a whole input instance and 2) misclassification caused by an input segment. In the following, we elaborate on our mechanism of repairing these two different errors.

3.3.1. Remediation with Sample-level Influence Analysis

To repair the first type of errors, we first identify the responsible training samples. Then, we randomly generate new samples by manipulating the identified ones and apply the influence analysis to filter out the error-triggered training samples. Finally, we retrain the target RNN with the newly generated samples.

Fault Localization. Let \(x \) be an input misclassified as \(m_x \) with the ground truth label \(t_x \), i.e., \(t_x \neq m_x \). By applying the sample-level influence analysis, we identify the top-\(n \) training samples (denoted as \(\mathcal{S} \)) that are most responsible for the misclassification of \(x \). We use \(T_{t_x} \) and \(T_{m_x} \) to denote the training samples in \(\mathcal{S} \), whose ground truth labels are \(t_x \) and \(m_x \), respectively. Our empirical study shows that, \(T_{m_x} \) has more training samples than \(T_{t_x} \), i.e., the overall influence of \(T_{m_x} \) is higher than \(T_{t_x} \) (more detailed results can be found in the supplementary material). This observation explains the reason why \(x \) is classified as \(m_x \). That is, the training samples in \(T_{m_x} \) have a higher influence upon \(x \) than those in \(T_{t_x} \). The left sub-figure in Figure 2(a) shows an example of the fault localization. The red circle is a test input, which is mainly influenced by the green triangle (i.e., high similarity) than the other circles. As a result, it is misclassified as a triangle.

Remediation. To repair the misclassification, we synthesize new samples whose truth labels are \(t_x \) but have higher influence on \(x \) than the existing training samples. The right sub-figure in Figure 2(a) shows the basic idea of our remediation method. As shown in the figure, we intend to generate new samples (e.g., blue circles) that are more influential than the green triangle. By retraining the model with these synthesized samples, the decision boundary can be fine-tuned such that the misclassified input can be corrected. For a failed input \(x \), the samples used for retraining are represented as: \(\mathcal{X}' = \{x' \mid x' \in X' \land t_{x'} = t_x \land \text{influence}(x', x) > \max(\{\text{influence}(x', x') \mid x' \in T_{m_x}\})\} \), where \(X' \) is a set of generated inputs whose truth labels are the same with \(x \). The candidate set \(X' \) can be generated
by multiple techniques (e.g., random augmentation, generative adversarial network). In this work, we synthesize new samples (i.e., X') through data augmentation:

$$X' = \{ x' | x' = \text{aug}(x'') \land x'' \in T_{t_x} \},$$

where aug is the data augmentation technique (e.g., image rotation and shearing). Note that, during the remediation, we do not perform the augmentation on the failed input x. Instead, we apply the random augmentations on the training samples in T_{t_x}, which already have a strong influence upon x. Manipulating these samples will be more likely to generate highly influential samples that are more useful for remediation than perturbing other samples. Figure 2(b) shows some examples of x, T_{t_x}, T_{t_a}, and r_x. From the perspective of human perception, in each of the 4 groups, the second image (i.e., T_{t_a}) looks very similar with the failed input (i.e., x). Moreover, after manipulating the third image (i.e., T_{t_a}), we could get a more influential sample (i.e., r_x).

3.3.2. Remediation with Segment-Level Influence Analysis

Similar with repairing the sample-level error, we also follow a three-step procedure to repair the second type of errors that are caused by the rarely seen segments in the training data. Differently, we design the following method to identify the root cause input segment rather than identifying whole input samples.

Fault Localization Given an input $x = (x_1, \ldots, x_n)$ as well as its trace $\tau_x = (q_0, x_1, q_1, \ldots, x_n, q_n)$, we identify segments of the input that are more likely to be the root cause of the misclassification as follows:

$$S = \{ x_i | 1 \leq i \leq n \land |I(q_{i-1}, x_i)| < \gamma \}$$

where γ is a pre-defined parameter. Intuitively, if the segment x_i has less influential training samples (i.e., less than γ), indicating that the segment x_i is rarely seen under the state q_{i-1} during training, it is more likely to cause the incorrect prediction.

For example, we show one failed input in the sentiment analysis (which is misclassified as negative):

1. Just(1,43)
2. noticed(1,11)
3. who(1,19)
4. gave(1,5)
5. that(1,89)
6. out(1,6)
7. lulz(0,0)
8. (0,807)
9. (0,807)

The result and prediction of the number of the influential training samples are shown after each word. For example, after reading Just, 1 represents that the RNN outputs positive. 43 represents that Just appears 43 times after the state 1 in the training samples (i.e., $|I(1, \text{Just})| = 43$). We observe that, after the word lulz, the RNN returns negative (i.e., 0) because the word lulz never appeared after the state 7, which causes the incorrect prediction.

Remediation

To repair the misclassification, we need to insert such segments into the influential training samples such that the missing knowledge (i.e., the appearance of x_i under the state q_{i-1}) could be learned. Specifically, for a localized segment $x_i \in S$, we conduct the remediation with the following steps:

- We randomly select m training samples X_m from $I(q_{i-1}, x_i)$, where $\forall x' \in X_m, t_x = t_{x'}$.
- For each selected training sample $x' \in X_m$, we insert x_i into the corresponding position (i.e., after the state q_{i-1}).
- The assumption is that the insertion of x_i will not change the truth label of x' since the selected training sample x' has the same truth label with the failed input x (i.e., $t_x = t_{x'}$).
- Finally, we get a set of augmented training samples and train the model to repair the misclassification on x.

4. Evaluation

In our experiments, we evaluated \circ the correctness of the temporal features (Sec. 3.1), \bullet the effectiveness of our influence analysis (Sec. 4.2), and \bigcirc the effectiveness of the repair (Sec. 4.3). More evaluation can be found in the supplementary material.

Datasets and Models. We selected two widely-used public datasets (i.e., MNIST, and Toxic) to evaluate the influence analysis. MNIST (LeCun & Cortes [1998]) is selected for evaluating the sample-level influence analysis by comparing it with the existing baselines. We train an LSTM network with hidden size 100 for this task. At each time, the RNN reads one row (i.e., 28 pixels) from the image. Toxic Comment Dataset (abbrev. Toxic) \bigcirc is selected for evaluating the segment-level influence analysis. The task is to classify whether the comment is toxic or not. We train a GRU network with hidden size 300. In addition, we introduce another dataset Standard Sentiment Treebank (SST) (Socher et al., 2013) for the segment-level repair and a LSTM network with hidden size 300 is trained.

4.1. The Correctness of Temporal Features

Setting. The accuracy of the influence model directly affects the influence analysis. As such, we evaluate the accuracy of the influence model by measuring the fidelity of the temporal features extracted by the state clustering. We trained a simple linear classifier (denoted as SimNN) with the different components of the temporal features (see Definition \bigcirc) extracted from the training samples and compare their performance with that of the the original RNN.

Table 1: Results of feature analysis (%)

<table>
<thead>
<tr>
<th>ID</th>
<th>CSs</th>
<th>ID CSs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>85.61</td>
<td>80.01</td>
</tr>
<tr>
<td>TOXIC</td>
<td>86.62</td>
<td>83.00</td>
</tr>
</tbody>
</table>

Table 2: Results of CSs and ID with different MLPs

<table>
<thead>
<tr>
<th>ID</th>
<th>CSs</th>
<th>MNIST</th>
<th>TOXIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>CSs</td>
<td>ID</td>
<td>CSs</td>
</tr>
<tr>
<td>MLPL</td>
<td>93.07%</td>
<td>97.25%</td>
<td>63.56%</td>
</tr>
<tr>
<td>MLP2</td>
<td>93.91%</td>
<td>97.14%</td>
<td>63.61%</td>
</tr>
<tr>
<td>MLP3</td>
<td>91.48%</td>
<td>97.27%</td>
<td>62.04%</td>
</tr>
</tbody>
</table>

repeated the experiment 10 times and report the average results in Table[1] where column Ori shows the test accuracy of the original RNN while other columns use the corresponding temporal features as input of the SimNN. Note that R_L denotes the predicted labels at each time and we train the SimNN with a sequence of predicted labels (i.e., \(\gamma^t_H(h_i) \)).

We can observe that using only ID or R_L, SimNN achieves a lower accuracy than combing them together on both datasets. With only the confidence scores, the test accuracy reaches 97.34% and 88.90%, much higher than only using ID. It indicates that our semantic-based abstraction captures more information than clustering ID. Finally, models trained with the full temporal features achieve the most comparable performance with the original RNN, which indicates the fidelity of extracted features.

It is worth mentioning that CSs and ID have the one-to-one relation, i.e., there can be a mapping from ID to CSs. However, their results are very different in Table[1] the performance of ID is much lower than CSs. One may guess whether the one-layer linear model is too simple to learn the feature by ID. We conduct another experiment by evaluating CSs and ID on more complicated DNNs (i.e., Multi-layer Perceptron with 1/2/3 hidden layers). The results in Table[2] show the similar trend, i.e., CSs can achieve better results than ID.

We further conducted an experiment which tries to reverse the image from the extracted feature. In particular, we constructed a generative adversarial network (GAN) to generate images with the given features. We found in most of the cases, our method is able to reverse perceptually similar images based on our extracted features. The detailed settings and the results are shown in the supplementary material.

4.2. Sample-level Influence Analysis for Identifying Influential Mislabeled Training Data

Setting. Similar to the configuration in [Koh & Liang, 2017], we randomly mislabeled some training samples and identified such mislabeled samples with influence analysis. Specifically, we took a subset of MNIST with all the images of digit 1 and 7. Then, we randomly selected 30% images of 7 in the training set, flipped their labels to 1, and trained a binary classifier. We ranked the training samples based on their influence on the test errors of the classifier. We measured the number of mislabeled samples identified (selected based on the influence order) in a certain number of training samples and the number of errors repaired by fixing the identified mislabeled samples. Two state-of-the-art techniques – K&L [Koh & Liang, 2017] and SGD [Hara et al., 2019], and the random strategy are selected as the comparison baselines.

Fig. 3(a) shows the results of identifying flips by checking labels of training samples, following the order of the influence-based prioritization. The horizontal axis represents how many flips are identified from the selected samples. Overall, SGD method performs better to quickly identify flips–with the gradient-based estimation, they may identify those training samples that have only very little influence on the loss. However, not all flipped/mislabeled training samples are responsible for the test errors. We found that, although many training samples are mislabeled (i.e., from 7 to 1), most of them are still predicted as 7 after training. Intuitively, such mislabeled samples may have low influence on the errors because they can still be predicted correctly. We consider the mislabeled samples predicted as 1 after training as influential flips. In Fig. 3(b), the vertical axis represents how many influential flips are identified in the selected training samples using the influence analysis. The results show that our method and K&L could identify more influential flips than the other two approaches. Fig. 3(c) shows the repaired results by fixing all flips in the selected training samples. The results further confirmed that the influential flips have more influence on the errors and our method could identify them effectively. However, although SGD identified more flips at an early stage (see Fig. 3(a)), many of them may have lower influence on the errors (Fig. 3(b) and Fig. 3(c)).

Performance. The average running time of the model extraction is 76.37s, which is a one-time cost. Once the influence model is constructed, our influence analysis is very efficient and takes much less time (an average of 1.16s on all errors) than the existing methods (70.13s for K&L and 5690.66s for SGD), indicating that our influence analysis tends to be more scalable than existing techniques.

4.3. RNN Repair via Sample-level Influence Analysis

Setting. We used the MNIST dataset in this experiment. To filter out the errors caused by the randomness, we only select misclassified samples that frequently occur in multiple training runs. Specifically, we trained seven models
with different epochs and found 23 commonly failed inputs. Then, we applied random rotation and translation (Engstrom et al., 2019) to generate augmented data (see Eq. 5). We identified the most influential sample from the generated images for each error. As such, we obtained 161 new images and added them to the training set. By using different training epochs, we trained 10 models with the original and augmented training set, respectively. To further knockoff the randomness, we repeated this process 5 times and obtained 50 models from the original and the augmented training set. We compared the accuracy of these models on the 23 failed inputs. We used the random strategy as the baseline, i.e., randomly selecting 161 images from the synthesized images without the influence guidance.

Table 3 summarizes the comparisons among the models trained with the original training data (Row Ori_Train), the training set augmented with randomly selected samples (Row Rand_Train), and the training data including samples selected by our method (Row RNNRepair_Train). Column #Faults lists the number of errors needed to be repaired. Column #AvgFixed shows the average number of errors that are correctly repaired by the 50 models. Column Distribution of Errors Under the Repair Success Rate gives the distribution of errors within different repair success rate intervals. Here, the success rate of each error is the percentage of (50) models that could correct it. The results show that our method can effectively repair 50.9% of errors by adding only 161 new training samples. Meanwhile, we can see that these errors are difficult to be correctly predicted using the original training set (only 5.7%) and the training set selected by the random strategy (18.7%). In addition, the repair success rate of the original training set and the randomly selected data are extremely low (i.e., from 0 to 0.2). However, our method performs much better in that it corrected the errors that are consistently misclassified (e.g., 8 and 4 in Ori_Train and Rand_Train) and overall obtain higher success rates.

4.4. RNN Repair via Segment-level Influence Analysis

Setting. We used the Toxic dataset and SST to evaluate the segment-level repairing. Specifically, we focus on the errors caused by segments, i.e., positive cases predicted as negative rather than negative-to-positive errors that are usually caused by wrong semantics of the whole sentence. Here are some examples:

- **positive-to-negative**: “Who the heck is Ramona any- way ? ? ? ?”
- **negative-to-positive**: “ There are rumors that Boss Ross was gay , are there any proof to these claims ? People , wake up ... ” I will state here then that she is very pretty”

For the positive-to-negative one, we highlight the word (i.e., heck) that causes the misclassification (after this word, the prediction of the RNN becomes negative). For the negative-to-positive one, it is always predicted as positive during the RNN processing. We observe that even humans are hard to judge it. The key reason could be that there is no a clear word that definitely makes it negative. Hence, it is classified as positive.

In addition, some positive-to-negative errors are caused by the un-supported embedding (i.e., the word is embedded as 0) and we ignored such errors. Finally, we selected 23 and 115 positive-to-negative test data that are misclassified on Toxic and SST. For each test case, we set the parameter γ (refer to Section 3.3.2) as 5. To repair such errors, we...
Table 4: Results of Repairing on Toxic and SST

<table>
<thead>
<tr>
<th>Num. (m)</th>
<th>5</th>
<th>15</th>
<th>25</th>
<th>35</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random</td>
<td>43.63%</td>
<td>63.18%</td>
<td>65.91%</td>
<td>66.36%</td>
<td>61.36%</td>
</tr>
<tr>
<td>RNNRepair</td>
<td>50%</td>
<td>65.64%</td>
<td>72.73%</td>
<td>81.82%</td>
<td>81.82%</td>
</tr>
<tr>
<td>SST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random</td>
<td>26.09%</td>
<td>21.74%</td>
<td>47.83%</td>
<td>47.83%</td>
<td>60.86%</td>
</tr>
<tr>
<td>RNNRepair</td>
<td>30.43%</td>
<td>52.17%</td>
<td>60.87%</td>
<td>65.22%</td>
<td>65.22%</td>
</tr>
</tbody>
</table>

insert the identified words into some positive sentences in the training data. As a baseline, we use the random strategy to select the same number of sentences for the insertion. Finally, we use the augmented training data for training with 40 epochs (the same with the original model). To mitigate the randomness, we repeat the experiments with 10 seeds.

Table 4 shows the results of the segment-based repair. Row Number shows the number of training data that are selected for insertion. Specifically, we select 5, 15, 25, 35, 45 training samples (i.e., m in Section 3.2) for the augmentation, respectively. Row Random and Row RNNRepair represent the average success rate of repairing erroneous cases. We can see that, as the number of training samples increases, the success rate also increases. With the random insertion, some errors can be repaired. However, with the segment-influence analysis, we could find the more influential cases that achieve better results.

5. Conclusion

This paper presented a novel model-based technique for influence analysis of RNNs. Different from existing techniques that perform loss change estimation, our method is less computation intensive and more efficient. We could identify the most influential training samples on given test inputs at both segment level and sample level. Based on our RNN influence analysis, we further proposed a method for repairing two types of misclassified samples of RNN. We showed that our techniques are effective in identifying important mislabeled training samples, and repairing RNNs. In future work, we plan to improve the GMM-based partitioning with more fine-grained refinement. We also consider introducing more diverse types of data augmentation techniques (e.g., GAN, morphing) to generate candidate data for repairing. Finally, we plan to extend our fault localization and repair on more different errors such as the negative-to-positive cases.

Acknowledgments

This research is partially supported by the National Research Foundation, Singapore under its the AI Singapore Programme (AISG2-RP-2020-019), the National Research Foundation, Prime Ministers Office, Singapore under its National Cybersecurity R&D Program (Award No. NRF2018NCR-NCR005-0001), NRF Investigatorship NRFI06-2020-0022-0001, the National Research Foundation through its National Satellite of Excellence in Trustworthy Software Systems (NSOE-TSS) project under the National Cybersecurity R&D (NCR) Grant Award No. NRF2018NCR-NSOE003-0001, the JSPS KAKENHI Grant No.JP20H04168, JP19K24348, JP19H04086, JP21H04877 and JST-Mirai Program Grant No.JPMJMI20B8, Japan. Lei Ma is also supported by Canada CIFAR AI Program and Natural Sciences and Engineering Research Council of Canada. Wenbo Guo is supported by the IBM Ph.D. Fellowship Award.

References

RNNRepair: Automatic RNN Repair via Model-based Analysis

