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Abstract
We make progress in a long-standing problem
of batch reinforcement learning (RL): learning
Q? from an exploratory and polynomial-sized
dataset, using a realizable and otherwise arbi-
trary function class. In fact, all existing algo-
rithms demand function-approximation assump-
tions stronger than realizability, and the mount-
ing negative evidence has led to a conjecture that
sample-efficient learning is impossible in this set-
ting (Chen & Jiang, 2019). Our algorithm, BVFT,
breaks the hardness conjecture (albeit under a
stronger notion of exploratory data) via a tourna-
ment procedure that reduces the learning prob-
lem to pairwise comparison, and solves the latter
with the help of a state-action-space partition con-
structed from the compared functions. We also
discuss how BVFT can be applied to model selec-
tion among other extensions and open problems.

1. Introduction
What is the minimal function-approximation assumption
that enables polynomial sample complexity, when we try
to learn Q? from an exploratory batch dataset? Existing
algorithms and analyses—those that have largely laid the
theoretical foundation of modern reinforcement learning—
have always demanded assumptions that are substantially
stronger than the most basic one: realizability, i.e., that Q?

(approximately) lies in the function class. These strong as-
sumptions have recently compelled Chen & Jiang (2019) to
conjecture an information-theoretic barrier, that polynomial
learning is impossible in batch RL, even with exploratory
data and realizable function approximation.

In this paper, we break this barrier by an algorithm called
Batch Value-Function Tournament (BVFT). Via a tourna-
ment procedure, BVFT reduces the learning problem to that
of identifying Q? from a pair of candidate functions. In
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this subproblem, we create a piecewise constant function
class of statistical complexityO(1/ε2) that can express both
candidate functions up to small discretization errors, and
use the projected Bellman operator associated with the class
to identify Q?. We present the algorithm in Section 4 and
prove its sample complexity in Sections 5 and 6. A limi-
tation of our approach is the use of a relatively stringent
version of concentrability coefficient from Munos (2003)
to measure the exploratoriness of the dataset (see Assump-
tion 1). Section 7.2 investigates the difficulties in relaxing
the assumption, and Appendix D discusses how to miti-
gate the pathological behavior of the algorithm when the
assumption does not hold.

As another limitation, BVFT enumerates over the function
class and is computationally inefficient for training. That
said, the algorithm is efficient when the function class has a
polynomial cardinality, making it applicable to another prob-
lem in batch RL: model selection (Farahmand & Szepesvári,
2011).1 In Section 7.1, we review the literature on this im-
portant problem and discuss how BVFT has significantly
advanced the state of the art on the theoretical front.

2. Related Work
Stronger Function-Approximation Assumptions in Ex-
isting Theory The theory of batch RL has struggled for
a long time to provide sample-efficiency guarantees when
realizability is the only assumption imposed on the function
class. An intuitive reason is that learning Q? is roughly
equivalent to minimizing the Bellman error, but the lat-
ter cannot be estimated from data (Jiang, 2019; Sutton &
Barto, 2018, Chapter 11.6), leading to the infamous “dou-
ble sampling” difficulty (Baird, 1995; Antos et al., 2008).
Stronger/additional assumptions have been proposed to cir-
cumvent the issue, including low inherent Bellman errors
(Munos & Szepesvári, 2008; Antos et al., 2008), averager
classes (Gordon, 1995), and additional function approxima-
tion of importance weights (Xie & Jiang, 2020).

State Abstractions State abstractions are the simplest form
of function approximation. (They are also special cases of

1We use the phrase “model selection” as in the context of e.g.,
cross validation, and the word “model” does not refer to MDP
dynamics; rather they refer to value functions for our purposes.



Batch Value-function Approximation with Only Realizability

the aforementioned averagers.) In fact, certainty equivalence
with a state abstraction that can express Q?, known as Q?-
irrelevant abstractions, is known to be consistent, i.e., Q?

will be correctly learned if each abstract state-action pair
receives infinite amount of data (Littman & Szepesvári,
1996; Li et al., 2006, Theorem 4).

While this observation is an important inspiration for our
algorithm, making it useful for an arbitrary and unstruc-
tured function class is highly nontrivial and is one of the
main algorithmic contributions of this paper. Furthermore,
our finite-sample analysis significantly deviates from the
“tabular”-style proofs in the abstraction literature (Paduraru
et al., 2008; Jiang, 2018), where `∞ concentration bounds
are established assuming that each abstract state receives
sufficient data (c.f. Footnote 8). In our analysis, the structure
of the abstraction is arbitrary, and it is much more conve-
nient to treat them as piecewise constant classes over the
original state space and use tools from statistical learning
theory to establish concentration results under weighted `2
norm; see Section 5.2.3 for details.

Tournament Algorithms Our algorithm design also draws
inspirations from existing tournament algorithms. Closest
related is Scheffé tournament for density estimation (De-
vroye & Lugosi, 2012), which minimizes the total-variation
(TV) distance from the true density among the candidate
models, and has been applied to RL by Sun et al. (2019). In-
terestingly, the main challenge in TV-distance minimization
is very similar to ours at a high level, that TV-distance itself
of a single model cannot be estimated from data when the
support of the distribution has a large or infinite cardinal-
ity. Similar to Scheffé tournament, our algorithm compares
pairs of candidate value functions, which is key to overcom-
ing the fundamental unlearnability of Bellman errors.

Tournament algorithms are also found in RL when the goal
is to select the best state abstraction from a candidate set
(Hallak et al., 2013; Jiang et al., 2015). These works will be
discussed in Section 7.1 in the context of model selection.

Lower Bounds Wang et al. (2020); Amortila et al. (2020);
Zanette (2020); Chen et al. (2021) have recently proved
hardness results under Q? realizability in batch RL. These
results do not contradict ours because they deploy a weaker
data assumption; see Appendix A.2 for discussions. Rather,
their negative and our positive results are complementary
and together provide a fine-grained characterization of the
landscape of batch RL.

3. Preliminaries
3.1. Markov Decision Processes

Consider an infinite-horizon discounted Markov Decision
Process (S,A, P,R, γ, d0), where S is the finite state space

that can be arbitrarily large, A is the finite action space,
P : S×A → ∆(S) is the transition function, R : S×A →
[0, Rmax] is the reward function, γ ∈ [0, 1) is the discount
factor, and d0 ∈ ∆(S) is the initial state distribution.

A (deterministic and stationary) policy π : S →
A induces a distribution of the infinite trajectory
s0, a0, r0, s1, a1, r1, . . . , as s0 ∼ d0, a0 = π(s0), r0 =
R(s0, a0), s1 ∼ P (s0, a0), . . .. We use E[·|π] to de-
note taking expectation w.r.t. such a distribution. The ex-
pected discounted return of a policy is defined as J(π) :=
E[
∑∞
t=0 γ

trt|π], and our goal is to optimize J(π). Note
that the random variable

∑∞
t=0 γ

trt is always bounded in
the range [0, Vmax] where Vmax = Rmax/(1− γ).

In the discounted setting, there is a policy π? : S → A
that simultaneously optimizes the expected return for all
starting states. This policy can be obtained as the greedy
policy of the Q? function, i.e., π?(s) = πQ?(s) :=
arg maxa∈AQ

?(s, a), where we use π(·) to denote a pol-
icy that greedily chooses actions according to a real-valued
function over S × A. The optimal Q-value function, Q?,
can be uniquely defined through the Bellman optimality
equations: Q? = T Q?, where T : RS×A → RS×A is
the optimality operator, defined as (T f)(s, a) := R(s, a) +
γEs′∼P (s,a)[Vf (s′, a′)], where Vf (s, a) := maxa f(s, a).

3.2. Batch Data

We assume that the learner has access to a batch dataset D
consisting of i.i.d. (s, a, r, s′) tuples, where (s, a) ∼ µ, r =
R(s, a), s′ ∼ P (s, a). Such an i.i.d. assumption is standard
for finite-sample analyses in the ADP literature (Munos &
Szepesvári, 2008; Farahmand et al., 2010; Chen & Jiang,
2019), and can often be relaxed at the cost of significant
technical burdens and complications (see e.g., Antos et al.,
2008). We will also use µ(s) and µ(a|s) to denote the
marginal of s and the conditional of a given s. To learn
a near-optimal policy in batch RL, an exploratory dataset
is necessary, and we measure the degree of exploration as
follows:

Assumption 1. We assume that µ(s, a) > 0 ∀s, a. We
further assume that
(1) There exists constant 1 ≤ CA < ∞ such that for any
s ∈ S, a ∈ A, µ(a|s) ≥ 1/CA.
(2) There exists constant 1 ≤ CS < ∞ such that for any
s ∈ S, a ∈ A, s′ ∈ S, P (s′|s, a)/µ(s′) ≤ CS . Also
d0(s)/µ(s) ≤ CS .
It will be convenient to define C = CSCA.

The first statement is very standard, asserting that the data
distribution put enough probabilities on all actions. For ex-
ample, with a small number of actions, a uniformly random
policy ensures that CA = |A| satisfies this assumption.

The second statement measures the exploratoriness of µ’s
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state marginal by CS , and two comments are in order. First,
this is a form of concentrability assumption, which not only
enforces data to be exploratory, but also implicitly imposes
restrictions on the MDP’s dynamics (see the reference to
P in Assumption 1). While the latter may be undesirable,
Chen & Jiang (2019, Theorem 4) shows that such a restric-
tion is unavoidable when learning with a general function
class. Second, the version of concentrability coefficient we
use was introduced by Munos (2003, Eq.(6)), and is more
stringent than its more popular variants (e.g., Munos, 2007;
Farahmand et al., 2010). That said, (1) hardness results exist
under a weaker form of the assumption (see Appendix A.2),
and (2) whenever the transition dynamics admit low-rank
stochastic factorization, there always exist data distributions
that yield small CS despite that |S| can be arbitrarily large;
see Appendix A.1, where we also discuss how Assump-
tion 1 compares to no inherent Bellman errors in the context
of low-rank MDPs. We investigate why it is difficult to
work with more relaxed assumptions in Section 7.2, and
discuss how to mitigate the negative consequences when the
assumption is violated in Appendix D.

A direct consequence of Assumption 1, which we will use
later to control error propagation and distribution shift, is
the following proposition.

Proposition 1. Let ν be a distribution over S × A and
π be a policy. Let ν′ = P (ν) × π denote the distribution
specified by the generative process (s′, a′) ∼ ν′ ⇔ (s, a) ∼
ν, s′ ∼ P (·|s, a), a′ = π(s′). Under Assumption 1, we have
‖ν′/µ‖∞ := maxs,a ν

′(s, a)/µ(s, a) ≤ C. Also note that
‖(d0 × π)/µ‖∞ ≤ C.

Additional Notations For any real-valued function of
(s, a, r, s′), we use Eµ[·] as a shorthand for taking expec-
tation of the function when (s, a) ∼ µ, r = R(s, a), s′ ∼
P (s, a). Also for any f : S × A → R, define ‖f‖22,µ :=
Eµ[f2]; ‖f‖2,µ is a weighted `2 norm and satisfies the trian-
gular inequality. We also use ‖f‖22,D to denote the empirical
approximation of ‖f‖22,µ based on the dataset D.

3.3. Value-function Approximation

Since the state space S can be prohibitively large, function
approximation is necessary for scaling RL to large and com-
plex problems. In the value-function approximation setting,
we are given a function class F ⊂ (S ×A → [0, Vmax]) to
model Q?. Unlike prior works that measure the approxima-
tion error of F using inherent Bellman errors (Munos, 2007;
Antos et al., 2008)—which amounts to assuming that F is
(approximately) closed under T—we will measure the error
using Definition 1, where 0 error only implies realizability,
Q? ∈ F . In fact, given that the assumptions required by
all existing algorithms are substantially stronger than realiz-
ability, Chen & Jiang (2019, Conjecture 8) conjecture that
polynomial sample complexity is unattainable in batch RL

Algorithm 1 Batch Value-Function Tournament (BVFT)

1: Input: Dataset D, function class F , discretization pa-
rameter εdct ∈ (0, Vmax).

2: for f ∈ F do
3: f̄ ← discretize the output of f with resolution εdct.

(see Footnote 4).
4: end for
5: for f ∈ F do
6: for f ′ ∈ F do
7: Define φ s.t. φ(s, a) = φ(s′, a′) iff f̄(s, a) =

f̄(s′, a′) and f̄ ′(s, a) = f̄ ′(s′, a′).
8: E(f ; f ′)← ‖f − T̂ µφ f‖2,D (see Eq.(1) for def of

T̂ µφ ; the dependence on f ′ is only through φ).
9: end for

10: end for
11: f̂ ← arg minf∈F maxf ′∈F E(f ; f ′).
12: Output: π̂ = πf̂ .

when we only impose realizability on F , which is why our
result may be surprising.

Definition 1. Let εF := inff∈F ‖f − Q?‖∞. 2 Let f?

denote the f that attains the infimum.

We assume F is finite but exponentially large (as in Chen
& Jiang (2019)), i.e., we can only afford poly log |F| in the
sample complexity. For continuous function classes that
admit a finite `∞ covering number (Agarwal, 2011), our
approach and analysis immediately extend by replacing F
with its ε-net at the cost of slightly increasing εF .

3.4. Polynomial Learning

Our goal is to devise a statistically efficient algorithm with
the following kind of guarantee: with high probability we
can learn an ε-optimal policy π̂, that is, J(π̂) ≥ J(π?) −
ε · Vmax, when F is realizable and the dataset D is only
polynomially large. The polynomial may depend on the
effective horizon 1/(1 − γ), the statistical complexity of
the function class log |F|, the concentrability coefficient C,
(the inverse of) the suboptimality gap ε, and 1/δ where δ is
the failure probability. Our results can also accommodate
the more general setting when F is not exactly realizable,
in which case the suboptimality of π̂ is allowed to contain
an additional term proportional to the approximation error
εF up to a polynomial multiplicative factor.

2It is possible to define εF under weighted `2 norm, though
making this change in our current proof yields a worse (albeit
polynomial) sample complexity; see Appendix E for more details.
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4. Algorithm and the Guarantee
In this section, we introduce and provide intuitions for our
algorithm, and state its sample complexity guarantee which
will be proved in the subsequent sections.

The design of our algorithm is based on an important ob-
servation inspired by the state-abstraction literature (see
Section 2): when the function class F is piecewise con-
stant and realizable, batch learning with exploratory data
is consistent using e.g., Fitted Q-Iteration. This is because
piecewise constant classes are very stable, and their associ-
ated projected Bellman operators are always γ-contractions
under `∞, implying that Q? is the only fixed point of such
operators when statistical errors are ignored;3 we will actu-
ally establish these properties in Section 5.1.

While realizability is the only expressivity condition as-
sumed, being piecewise constant is a major structural as-
sumption, and is too restrictive to accommodate practical
function-approximation schemes such as linear predictors
or neural networks, let alone the completely unstructured
set of functions one would encounter in model selection
(Section 7.1). How can we make use of this observation?

An immediate idea is improper learning, i.e., augmenting
F—which is not piecewise constant in general and may
have an arbitrary structure—to its smallest superset that is
piecewise constant, which automatically inherits realizabil-
ity from F . To do so, we may first discretize the output
of each function f ∈ F up to a small discretization error
εdct,4 and partition S × A by grouping state-action pairs
together only when the output f ∈ F (after discretization)
is constant across them. The problem is that, the resulting
function class is way too large compared to F ; its statistical
complexity—measured by the number of groups—can be as
large as (Vmax/εdct)

|F|, doubly exponential in poly log |F|
which is what we can afford!

To turn this idea into a polynomial algorithm, we note that
the statistical complexity of the superset is affordable when
|F| is constant, say, |F| = 2. This provides us with a proce-
dure that identifies Q? out of two candidate functions. To
handle an exponentially large F , we simply perform pair-
wise comparisons between all pairs of f, f ′ ∈ F , and output
the function that has survived all pairwise comparisons in-
volving it. Careful readers may wonder what happens when
Q? /∈ {f, f ′}, as realizability is obviously violated. As

3Q? is always a fixed point of the projected Bellman update
operators associated with any realizable function class, but there is
no uniqueness guarantee in general.

4When Vmax/εdct is an odd integer, discretization onto a regular
grid {εdct, 3εdct, . . . , Vmax − εdct} guarantees at most εdct approx-
imation error, and the cardinality of the set is Vmax/2εdct. For
arbitrary εdct ∈ (0, Vmax), a similar discretization yields a car-
dinality of dVmax/2εdcte, and we upper-bound it by Vmax/εdct
throughout the analysis for convenience.

we will show in Section 6, the outcomes of these “bad”
comparisons simply do not matter: Q? is never involved in
such comparisons, and any other function f will always be
checked against f ′ = Q?, which is enough to expose the
deficiency of a bad f .

The above reasoning ignores approximation and estimation
errors, which we handle in the actual algorithm and its anal-
ysis; see Algorithm 1. Below we state its sample complexity
guarantee, which is the main theorem of this paper.

Theorem 2. Under Assumption 1, with probability at least
1− δ, BVFT (Algorithm 1) with εdct = (1−γ)2εVmax

16
√
C

returns
a policy π̂ that satisfies

J(π?)− J(π̂) ≤ (4 + 8
√
C)εF

(1− γ)2
+ ε · Vmax,

with a sample complexity of 5

|D| = Õ

(
C2 ln |F|δ
ε4(1− γ)8

)
.

The most outstanding characteristic of the sample complex-
ity is the 1/ε4 rate. In fact, the poor dependencies on C and
1/(1−γ) are both due to 1/ε4: when we rewrite the guaran-
tee in terms of suboptimality gap as a function of n = |D|,
we see an O(

√
Cn−1/4/(1 − γ)2) estimation-error term,

featuring the standard
√
C penalty due to distribution shift

and quadratic-in-horizon error propagation.

The 1/ε4 rate comes from two sources: 1/ε2 of it is due to
the worst-case statistical complexity of the piecewise con-
stant classes created during pairwise comparisons. The other
1/ε2 is the standard statistical rate. While standard, proving
O(1/ε2) concentration bounds in our analysis turns out to
be technically challenging and requires some clever tricks.
We refer mathematically inclined readers to Section 5.2.3
for how we overcome those challenges.

We prove Theorem 2 in the next two sections. Section 5 es-
tablishes the essential properties of the pairwise comparison
step in Line 8, where we view the problem at a somewhat
abstract level to attain proof modularity. Section 6 uses the
results in Section 5 to prove the final guarantee.

5. Value-function Validation using a Piecewise
Constant Function Class

In this section we analyze a subproblem that is crucial to our
algorithm: given a piecewise constant class Gφ ⊂ (S×A →
[0, Vmax]) (induced by φ, a partition of S ×A)6 with small

5Õ(·) suppresses poly-logarithmic dependencies.
6We treat φ as mapping S ×A to an arbitrary finite codomain,

and g(s, a) = g(s′, a′) ∀g ∈ Gφ iff φ(s, a) = φ(s′, a′).
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realizability error εφ := εGφ , we show that we can compute a
statistic for any given function f0 : S ×A → [0, Vmax], and
the statistic will be a good surrogate for ‖f0 −Q?‖ as long
as Assumption 1 holds and the sample size is polynomially
large. We use |φ| to denote the number of equivalence
classes induced by φ.

As Section 4 and Algorithm 1 have already alluded to, later
we will invoke this result when comparing two candidate
value functions f and f ′ (with f0 = f ), and define φ as
the coarsest partition that can express both f and f ′; when
Q? ∈ {f, f ′}, εφ will be small. To maintain the modularity
of the analysis, however, we will view φ as an arbitrary
partition of S ×A in this section.

The statistic we compute is ‖f0 − T̂ µφ f0‖2,D (c.f. Line 8 of

Algorithm 1), where T̂ µφ is defined as follows:

Definition 2. Define T̂ µφ as the sample-based projected
Bellman update operator associated with Gφ: for any f :

S ×A → [0, Vmax], T̂ µφ f :=

arg min
g∈Gφ

1

|D|
∑

(s,a,r,s′)∈D

[(g(s, a)− r − γVf (s′))2]. (1)

5.1. Warm up: |D| → ∞ and εφ = 0

To develop intuitions, we first consider the special case of
|D| → ∞ and εφ = 0. In this scenario, we can show that
Q? is the unique fixed point of T̂ µφ , which justifies using

‖f0 − T̂ µφ f0‖ as a surrogate for ‖f0 −Q?‖. The concepts
and lemmas introduced here will also be useful for the later
analysis of the general case.

We start by defining T µφ as T̂ µφ when |D| → ∞.

Definition 3. Define T µφ as the projected Bellman update
where the projection is onto Gφ, weighted by µ. That is, for
any f : S ×A → [0, Vmax],

T µφ f := arg min
g∈Gφ

Eµ[(g(s, a)− r − γVf (s′))2]. (2)

Next, we show that it is possible to define an MDPMφ, such
that T µφ coincides with the Bellman update of Mφ. Readers
familiar with state abstractions may find the definition un-
usual, as the “abstract MDP” associated with φ is typically
defined over the compressed (or abstract) state space instead
of the original one (e.g., Ravindran & Barto, 2004). We
define Mφ over S because (1) our φ is an arbitrary partition
of S×A, which does not necessarily induce a consistent no-
tion of abstract states, and (2) even when it does, the MDPs
defined over S are dual representations to and share many
important properties with the classical notion of abstract
MDPs (Jiang, 2018).

Definition 4. Define Mφ = (S,A, Pφ, Rφ, γ, d0), where

Rφ(s, a) =

∑
s̃,ã:φ(s̃,ã)=φ(s,a) µ(s̃, ã)R(s̃, ã)∑

s̃,ã:φ(s̃,ã)=φ(s,a) µ(s̃, ã)
.

Pφ(s′|s, a) =

∑
s̃,ã:φ(s̃,ã)=φ(s,a) µ(s̃, ã)P (s′|s̃, ã)∑

s̃,ã:φ(s̃,ã)=φ(s,a) µ(s̃, ã)
.

Lemma 3. T µφ is the Bellman update operator of Mφ.

Lemma 3 implies that T µφ is a γ-contraction under `∞ and
has a unique fixed point, namely the optimal Q-function of
Mφ. It then suffices to show that Q? is such a fixed point.

Proposition 4. When εφ = 0, Q? is the unique fixed point
of T µφ .

5.2. The General Case

In the general case, we want to show that ‖f0 − T̂ µφ f0‖2,D
and ‖f0 −Q?‖ control each other. The central result of this
section is the following proposition:

Proposition 5. Fixing any ε1, ε̃. Suppose

|D| ≥
32V 2

max|φ| ln 8Vmax

ε̃δ

ε̃2
+

50V 2
max|φ| ln 80Vmax

ε1δ

ε21
.

Then, with probability at least 1− δ, for any ν ∈ ∆(S ×A)
such that ‖ν/µ‖∞ ≤ C,

‖f0 −Q?‖2,ν ≤
2εφ+

√
C(‖f0−T̂ µφ f0‖2,D+ε1+ε̃)

1−γ . (3)

At the same time,

‖f0 − T̂ µφ f0‖2,D ≤ (1 + γ)‖f0 −Q?‖∞ + 2εφ + ε̃+ ε1.

(4)

Proving the proposition requires quite some preparations.
We group the helper lemmas according to their nature in Sec-
tions 5.2.1 to 5.2.3, and prove Proposition 5 in Section 5.2.4.

5.2.1. ERROR PROPAGATION

The first two lemmas allow us to characterize error propaga-
tion in later proofs. That is, it will help answer the question:
if we find ‖f0 − T µφ f0‖2,µ to be small (but nonzero), why
does it imply that ‖f0 −Q?‖ is small?

While results of similar nature exist in the state-abstraction
literature, they often bound ‖f0−Q?‖ with ‖f0−T µφ f0‖∞,
where error propagation is easy to handle (Jiang, 2018).
However, ‖f0 − T µφ f0‖∞ can only be reliably estimated if
each group of state-action pairs receives a sufficient portion
of the data, which is not guaranteed in our setting due to the
arbitrary nature of φ created in Line 7. This forces us to work
with the µ-weighted `2-norm and carefully characterize how
error propagation shifts the distributions.
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In fact, it is precisely this analysis that demands the strong
definition of concentrability coefficientCS in Assumption 1:
as we will later show in the proof of Proposition 5 (Sec-
tion 5.2.4), the error propagates according to the dynamics
of Mφ instead of that of M (c.f. the Pφ(ν) term in Eq.(10)).
Therefore, popular definitions of concentrability coefficient
(e.g., Munos, 2007; Antos et al., 2008; Farahmand et al.,
2010; Xie & Jiang, 2020)—which all consider state distri-
butions induced in M—do not fit our analysis. Fortunately,
the CS defined in Assumption 1 has a very nice property,
that it automatically carries over to Mφ no matter what φ is:

Lemma 6. Any C <∞ that satisfies Assumption 1 for the
true MDP M also satisfies the same assumption in Mφ. As
a further consequence, Proposition 1 is also satisfied when
P is replaced by Pφ.

5.2.2. ERROR OF Q? UNDER T µφ
The next lemma parallels Proposition 4 in Section 5.1, where
we showed that ‖Q? − T µφ Q?‖ = 0 when εφ = 0. When
εφ is non-zero, we need a more robust version of this result
showing that ‖Q? − T µφ Q?‖ is controlled by εφ.

Lemma 7. ‖Q? − T µφ Q?‖∞ ≤ 2εφ.

5.2.3. CONCENTRATION BOUNDS

We need two concentration events: that T̂ µφ f0 is close to

T µφ f0, and that ‖f0−T̂ µφ f0‖2,D is close to ‖f0−T̂ µφ f0‖2,µ.
We will split the failure probability δ evenly between these
events.

Concentration of T̂ µφ f0 We begin with the former, which
requires a standard result for realizable least-square regres-
sion. The proof is deferred to Appendix B.5.

Lemma 8 (Concentration Bound for Least-Square Regres-
sion). Consider a real-valued regression problem with
feature space X and label space Y ⊂ [0, Vmax]. Let
(xi, yi) ∼ PX,Y be n i.i.d. data points. LetH ⊂ (X → Y)
be a hypothesis class with `∞ covering number N =
N∞(H, ε0) and that realizes the Bayes-optimal regres-
sor, i.e., h? = (x 7→ E[Y |X = x]) ∈ H. Let ĥ =

arg minh∈H Ê[(h(X) − Y )2] be the empirical risk mini-
mizer (ERM), where Ê is the empirical expectation based
on {(xi, yi)}ni=1. Then, with probability at least 1− δ,

E[(h?(X)− ĥ(X))2] ≤
8V 2

max log N
δ

n
+ 8Vmaxε0.

We then use Lemma 8 to prove that ‖T̂ µφ f − T
µ
φ f‖2,µ is

small.

Lemma 9. Fixing f : S × A → [0, Vmax]. W.p. ≥ 1 − δ
2 ,

‖T̂ µφ f − T
µ
φ f‖2,µ ≤ ε̃, as long as

|D| ≥ 16V 2
max(2|φ| log(4Vmax/ε̃) + log(2/δ))

ε̃2
.

Technical Challenge & Proof Idea Recall that T̂ µφ f is
the ERM (in Gφ) of the least-square regression problem
(s, a) 7→ r+γVf (s′), so ‖T̂ µφ f −T

µ
φ f‖2,µ essentially mea-

sures the µ-weighted `2 distance between the ERM and the
population risk minimizer. Proving this is straightforward
when the regression problem is realizable, as Lemma 8
would be directly applicable.7 In our case, however, the
regression problem is in general non-realizable (except for
f = Q?) and can incur arbitrarily large approximation er-
rors, as Gφ does not necessarily contain the Bayes-optimal
regressor T f .

The key proof idea is to leverage a special property of piece-
wise constant classes8 to reduce the analysis to the realizable
case: regressing (s, a) 7→ r+ γVg(s

′) over Gφ is equivalent
to regressing x 7→ r + γVg(s

′) (with x = φ(s, a)) over
a “tabular” function class, where the s, a|x portion of the
data generation process is treated as part of the inherent
label noise. After switching to this alternative view, the
tabular class over the codomain of φ is fully expressive and
always realizable, which makes Lemma 8 applicable. See
Appendix B.6 for the full proof of Lemma 9.

Concentration of ‖f0− g‖2,D The second concentration
result we need is an upper bound on |‖f0 − g‖2,D − ‖f0 −
g‖2,µ| for all g ∈ Gφ simultaneously. We need to union
bound over g ∈ Gφ because our statistic is ‖f0−g‖2,D with
g = T̂ µφ f0, which is a data-dependent function.

Lemma 10. W.p. ≥ 1 − δ/2, ∀g ∈ Gφ, |‖f0 − g‖2,D −
‖f0 − g‖2,µ| ≤ ε1, as long as

|D| ≥
50V 2

max|φ| ln 80Vmax

ε1δ

ε21
.

Technical Challenge & Proof Idea It is straightforward
to bound |‖f0 − g‖22,D − ‖f0 − g‖22,µ| (note the squares),
but a naı̈ve conversion to a bound on the desired quantity
(difference without squares) would result in O(n−1/4) rate.
To obtain O(n−1/2) rate, we consider two situations sepa-
rately, depending on whether ‖f0 − g‖2,µ is below or above
certain threshold: when it is below the threshold, we can use

7See e.g., Lemma 16 of Chen & Jiang (2019), where the (ap-
proximate) realizability of any such regression problem is guaran-
teed by the assumption of low inherent Bellman error.

8An alternative (and much messier) approach is to prove scalar-
valued concentration bounds for T̂ µφ f in each group of state-action
pairs. Those groups with few data points will have high uncertainty,
but they also contribute little to ‖·‖2,µ. Compared to this approach,
our proof is much simpler.
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Bernstein’s to exploit the low variance of (f0− g)2; when it
is above the threshold, we obtain the bound by factoring the
difference of squares. Combining these two cases with an
O(ε1) threshold yields a clean O(n−1/2) result; see proof
details in Appendix B.7.

5.2.4. PROOF OF PROPOSITION 5

We are now ready to prove Proposition 5. Due to space limit
we only provide a proof sketch in the main text.

Proof Sketch. To prove Eq.(3), define πf,f ′ as the policy
s 7→ arg maxa max{f(s, a), f ′(s, a)}. Consider any ν
such that ‖ν/µ‖∞ ≤ C, we have ‖Q? − f0‖2,ν ≤

‖Q? − T µφ Q
?‖2,ν + ‖T µφ Q

? − T µφ f0‖2,ν + ‖f0 − T µφ f0‖2,ν .

The first term can be bounded via Lemma 7. The
second term is bounded by γ‖Q? − f0‖2,Pφ(ν)×πf̂,Q? ,
where Pφ(ν) × πf̂ ,Q? is a distribution that also satisfies
‖(·)/µ‖∞ ≤ C (Proposition 1) and hence can be handled by
recursion. The third can be bounded by

√
C‖f0−T µφ f0‖2,µ

due to ‖ν/µ‖∞ ≤ C, and ‖f0 − T µφ f0‖2,µ can be related
to ‖f0 − T µφ f0‖2,µ by the concentration bounds established
in Section 5.2.3, which are satisfied due to the choice of |D|
in the proposition statement.

To prove Eq.(4), we can similarly relate ‖f0 − T̂ µφ f0‖2,D to
‖f0 − T µφ f0‖2,µ via the concentration bounds, and

‖f0 − T µφ f0‖2,µ ≤ ‖f0 − T
µ
φ f0‖∞

≤ ‖f0 −Q?‖∞ + ‖T µφ Q
? − T µφ f0‖∞

≤ (1 + γ)‖f0 −Q?‖∞. (γ-contraction of T µφ )

6. Proof of Theorem 2
With the careful analysis of the pairwise-comparison step
given in Section 5, we are now ready to analyze Algorithm 1.
Roughly speaking, we will make the following arguments:

• For the output f̂ , if maxf ′ E(f̂ ; f ′) is small, then f̂ ≈ Q?.
(Eq.(3) of Proposition 5)

• That maxf ′ E(f̂ ; f ′) will be small, because
maxf ′ E(f?; f ′) is small, where f? ∈ F is the
best approximation of Q? in Definition 1. (Eq.(4) of
Proposition 5)

Before we delve into the proof of Theorem 2, we need
yet another lemma, which connects εφ in Section 5 to the
approximation error of F . As Section 4 has suggested,
this is feasible because we are only concerned with the
comparisons involving f?, and εφ may be arbitrarily large
otherwise.
Lemma 11. The φ induced from Line 7 satisfies |φ| ≤
(Vmax/εdct)

2. When f? ∈ {f, f ′}, we further have εφ ≤
εF + εdct.

Proof of Theorem 2. Among the (f, f ′) pairs enumerated
in Lines 5 and 6, we will only be concerned with the cases
when either f = f? or f ′ = f?, and there are 2|F| such
pairs. We require that w.p. 1 − δ, Proposition 5 holds for
all these 2|F| pairs. To guarantee so, we set the sample size
|D| to the expression in the statement of Proposition 5, with
|φ| replaced by its upper bound in Lemma 11 and δ replaced
by δ/2|F| (union bound). We also let ε1 = ε̃ to simplify the
expressions, and will set the concrete value of ε̃ later. The
following is a sample size that satisfies all the above:

|D| ≥
82V 4

max ln 160Vmax|F|
ε̃δ

ε̃2ε2dct
. (5)

Let φ be the partition induced by f̂ and f?. According to
Eq.(3), for any ν s.t. ‖ν/µ‖∞ ≤ C,

‖f̂ −Q?‖2,ν ≤
2εφ +

√
C(‖f̂ − T̂ µφ f̂‖2,D + 2ε̃)

1− γ

=
2εφ +

√
C(E(f̂ ; f?) + 2ε̃)

1− γ

≤ 2εF + 2εdct +
√
C(maxf ′∈F E(f̂ ; f ′) + 2ε̃)

1− γ
.

It then remains to bound maxf ′ E(f̂ ; f ′). Note that

max
f ′∈F

E(f̂ ; f ′) = min
f∈F

max
f ′∈F

E(f ; f ′) ≤ max
f ′∈F

E(f?; f ′).

For any f ′, let φ′ be the partition of S × A induced by f?

and f ′. Then

E(f?; f ′) = ‖f? − T̂ µφ′f
?‖2,D

≤ (1 + γ)‖f? −Q?‖∞ + 2εφ′ + 2ε̃ (Eq.(4))
≤ 4εF + 2εdct + 2ε̃.

Combining the above results, we have for any ν
s.t. ‖ν/µ‖∞ ≤ C,

‖f̂ −Q?‖2,ν ≤
2εF + 2εdct +

√
C(4εF + 2εdct + 2ε̃+ 2ε̃)

1− γ

≤ (2 + 4
√
C)εF + 4

√
C(εdct + ε̃)

1− γ
.

Finally, since any state-action distribution induced by any
(potentially non-stationary) policy always satisfies Proposi-
tion 5, by Chen & Jiang (2019, Lemma 13) we have

J(π?)− J(π̂) ≤ 2

1− γ
sup

ν:‖ν/µ‖∞≤C
‖f̂ −Q?‖ν

≤ (4 + 8
√
C)εF + 8

√
C(εdct + ε̃)

(1− γ)2
.

To guarantee that 8
√
C(εdct+ε̃)
(1−γ)2 ≤ εVmax, we set εdct = ε̃ =

(1−γ)2εVmax

16
√
C

. Plugging this back into Eq.(5) yields the sam-
ple complexity in the theorem statement.
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7. Discussions and Conclusions
7.1. Application to Model Selection

When learning Q? from a batch dataset in practice, one
would like to try different algorithms, different function
approximators, and even different hyperparameters for a
fixed algorithm and see which combination gives the best
result, as is always the case in machine-learning practices.
In supervised learning, this can be done by a simple cross-
validation procedure on the holdout dataset. In batch RL,
however, how to perform such a model-selection step in a
provably manner has been a widely open problem.9

There exists a limited amount of theoretical work on this
topic, which often consider a restrictive setting when the
base algorithms are model-based learners using nested state
abstractions (Hallak et al., 2013; van Seijen et al., 2014;
Jiang et al., 2015).10 The only finite-sample guarantee we
are aware of, given by Jiang et al. (2015), provides an oracle
inequality with respect to an upper bound of ‖f−Q?‖ based
on how much the base state abstractions violate bisimulation
(or model-irrelevance) criterion (Whitt, 1978; Even-Dar
& Mansour, 2003; Li et al., 2006) and `∞ concentration
bounds, and the guarantee does not scale to the case where
the number of base algorithms is super constant.

In comparison, BVFT provides a more direct approach with
a much stronger guarantee: let Q1, . . . , Qm be the output
of different base algorithms. We can simply run BVFT on
the holdout dataset with F = {Qi}mi=1. The only function-
approximation assumption we need is that one of Qi’s is a
good approximation of Q?, which is hardly an assumption
as there is little we can do if all the base algorithms produce
bad results. Compared to prior works, our approach is much
more agnostic w.r.t. the details of the base algorithms, our
loss and guarantees are directly related to ‖f − Q?‖ as
opposed to relying on (possibly loose) upper bounds based
on bisimulation, and our statistical guarantee scales to an
exponentially large F as opposed to a constant-sized one.

Another common approach to model selection is to estimate
J(π) for each candidate π via off-policy evaluation (OPE).11

OPE-based model selection has very different characteris-
tics compared to BVFT, and they may be used together to
complement each other; see a more detailed comparison and
discussion in Appendix F.

9See Mandel et al. (2014) and Paine et al. (2020) for empirical
advances on this problem.

10An exception is the work of Farahmand & Szepesvári (2011),
which requires the additional assumption that a regression proce-
dure can approximate T f and uses it to compute ‖f − T f‖.

11As a side note, BVFT can be adapted to OPE when Qπ ∈ F
for target policy π as long as we change the max operator in T̂ µφ
to π, though Assumption 1 will still be needed.

7.2. On the Assumption of Exploratory Data

As noted in Section 3.2, our Assumption 1 adopts a rela-
tively stringent definition of concentrability coefficient. A
more standard definition is the following, as appeared in the
hardness conjecture of Chen & Jiang (2019):

Assumption 2. Let dπt be the distribution of (st, at) when
we start from s0 ∼ d0 and follow policy π, which we
will call an admissible distribution. We assume that there
exists C < ∞ such that ‖dπt /µ‖∞ ≤ C for any (possibly
nonstationary) policy π and t ≥ 0.

In Appendix C we construct 3 scenarios to illustrate the
difficulties (and sometimes possibilities) in extending our
algorithm and its guarantees to a weaker data assumption
such as Assumption 2; due to space limit we only include
a high-level summary of the results below. In the first con-
struction, we show that BVFT fails under Assumption 2 in a
very simple MDP if we are allowed to provide a contrived µ
distribution to the learner where data is unnaturally missing
in certain states (Figure 1). Motivated by the unnaturalness
of the construction, we attempt to circumvent the hardness
by imposing an additional mild assumption on top of As-
sumption 2, that µ must itself be “admissible” . While it
becomes much more difficult to construct a counterexample
against the algorithm, it is still possible to design a scenario
where our analysis breaks down seriously (Figure 2). We
conclude with a positive result showing that the actual as-
sumption we need is somewhere in between Assumptions 1
and 2, for that our algorithm and analysis work for a simple
and natural “on-policy” case which obviously violates As-
sumption 1; formulating a tighter version of the assumption
in a natural and interpretable manner remains future work.

7.3. Conclusions

We conclude the paper with a few open problems:

• Is it possible to circumvent the failure modes discussed
in Section 7.2 with novel algorithmic ideas, so that a
variant of BVFT only requires a weaker assumption on
data? On a related note, the original hardness conjecture
of Chen & Jiang (2019) remains unsolved: our positive
result assumes a stronger data assumption, and the nega-
tive results of Wang et al. (2020); Amortila et al. (2020)
assume weaker ones.

• When the data is seriously under-exploratory, to the ex-
tent that it is impossible to compete with π? (Fujimoto
et al., 2019; Liu et al., 2019; 2020), what is the minimal
function-approximation assumption that enables polyno-
mial learning? In particular, requiring that F realizes
Q? no longer makes sense as we do not even attempt to
compete with π?. Recent works often suggest that we
compete with π whose occupancy is covered by µ, but as
of now very strong expressivity assumptions are needed
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to achieve such an ambitious goal (e.g., Jiang & Huang,
2020, Proposition 9). It will be interesting to explore
more humble objectives and see if the algorithmic and
analytical ideas in this work extend to the more realistic
setting of learning with non-exploratory data.
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reinforcement-learning model: Convergence and applica-
tions. In ICML, volume 96, pp. 310–318, 1996.

Liu, Q., Li, L., Tang, Z., and Zhou, D. Breaking the curse
of horizon: Infinite-horizon off-policy estimation. In
Advances in Neural Information Processing Systems, pp.
5361–5371, 2018.

Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E.
Off-policy policy gradient with state distribution correc-
tion. arXiv preprint arXiv:1904.08473, 2019.

Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E.
Provably good batch reinforcement learning without great
exploration. arXiv preprint arXiv:2007.08202, 2020.

Mandel, T., Liu, Y.-E., Levine, S., Brunskill, E., and
Popovic, Z. Offline policy evaluation across representa-
tions with applications to educational games. In Proceed-
ings of the 13th International Conference on Autonomous
Agents and Multi-Agent Systems, pp. 1077–1084, 2014.

Munos, R. Error bounds for approximate policy iteration.
In ICML, volume 3, pp. 560–567, 2003.

Munos, R. Performance bounds in l p-norm for approximate
value iteration. SIAM journal on control and optimization,
46(2):541–561, 2007.
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A. Further Discussions of Assumption 1
A.1. Example of Bounded CS in Low-rank Environments

Here we show that in general environments whose transition admits low-rank stochastic factorization, there always exists µ
that satisfies Assumption 1 with a small C.

Example 1. Consider a low-rank MDP as defined in Barreto et al. (2014); Jiang et al. (2017, Proposition 9), where the
transition matrix [P (s′|s, a)](s,a),s′ = P1 × P2, and P1 ∈ R|S×A|×d and P2 ∈ Rd×|S| are both row-stochastic matrices.
Also assume that d0 is a mixture of rows of P2. Then, a data distribution µ, where µ(s) is the average of P2’s rows and
µ(a|s) is uniform, satisfies Assumption 1 with C ≤ d|A|. 12

Proof. CA ≤ |A| follows from the uniformity of µ(a|s). For CS ≤ d, note that P (·|s, a) and d0(·) are convex combinations
of rows of P2, and µ(s) is designed to be uniform mixture of these rows, so P (s′|s, a)/µ(s′) is always bounded by the
number of rows, which is d.

Comparison to Standard Concentrability The more lenient and popular definitions of concentrability (e.g., Assumption 2)
are also found to be satisfiable in low-rank MDPs—in fact, such low-rankness is the only type of general structure known
to enable concentrability (Chen & Jiang, 2019, Proposition 10). Comparing our Example 1 with the example given by
Chen & Jiang (2019), the most outstanding difference is that in their case, the data distribution µ can be a mixture of state
distributions induced by different policies in the environment; if a hidden factor cannot be reached by any policy, it is
possible that any mixture distribution may fail to satisfy Assumption 1 with a reasonably small C.

Comparison to No Inherent Bellman Errors In the above low-rank MDP scenario, the assumption that F has no inherent
Bellman error (Antos et al., 2008; Chen & Jiang, 2019)—which enables polynomial sample complexity for many existing
algorithms—can provably hold when the left factorization matrix (the analogy of P1 in Example 1) is known to the learner
as state-action features, so it is worth comparing such a setting to ours. In this setting, which is often known as linear MDPs
(Jin et al., 2020), one can choose F to be the linear class induced by the left factorization matrix, which is guaranteed to be
closed under T , i.e., have no inherent Bellman errors. In contrast, our Assumption 1 holds without relying on knowing
the left factorization matrix. The price we pay is that we require a stochastic factorization (Example 1) instead of just
low-rankness, and whether Algorithm 1 can hold with just low-rankness (possibly with additional mild assumptions) is an
open problem.

A.2. Lower bounds

Wang et al. (2020); Amortila et al. (2020); Zanette (2020); Chen et al. (2021) have recently proved hardness results under
Q? realizability in batch RL. Among them, the result of (Amortila et al., 2020) is most closely related to ours, and their
setup is roughly that (1) F is a linear function class (induced by feature map ϕ) with Q? ∈ F , and (2) the feature covariance
matrix, Eµ[ϕϕ>], has lower-bounded eigenvalues under the data distribution. To understand how these results relate to ours,
consider the following data assumption:

Assumption 3 (F -aware Concentrability). We assume that there exists C <∞, such that for any f, f ′ ∈ F , ‖f−f ′‖22,dπt ≤
C‖f − f ′‖22,µ for any (possibly nonstationary) policy π and t ≥ 0 (see Assumption 2 for the definition of dπt ).

When F is linear and Eµ[ϕϕ>] has large eigenvalues (assuming ‖φ‖2 ≤ 1), Assumption 3 is automatically satisfied with C
being the inverse of the smallest eigenvalue of Eµ[ϕϕ>]. Therefore, translating the lower bounds of Wang et al. (2020);
Amortila et al. (2020) to the setting of generic F , we have:

Proposition 12 (Corollary of Amortila et al. (2020)). In the setup of our main text, if we replace Assumption 1 with
Assumption 3, no algorithm with finite sample complexity exists.

Proof. This is a direct corollary of Amortila et al. (2020), who show that finite sample complexity is unattainable even with
stronger assumptions: linear F is stronger than generic F , and Eµ[ϕϕ>] having eigenvalues lower-bounded away from 0 is
stronger than Assumption 3.

12We do not particularly attempt to satisfy µ(s, a) > 0 ∀s, a here, because it can always be satisfied by mixing in an infinitesimally
small portion of U(S ×A). In fact, this assumption itself can be removed from the main analysis with some additional care.
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Next we consider the relationship between Assumptions 1, 2, and 3 in the following result; the proof is elementary and can
be extracted from existing analyses (Munos, 2003; 2007; Chen & Jiang, 2019).

Proposition 13. Assumption 1⇒ Assumption 2⇒ Assumption 3.

With these results, we now can relate the lower bounds Wang et al. (2020); Amortila et al. (2020) to our positive result:
indeed they do not contradict each other, as the negative results use the weakest form of concentrability (the F-aware
version in Assumption 3), and our positive result uses the strongest form (Assumption 1). Furthermore, to circumvent the
hardness in Proposition 12, imposing linear structure on F—which is a very strong structural assumption—does not help, as
the hardness results of Wang et al. (2020); Amortila et al. (2020) still apply. On the other hand, making a stronger data
assumption as in Assumption 1 would avoid the lower bound.

As a final remark, the hardness conjecture of Chen & Jiang (2019), which uses Assumption 2, remains unsolved. Originally
Chen & Jiang (2019) argued that hardness conjecture is highly likely true given the lack of positive results under realizability,
but given our work the picture is much less clear now. If we still anticipate a hardness result, our work has substantially
narrowed the search space for the lower-bound constructions (if they exist): we will necessarily be able to establish the lower
bound with either |F| = 2 or F being piecewise constant, otherwise our tournament procedure can extend the polynomial
upper bounds for these special settings to arbitrary function classes.

B. Proofs
B.1. Proof of Lemma 3

Let TMφ
denote the Bellman update operator of Mφ. It suffices to show that for any f , TMφ

f ∈ Gφ and is the argmin
in Eq.(2). TMφ

f ∈ Gφ follows directly as for any s, a, s̃, ã such that φ(s, a) = φ(s̃, ã), Rφ(s, a) = Rφ(s̃, ã) and
Pφ(·|s, a) = Pφ(·|s̃, ã). For the other claim, note that projecting onto a piecewise constant function class means taking a
weighted average within each partition, i.e., for any s, a,

(T µφ f)(s, a) = E(s̃,ã,r,s′)∼µ[r + γVf (s′)|φ(s̃, ã) = φ(s, a)]

=

∑
s̃,ã:φ(s̃,ã)=φ(s,a) µ(s̃, ã)(R(s̃, ã) + γEs′∼P (s̃,ã)[Vf (s′)])∑

s̃,ã:φ(s̃,ã)=φ(s,a) µ(s̃, ã)
(6)

= Rφ(s, a) + γEs′∼Pφ(s,a)[Vf (s′)] = (TMφ
f)(s, a).

B.2. Proof of Proposition 4

The existence and the uniqueness of the fixed point of T µφ follow from Lemma 3, so it suffices to check Q? = T µφ Q?. For
any (s, a), we will calculate (T µφ Q?)(s, a) using Eq.(6), which is a convex average of terms in the form of

R(s̃, ã) + γEs′∼P (s̃,ã)[VQ?(s′)] = (T Q?)(s̃, ã) = Q?(s̃, ã),

where φ(s̃, ã) = φ(s, a). Since εφ = 0, we have Q?(s̃, ã) = Q?(s, a), and (T µφ Q?)(s, a) is the convex average of terms
that are always equal to Q?(s, a). Hence, T µφ Q? = Q?.

B.3. Proof of Lemma 6

M and Mφ share the same initial state distribution d0. Now for any (s, a), Pφ(s′|s, a) is a convex combination of P (s′|s̃, ã)

for {(s̃, ã) : φ(s, a) = φ(s̃, ã)}, and since P (s′|s,a)
µ(s′) ≤ CS for every (s, a), replacing the enumerator with any convex

combination satisfies the same inequality. The condition about CA only concerns the data distribution µ and does not depend
on the MDP.
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B.4. Proof of Lemma 7

Let g? = arg ming∈Gφ ‖g −Q
?‖∞, and ‖g? −Q?‖∞ = εφ. For any (s, a),∣∣∣Q?(s, a)− (T µφ Q

?)(s, a)
∣∣∣

=

∣∣∣∣∣Q?(s, a)−
∑
s̃,ã:φ(s̃,ã)=φ(s,a) µ(s̃, ã)(R(s̃, ã) + γEs′∼P (s̃,ã)[V

?(s′)])∑
s̃,ã:φ(s̃,ã)=φ(s,a) µ(s̃, ã)

∣∣∣∣∣
=

∣∣∣∣∣Q?(s, a)−
∑
s̃,ã:φ(s̃,ã)=φ(s,a) µ(s̃, ã)Q?(s̃, ã)∑

s̃,ã:φ(s̃,ã)=φ(s,a) µ(s̃, ã)

∣∣∣∣∣ ≤ max
s̃,ã:φ(s̃,ã)=φ(s,a)

|Q?(s, a)−Q?(s̃, ã)|.

Now for any s̃, ã s.t. φ(s̃, ã) = φ(s, a),

|Q?(s, a)−Q?(s̃, ã)|
= |Q?(s, a)− g?(s, a) + g?(s̃, ã)−Q?(s̃, ã)| (g? ∈ Gφ and is piecewise constant)
≤ |Q?(s, a)− g?(s, a)|+ |g?(s̃, ã)−Q?(s̃, ã)| ≤ 2εφ.

B.5. Proof of Lemma 8

Fixing any h ∈ H, define random variable Z(h) := (h(X)−Y )2−(h?(X)−Y )2, which has bounded range [−V 2
max, V

2
max].

Noting that E[Z(h)] = E[(h(X)− h?(X))2], we bound the variance of Z(h) as

V[Z(h)] ≤ E[Z(h)2] = E[
(
(h(X)− Y )2 − (h?(X)− Y )2

)2
]

= E[(h(X)− h?(X))2(h(X) + h?(X)− 2Y )2]

≤ 4V 2
maxE[(h(X)− h?(X))2] = 4V 2

maxE[Z(h)].

Next, we derive a uniform derivation bound on E[Z(h)]− Ê[Z(h)] for all h ∈ H. LetH′ ⊂ H be the ε-cover ofH under
`∞. By the definition of covering number, we have that |H′| = N and for any h ∈ H, there exists h′ ∈ H′ such that
‖h− h′‖∞ ≤ ε.

Applying the one-sided Bernstein and union bounding over all h′ ∈ H′: w.p. 1− δ, ∀h′ ∈ H ′,

E[Z(h′)]− Ê[Z(h′)] ≤

√
2V[Z(h′)] log N

δ

n
+

4V 2
max log N

δ

3n

≤

√
8V 2

maxE[Z(h)] log N
δ

n
+

4V 2
max log N

δ

3n
.

Now for any h ∈ H, let h′ be its closest function inH′, and

E[Z(h)]− Ê[Z(h)] = E[Z(h′)]− Ê[Z(h′)] + (E[Z(h)]− E[Z(h′)])− (Ê[Z(h)]− Ê[Z(h′)]).

We have already bounded the first term, so it suffices to bound the remaining two terms. Consider

|Z(h)− Z(h′)| = |(h(X)− Y )2 − (h′(X)− Y )2|
= |(h(X)− h′(X))(h(X) + h′(X)− 2Y )| ≤ 2Vmaxε0.

So we have

E[Z(h)]− Ê[Z(h)] ≤

√
8V 2

maxE[Z(h)] log N
δ

n
+

4V 2
max log N

δ

3n
+ 4Vmaxε0.

Since Ê[(h(X)−Y )2] and Ê[Z(h)] differ by a term that does not depend on h, the minimzer of the former, ĥ, also minimizes
the latter. Therefore,

Ê[Z(ĥ)] ≤ Ê[Z(h?)] = 0.
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This leads to

E[(h(X)− h?(X))2] = E[Z(ĥ)] ≤

√
8V 2

maxE[Z(ĥ)] log N
δ

n
+

4V 2
max log N

δ

3n
+ 4Vmaxε0.

Solving for the quadratic formula, we have

E[(h(X)− h?(X))2] = E[Z(ĥ)]

≤

√2V 2
max log N

δ

n
+

√
10V 2

max log N
δ

3n
+ 4Vmaxε0

2

≤
22V 2

max log N
δ

3n
+ 8Vmaxε0.

B.6. Proof of Lemma 9

For any (s, a, r, s′), let x = φ(s, a) and y = r + γVf (s′). When we sample (s, a, r, s′) according to the data distribution,
we use X and Y to denote the random variables whose realizations are x and y, respectively. Define X as the codomain
of φ, and |X | = |φ|. Consider the regression problem x 7→ y over function class H = [0, Vmax]X . Let ĥ and h? be the
empirical risk minimizer and the Bayes-optimal regressor, respectively, and h? ∈ H thanks to the full expressivity of H.
Also note that N∞(H, ε0) ≤ (Vmax/ε0)|X |. Invoking Lemma 8 we immediately have that w.p. ≥ 1− δ/2,

Eµ[(ĥ(X)− h?(X))2] ≤
8V 2

max log 2(Vmax/ε0)
|φ|

δ

|D|
+ 8Vmaxε0.

Next we establish Eµ[(ĥ(X)− h?(X))2] = ‖T̂ µφ f − T
µ
φ f‖22,µ. It suffices to show that for any (s, a, r, s′), h?(φ(s, a)) =

(T µφ f)(s, a) and ĥ(φ(s, a)) = (T̂ µφ f)(s, a). We only show the former and the latter is similar. Let x = φ(s, a), and

(T µφ f)(s, a) = Rφ(s, a) + γEs′∼Pφ(s,a)[Vf (s′)]

=

∑
s̃,ã:φ(s̃,ã)=φ(s,a) µ(s̃, ã)(R(s̃, ã) + γEs′∼P (s̃,ã)[Vf (s′)])∑

s̃,ã:φ(s̃,ã)=φ(s,a) µ(s̃, ã)

= E(s̃,ã)∼µ[R(s̃, ã) + γEs′∼P (s̃,ã)[Vf (s′)] |φ(s̃, ã) = φ(s, a)]

= E(s̃,ã)∼µ,r=R(s̃,ã),s′∼P (s̃,ã)[r + γVf (s′) |φ(s̃, ã) = x]

= E(s,a)∼µ,r=R(s,a),s′∼P (s,a)[Y |X = x]. (change of variable)
= h?(x).

Finally we back up the sample size from the generalization error bound. To guarantee ‖T̂ µφ f − T
µ
φ f‖22,µ ≤ ε̃2, we set

ε0 = ε̃2/16Vmax, and it suffices to have

8V 2
max log

(16V 2
max/ε̃

2)|φ|

δ

|D|
≤ ε̃2/2.

Solving for |D| completes the proof.

B.7. Proof of Lemma 10

We prove the concentration inequality in two separate cases depending on the magnitude of ‖f0 − g‖2,µ. In the first case
when ‖f0 − g‖2,µ is small, we may use Bernstein’s inequality to obtain fast rate as 2Vµ[(f0(s, a)− g(s, a))2] is controlled
by ‖f0− g‖2,µ. In the second case, large ‖f0− g‖2,µ enables us to leverage the inequality of |‖f0− g‖2,D−‖f0− g‖2,µ| ≤
|‖f0 − g‖22,D − ‖f0 − g‖22,µ|/‖f0 − g‖2,µ.

Before discussing these two cases separately, let’s first establish some results as preparation. Let G′φ be an ε′0-cover of
Gφ under `∞, and N := N∞(Gφ, ε′0) be the covering number. Thus, for any g ∈ Gφ, there exists g′ ∈ G′φ such that
‖g − g′‖∞ ≤ ε′0. We also let n = |D|.



Batch Value-function Approximation with Only Realizability

We apply Bernstein’s inequality with a union bound over G′φ: w.p. ≥ 1− δ/2, for any g′ ∈ G′φ,∣∣‖f0 − g′‖22,D − ‖f0 − g′‖22,µ∣∣
=

∣∣∣∣∣∣ 1n
∑

(s,a,r,s′)∈D

(f0(s, a)− g′(s, a))
2 − Eµ

[
(f0(s, a)− g′(s, a))

2
]∣∣∣∣∣∣

≤

√√√√2Vµ
[
(f0(s, a)− g′(s, a))

2
]

ln 4N
δ

n
+
V 2
max ln 4N

δ

3n
(Bernstein’s inequality)

≤

√
2V 2

max‖f0 − g′‖22,µ ln 4N
δ

n
+
V 2
max ln 4N

δ

3n
, (7)

where the lest inequality follows from the fact of Vµ[(f0(s, a)−g′(s, a))2] ≤ Eµ[(f0−g′)4] ≤ ‖(f0−g′)2‖∞Eµ[(f0−g′)2].

Case 1: ‖f0 − g‖2,µ is small Now, for any g ∈ Gφ, let g′ ∈ G′φ satisfies ‖g − g′‖∞ ≤ ε′0.

|‖f0 − g‖2,D − ‖f0 − g‖2,µ|
≤ |‖f0 − g′‖2,D − ‖f0 − g′‖2,µ|+ 2ε′0

≤
√∣∣∣‖f0 − g′‖22,D − ‖f0 − g′‖22,µ∣∣∣+ 2ε′0 (|a− b|2 ≤ |a2 − b2| for a, b ≥ 0)

≤

√√√√√2V 2
max‖f0 − g′‖22,µ ln 4N

δ

n
+
V 2
max ln 4N

δ

3n
+ 2ε′0 (Eq.(7))

≤
4

√
2V 2

max‖f0 − g′‖22,µ ln 4N
δ

n
+

√
V 2
max ln 4N

δ

3n
+ 2ε′0 (

√
a+ b ≤

√
a+
√
b for a, b ≥ 0)

≤
4

√
2V 2

max‖f0 − g‖22,µ ln 4N
δ

n
+

4

√
2V 2

maxε
′2
0 ln 4N

δ

n
+

√
V 2
max ln 4N

δ

3n
+ 2ε′0.

Case 2: ‖f0 − g‖2,µ is large Similarly, for any g ∈ Gφ, let g′ ∈ G′φ satisfies ‖g − g′‖∞ ≤ ε′0. Then, as long as
‖f0 − g‖2,µ 6= 0,

|‖f0 − g‖2,D − ‖f0 − g‖2,µ| ≤
∣∣‖f0 − g‖22,D − ‖f0 − g‖22,µ∣∣

‖f0 − g‖2,µ

≤
∣∣‖f0 − g′‖22,D − ‖f0 − g′‖22,µ∣∣

‖f0 − g‖2,µ︸ ︷︷ ︸
(I)

+
4‖f0 − g‖2,µε′0 + 2 |‖f0 − g‖2,D − ‖f0 − g‖2,µ| ε′0 + 2ε′20

‖f0 − g‖2,µ︸ ︷︷ ︸
(II)

.

The last line is obtained by the following argument:∣∣∣∣‖f0 − g‖22,D − ‖f0 − g‖22,µ∣∣− ∣∣‖f0 − g′‖22,D − ‖f0 − g′‖22,µ∣∣∣∣
≤
∣∣(‖f0 − g‖22,D − ‖f0 − g′‖22,D)− (‖f0 − g‖22,µ − ‖f0 − g′‖22,µ)∣∣

≤
∣∣‖f0 − g‖22,D − ‖f0 − g′‖22,D∣∣+

∣∣‖f0 − g‖22,µ − ‖f0 − g′‖22,µ∣∣
= |‖f0 − g‖2,D − ‖f0 − g′‖2,D| · |‖f0 − g‖2,D + ‖f0 − g′‖2,D|

+ |‖f0 − g‖2,µ − ‖f0 − g′‖2,µ| · |‖f0 − g‖2,µ + ‖f0 − g′‖2,µ|
≤ ε′0 · (2‖f0 − g‖2,D + ε′0) + ε′0 · (2‖f0 − g‖2,µ + ε′0)

≤ 4‖f0 − g‖2,µε′0 + 2 |‖f0 − g‖2,D − ‖f0 − g‖2,µ| ε′0 + 2ε′20 ,

where all the inequalities follow from the triangle inequality and the fact of ‖g − g′‖∞ ≤ ε′0.
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We now analyze the two terms above separately.

(I) ≤ 1

‖f0 − g‖2,µ

√2V 2
max‖f0 − g′‖22,µ ln 4N

δ

n
+
V 2
max ln 4N

δ

3n

 (by Eq.(7))

≤ 1

‖f0 − g‖2,µ

(‖f0 − g‖2,µ + ε′0)

√
2V 2

max ln 4N
δ

n
+
V 2
max ln 4N

δ

3n


≤

√
2V 2

max ln 4N
δ

n
+

1

‖f0 − g‖2,µ

√2ε′20 V
2
max ln 4N

δ

n
+
V 2
max ln 4N

δ

3n

 . (8)

(II) = 4ε′0 +
2ε′0

‖f0 − g‖2,µ
|‖f0 − g‖2,D − ‖f0 − g‖2,µ|+

2ε′20
‖f0 − g‖2,µ

. (9)

Combine them all We now unify those two cases above. We first set ε′0 = ε1/20, and N = N∞(Gφ, ε′0) ≤ (Vmax/ε
′
0)|φ|.

When ‖f0 − g‖2,µ < 4ε′0, we apply the first case and obtain

|‖f0 − g‖2,D − ‖f0 − g‖2,µ|

≤
4

√
2V 2

max‖f0 − g‖22,µ ln 4N
δ

n
+

4

√
2V 2

maxε
′2
0 ln 4N

δ

n
+

√
V 2
max ln 4N

δ

3n
+ 2ε′0

≤

(
4

√
2

25
+

4

√
1

200

)
4

√
V 2
maxε

2
1 ln 4N

δ

n
+

√
V 2
max ln 4N

δ

3n
+
ε1
10

≤

(
4

√
2

25
+

4

√
1

200

)
4

√
V 2
maxε

2
1|φ| ln 80Vmax

ε1δ

n
+

√
V 2
max|φ| ln 80Vmax

ε1δ

3n
+
ε1
10
.

Solving

(
4

√
2

25
+

4

√
1

200

)
4

√
V 2
maxε

2
1|φ| ln 80Vmax

ε1δ

n
+

√
V 2
max|φ| ln 80Vmax

ε1δ

3n
+
ε1
10
≤ ε1

implies that it suffices to set

|D| = n ≥
16V 2

max|φ| ln 80Vmax

ε1δ

ε21
,

for the case of ‖f0 − g‖2,µ < 4ε′0 = 1
5ε1.

If ‖f0 − g‖2,µ ≥ 4ε′0, we use the second case. The term (I) in Eq.(8) is

(I) ≤ 5

4

√
2V 2

max ln 4N
δ

n
+
V 2
max ln 4N

δ

12ε′0n
,

and the term (II) in Eq.(9) is

(II) ≤ 9

2
ε′0 +

1

2
|‖f0 − g‖2,D − ‖f0 − g‖2,µ| .
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Since |‖f0 − g‖2,D − ‖f0 − g‖2,µ| ≤ (I) + (II), we reorder the terms and obtain

|‖f0 − g‖2,D − ‖f0 − g‖2,µ| ≤
5

2

√
2V 2

max ln 4N
δ

n
+
V 2
max ln 4N

δ

6ε0n
+ 9ε0.

We still set ε′0 = ε1/20. Thus, solving

5

2

√
2V 2

max ln 4N
δ

n
+
V 2
max ln 4N

δ

6ε′0n
+ 9ε′0 =

5

2

√
2V 2

max|φ| ln 80Vmax

ε1δ

n
+

10V 2
max|φ| ln 80Vmax

ε1δ

3ε1n
+

9ε1
20
≤ ε1

provides us with the sufficient sample size |D|,

|D| = n ≥
50V 2

max|φ| ln 80Vmax

ε1δ

ε21
.

Choosing the greater one between the required sample sizes for ‖f0 − g‖2,µ < 4ε′0 = ε1/5 and ‖f0 − g‖2,µ ≥ 4ε′0 = ε1/5
completes the proof.

B.8. Proof of Proposition 5

Since |D| in the proposition statement is chosen to satisfy the sample-size requirements in Lemmas 9 and 10, the statement
of each lemma holds with probability at least 1− δ/2, and by union bound they hold simultaneously w.p. ≥ 1− δ.

Bounding ‖Q? − f0‖ using ‖f0 − T̂ µφ f0‖2,D (Eq.(3)):
Define πf,f ′ as the policy s 7→ arg maxa max{f(s, a), f ′(s, a)}. Consider any ν such that ‖ν/µ‖∞ ≤ C,

‖Q? − f0‖2,ν ≤ ‖Q? − T µφ Q
?‖2,ν + ‖T µφ Q

? − T µφ f0‖2,ν + ‖f0 − T µφ f0‖2,ν
≤ 2εφ + γ‖Q? − f0‖2,Pφ(ν)×πf̂,Q? +

√
C‖f0 − T µφ f0‖2,µ. (10)

In Eq.(10), the first term follows from Lemma 7 and that ‖ · ‖2,ν ≤ ‖ · ‖∞, the second from Chen & Jiang (2019, Lemmas
14 and 15), and the third from Chen & Jiang (2019, Lemma 12).

According to Lemma 6, Pφ(ν) × πf̂ ,Q? also satisfies ‖(·)/µ‖∞ ≤ C, so it can be viewed as one of those ν’s we started
with on the LHS, allowing us to expand the inequality indefinitely. Alternatively, we have

sup
ν:‖ν/µ‖∞≤C

‖Q? − f0‖2,ν

≤ γ sup
ν:‖ν/µ‖∞≤C

(
‖Q? − f0‖2,Pφ(ν)×πf0,Q?

)
+ 2εφ +

√
C‖f0 − T µφ f0‖2,µ

≤ γ sup
ν:‖ν/µ‖∞≤C

(‖Q? − f0‖2,ν) + 2εφ +
√
C‖f0 − T µφ f0‖2,µ. (Lemma 6)

So for any ν such that ‖ν/µ‖∞ ≤ C, ‖Q? − f̂‖2,ν ≤
2εφ+

√
C‖f0−T µφ f0‖2,µ

1−γ .

It then remains to bound ‖f0 − T µφ f0‖2,µ:

‖f0 − T µφ f0‖2,µ ≤ ‖f0 − T̂
µ
φ f0‖2,µ + ‖T̂ µφ f0 − T

µ
φ f0‖2,µ

≤ ‖f0 − T̂ µφ f0‖2,µ + ε̃ (Lemma 9)

≤ ‖f0 − T̂ µφ f0‖2,D + ε1 + ε̃. (Lemma 10)
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Bounding ‖f0 − T̂ µφ f0‖2,D using ‖Q? − f0‖ (Eq.(4)):

‖f0 − T̂ µφ f0‖2,D ≤ ‖f0 − T̂
µ
φ f0‖2,µ + ε1 (Lemma 10)

≤ ‖f0 − T µφ f0‖2,µ + ε̃+ ε1 (Lemma 9)

≤ ‖f0 − T µφ f0‖∞ + ε̃+ ε1 (‖ · ‖2,µ ≤ ‖ · ‖∞)

≤ ‖f0 −Q?‖∞ + ‖T µφ Q
? − T µφ f0‖∞ + ‖Q? − T µφ Q

?‖∞ + ε̃+ ε1

≤ (1 + γ)‖f0 −Q?‖∞ + 2εφ + ε̃+ ε1.
(γ-contraction of T µφ under `∞ (Lemma 3) and Lemma 7)

B.9. Proof of Lemma 11

For the first claim, we may write φ(s, a) = (f̄(s, a), f̄ ′(s, a)), and the number of equivalent classes induced by φ is at most
the product of the cardinalities of the codomains of f̄ and f̄ ′, so the result follows.

For the second claim, recall that εφ = εGφ = ming∈Gφ ‖g −Q?‖∞, so

εφ ≤ ‖f̄? −Q?‖∞ (f? ∈ {f, f ′} and f̄? ∈ Gφ)
≤ ‖f? −Q?‖∞ + ‖f̄? − f?‖∞ ≤ εF + εdct.

C. Obstacles in Relaxing Assumption 1
In this section we discuss the obstacles in relaxing Assumption 1. Before we start, we emphasize that the difficulties
have nothing to do with the tournament procedure, and are entirely about learning Q? with a realizable state-action
aggregation φ—a problem so standard, that the difficulties we find may have broader implications beyond the scope of this
work; see Appendix C.1 for discussions on the relevance of our findings to existing RL algorithms.

Negative Result: Contrived µ We present our first counterexample in Figure 1, where Assumption 1 is violated but
Assumption 2 is satisfied due to missing data in state-action pairs unreachable from the initial state s0. A state-action
aggregation φ, which is guaranteed to express Q?, results in a projected Bellman operator T µφ that has multiple fixed points
other than Q? even when sample size goes to infinity, and many such fixed points produce suboptimal policies. Therefore,
‖f − T µφ f‖2,µ, which is the surrogate loss that plays a central role in our algorithm, cannot control the performance of πf
in this setting; see Appendix C.1 for details.

Negative Result: Admissible µ An issue with Figure 1 is that its µ cannot be admitted in the MDP (i.e., generated by
some behavior policy from d0), and assuming admissible µ (which is reasonable) excludes this counterexample. While
this may look promising, here we show that our analysis still faces substantial obstacles if we replace Assumption 1 with
Assumption 2 plus admissible µ. Below we explain in more details.

As Section 5.2.1 has alluded to, the error propagates according to the dynamics of Mφ instead of M in our analysis, so the
purpose of Assumption 1 is really to guarantee the following type of assumption:13

Assumption 4. There exists C <∞, such that for any φ, we have ‖ν/µ‖∞ ≤ C for any ν that is admissible in Mφ.

Unfortunately, via a carefully constructed example, we show in Figure 2 that Assumption 4 cannot be implied by Assump-
tion 2 plus admissible µ. In particular, even when Assumption 2 is satisfied with a constant C and µ is admissible, we can
use the aggregation to “leak” probabilities from easy-to-reach states in µ to hard-to-reach states gradually over time steps,
causing an exponential blow-up of ‖ν/µ‖∞. See Appendix C.2 for details.

Positive Result: On-policy Data Despite the discouraging counterexamples, we show a slightly positive result, implying
that Assumption 4 could be much weaker than Assumption 1, leaving the possibility of something weaker than Assumption 1
but more natural and interpretable than Assumption 4. In particular, we show a scenario where Assumptions 2 and 4 can be

13The actual assumption we need is slightly more complicated, that we need ‖ν/µ‖∞ ≤ C for any ν admissible in Mφ but using any
other admissible ν′ from M as the initial distribution. This complication, however, does not affect our counterexample. Neither does it
affect the next positive result.
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Figure 1: MDP construction for Section 7.2; see Appendix C.1 for details. s0 is the deterministic initial state. The gray
squares represent known absorbing states. Actions a1, a2 have the same effects (and abbreviated as “a”) in all states except
in s0. The red thick arrows for (s0, a1) and (s3, a) indicate that these state-action pairs are aggregated together (they share
the same Q? value). The blue dashed arrow for (s4, a) indicates that data is missing for this state-action pair, which violates
Assumption 1; Assumption 2 still holds since no policy can visit s3 or s4 from s0. The missing data leads to high uncertainty
in Q?(s3, a), and such uncertainty propagates to Q?(s0, a1) and causes the failure of learning.

satisfied with a small C, yet Assumption 1 may be violated badly, implying the looseness and unnecessity of Assumption 1
for our analysis.

Consider the uncontrolled case where there is only one action, and we may treat P as an |S| × |S| transition matrix. We
consider the “on-policy” case, where d0 = µ is an invariant distribution w.r.t. P , i.e., µ>P = µ>. Since an invariant
distribution always exists, this does not impose any restriction on P , so we can make the C in Assumption 1 very large:
for example, when P is identity, C must be as large as |S| to satisfy Assumption 1. On the other hand, Assumption 2
is trivially satisfied with C = 1, as µ is the only admissible distribution in M . Perhaps surprisingly, this is also true for
Assumption 4: regardless of φ, we have µ>Pφ = µ>P = µ, because Pφ is defined by averaging the dynamics of P with
weights proportional to µ, and this averaging step can be ignored when the incoming distribution is µ itself.

C.1. Details of Figure 1

We construct an MDP, a data distribution µ, and a realizable function class F with |F| = 2, such that (1) Assumption 1 is
violated; (2) Assumption 2 is satisfied; (3) Algorithm 1 may output a suboptimal policy even with infinite data.

See Figure 1 for an illustration of the MDP, where the transition dynamics and the rewards are deterministic. Let γ = 0.9,
and s0 be the deterministic initial state.

Let µ be uniform over all state-action pairs other than (s4, a),14 which violates Assumption 1.15 However, since no policy
can visit s3 or s4 from the starting state s0, lacking data in s4 does not affect the validity of Assumption 2. It remains to
specify F and show that our algorithm fails.

Our F consists of two functions, Q? and Q. We specify them by writing down their values on
(s0, a1), (s0, a2), (s1, a), (s2, a), (s3, a), (s4, a) as a vector: Q? = (1, 1.9, 0, 1, 1, 0) and Q = (7, 1.9, 0, 1, 7, 10). The
red and blue colors correspond to the color schemes in Figure 1 to facilitate understanding.

When we run Algorithm 1, the only nontrivial aggregation φ performs is grouping together (s0, a1) and (s3, a); (s0, a2)
and every other state-action pair are kept in their own equivalence classes, respectively. (a1, a2 under the same state are by
default aggregated except in s0.)

Now that the construction is complete, we can verify that our loss ‖f−T µφ f‖ is zero for both f = Q? and f = Q. Therefore,

14The probability assigned to (s3, a) is twice as much as that to (s0, a1) by µ, because the former is the abbreviation of two state-action
pairs. This detail is of minor importance, and µ can be changed to many other distributions, as long as the later values of Q are set in a
way consistent with µ.

15The fact that µ(s, a) > 0 ∀s, a is violated is of minor concern here: we can add exponentially small probabilities to (s4, a) in µ,
and with a polynomially large D, the non-uniqueness of the fixed point of T̂ µφ still persists. What is really important is that no finite CS

satisfies P (s′|s, a)/µ(s′) ≤ CS .
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Figure 2: The example in Figure 1 requires that µ visits unreachable states. While assuming that µ can be naturally
generated in the MDP using a behavior policy (“admissible”) would exclude the pathology in Figure 1, here we show that in
a more carefully constructed example, dynamics of Mφ allow us to visit a state exponentially more likely than in µ, while
Assumption 2 is satisfied with a constant C. Roughly speaking, µ(st) ∝ pt but it is possible to produce a distribution in Mφ

that visits st w.p.∝ (2p)t for p� 1; see Appendix C.2.

the algorithm may choose to output the greedy policy of either function, but the greedy policy of Q is suboptimal since it
chooses a1 in s0.

Broader Implications The non-uniqueness of the fixed point of T µφ not only affects our algorithm, but also affects many
popular algorithms when they are applied with the piecewise constant class induced by φ, as any fixed point of T µφ is a valid
output of these algorithms. Such algorithms include iterative algorithms such as FQI and (both `1 and `2) Bellman residual
minimization-style algorithms (Xie & Jiang, 2020). Moreover, related algorithms that do not directly approximate Q? but
instead perform policy iteration (e.g., LSPI; Lagoudakis & Parr, 2003) are also subject to this counterexample, as the Qπ

learned at the policy evaluation step is equal to Q? regardless of the policy in this MDP.16

This phenomenon is particularly interesting when we notice that, everything will work fine if we remove the data on (s3, a):
the algorithm will still have high uncertainty in the values of s3 and s4, but such uncertainty does not incorrectly propagate
to s0 and hence does not affect our ability to choose the optimal action there. Therefore, the pathological behavior is due to
having data with more coverage than necessary, which may be surprising. To our best knowledge, this pathology—which
affects a wide range of batch RL algorithms—is documented for the first time. It will be interesting to see if we can obtain a
deeper understanding of this issue and possibly circumvent it.

C.2. Counterexample Against Admissible µ

One weakness of the counterexample in Figure 1 is that µ cannot be generated by a behavior policy starting from d0, as
such admissible distributions never visit s3. Therefore, we can exclude the pathology by assuming that µ is (a mixture) of
admissible distributions, on top of Assumption 2.

Assumption 5 (µ is admissible). In addition to Assumption 2, assume that µ is a mixture of dπt for a set of (π, t) pairs,
where π may be nonstationary and/or stochastic.

This seemingly mild additional assumption leads to some powerful corollaries. For example, any distribution induced from
µ (say, with policy π′ in t′ steps) as the initial distribution (instead of d0) will still be covered by µ, since the distribution is
essentially a mixture of dt+t

′

π◦π′ . Furthermore, creating a situation like Figure 1 becomes very difficult (see below for detailed
reasons); in fact, we believe that it is impossible to induce hardness with a constant-depth construction as in Figure 1.

Despite the power of Assumption 5, we show below that our analysis still faces substantial obstacles even under Assumption 5.

16This is because the only action choice is in the initial state s0.
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In particular, our proof around Eq.(10) requires that distribution induced in Mφ should also be well covered by µ (i.e.,
Assumption 4), and this is guaranteed by Assumption 1 via Lemma 6. If we replace Assumption 1 with Assumption 5,
however, below we show in a counterexample that Mφ can induce a distribution that visits a state exponentially more likely
compared to its likelihood in µ, thus breaking Assumption 4.

Counterexample See Figure 2. The true MDP M is essentially a 2-armed contextual bandit, where the initial state (or
context) distribution is d0(st) = (1− p)pt−1 for t between 1 and a sufficiently large integer N (and the rest probability goes
to sN+1; we will not need it). 0 < p < 1 is a parameter to be set later. For each st, we will call the two actions L (for “left”)
and R (“right”), respectively. All states other than {st} are absorbing states. During data collection, the learner randomly
starts in some st according to d0, and take actions uniformly at random. This guarantees that C = 2 for Assumption 2. Note
that we do not specify the rewards as our goal is only to show that a distribution with large density ratio against µ can be
induced in Mφ, and not to directly show the failure of the algorithm.

Aggregation and Dynamics of Mφ The dynamics of Mφ (Definition 4) can be equivalently described as the following:
given (s, a), the next-state s′ is generated in two steps,

1. Re-draw (s̃, ã) from {(s̃, ã) : φ(s̃, ã) = φ(s, a)} with probability proportional to µ.

2. Sample s′ ∼ P (s̃, ã).

In Figure 2, we aggregate s′t and st together for every t, and the “re-drawing” step happens after the agent lands in s′t. That
is, before the next time step, there is some probability that it will teleport to st. Strictly speaking we are aggregating states
instead of state-action pairs, but the effects can be reproduced by e.g., adding a dummy state with only 1 action above each
st, and aggregating this state-action pair with (st−1, R). We opt for a slightly different mechanism for simplicity of the
construction.

Calculation We will show that with the effect of aggregation, we can induce a distribution whose density ratio against µ
is exponentially large, using the policy that always takes action “R”. Let P (st) be the probability of visiting st at time step
t− 1 by this policy, and let µ(st) be the mass of st in µ. Our goal is to calculate P (st)/µ(st) and show that it is exponential
in t. First, µ(st) = pt−1(1 − p)/2. The division by 2 is because µ contains data from two different time steps ({st} at
time step 0, and {st′} and their sibling states at time step 1). Note that the data is collected in the true MDP M and the
aggregation plays no role here.

Now we calculate P (st). The only probability path of visiting st at time step t− 1 is s1 → s′2 → s2 → s′3 → s3 → . . .→
s′t → st. Along this path, P (s1) = 1− p, and st−1 → s′t is deterministic, so we focus on the probability of s′t → st.

Recall from the above that whenever at s′t, we will redraw a state from {s′t, st} according to their probabilities in µ.
Therefore,

P (s′t → st) =
µ(st)

µ(s′t) + µ(st)
=

pt−1(1− p)/2
pt−2(1− p)/4 + pt−1(1− p)/2

=
2p

1 + 2p
,

where µ(s′t) is calculated based on the fact that the data collection policy is uniformly random. This gives

P (st) = (1− p)
(

2p

1 + 2p

)t−1
,

P (st)

µ(st)
=

1

2

(
2

1 + 2p

)t−1
.

Therefore, when p < 1/2, P (st)/µ(st) will be exponential in t.

D. What If Assumption 1 is Violated?
When Assumption 1 is violated, the guarantees in Theorem 2 does not hold in general. However, this does not mean that the
algorithm is useless or there is nothing we can do in this case. Below we discuss a few actionable items and briefly sketch
the theoretical analyses that justifies them.
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D.1. Diagnosing the Uniqueness of T̂ µφ ’s Fixed Point

As Section 7.2 has shown, one possible consequence of not having Assumption 1 is that the fixed point of T̂ µφ may be non-

unique. This suggests a diagnostic procedure that checks if such pathology occurs: let Ĝφ := {g ∈ Gφ : ‖g−T̂ µφ g‖ ≤ ε′} be

the set of approximate fixed points of T̂ µφ where ε′ is some small threshold. Then, we may compute max
g,g′∈Ĝφ ‖g− g

′‖2,D
as a statistic for the diagnosis. If Assumption 1 is satisfied, such a maximum distance should be small as all functions in Ĝφ
should be close to the fixed point of T µφ under ‖ · ‖2,µ, 17 and it is important to note that such a claim does not depend on

f? ∈ {f, f ′} (see e.g., Lemma 3). On the other hand, if the maximum distance within Ĝφ is observed to be small when we
actually run the algorithm, we can rest assured that ‖f̂ −Q?‖2,µ is small (assuming maxf ′∈F E(f̂ ; f ′) is small), and we
only need Assumption 2 to further guarantee the near-optimality of πf̂ , regardless of whether Assumption 1 holds or not.

As an example, consider the counterexample in Figure 1 and Appendix C.1, where both Q? and Q are fixed points of T µφ
and ‖Q? −Q‖2,µ is large. As Section 7.2 suggests, the pathology goes away if we remove the data from (s3, a). Note that
T µφ still has many fixed points (the value of (s4, a) can be anything), but their distance from each other under ‖ · ‖2,µ is
always 0 because µ is only supported on s0, s1, s2, and all these fixed points induce an optimal policy from s0.

D.2. Tweaking φ

Our main analysis treats the discretization step (Line 7) very casually. However, the structure of φ plays an important role in
error propagation, and small changes in discretization can produce significantly different φ’s, so one may want to search for
a favorable φ among all possibilities. What should be the guideline for such a search?

We propose searching for φ that maximizes the least number of data points that fall into a group of state-action pairs.18

If each group of state-action pairs receives enough data, µφmin :=
∑
s̃,ã:φ(s̃,ã)=φ(s,a) µ(s̃, ã) will be lower bounded away

from 0 for any (s, a), which guarantees well-controlled error propagation. To see this, recall that Eq.(10) is the key step that
characterizes distribution shift error propagation, and we need Assumption 1 and Lemma 6 to upper bound ‖f0 − T µφ f0‖2,ν
with

√
C‖f0 − T µφ f0‖2,µ for any ν produced by the dynamics of Mφ. If µφmin is large, however, we do not need to reason

about the properties of ν. Instead, the fact that both f0 and T µφ f0 are (approximately) in Gφ (recall that φ is produced by f
and f ′ in Line 7 with f0 = f ) and µφmin is lower bounded already allows us to state the desired bound with C replaced by
1/µφmin, up to small additive errors. Therefore, if we can always guarantee a lower-bounded µφmin (via the sample size in each
group as a surrogate) whenever in Line 7, the algorithm enjoys its sample complexity guarantee without any concentrability
assumptions, which is very appealing.

Of course, there is no guarantee that we can find such a well-behaved φ for a single pair of f, f ′, let alone the |F|2 pairs
that all need to be handled. Therefore, this suggestion is more suitable for the model-selection scenario where |F| is
small (Section 7.1). To produce a rich set of possible φ’s, one can consider various designs of the discretization grid (see
Footnote 4): changing the offset of the grid, using a non-regular grid, using soft aggregations instead of hard ones, or even
setting εdct to be slightly greater than intended. Whether it is easy to find a well-behaved φ is more of an empirical question,
and we leave further investigation to future work.

E. Defining εF in Weighted `2 Norm
It is possible to define εF as inff∈F ‖f −Q?‖2,µ, and still prove a polynomial sample complexity result. However, making
this change leads to a suboptimal dependence on C if we still follow the same proof structure. Below we briefly explain the
challenges.

In Section 5 we characterize φ with only two parameters, |φ| and εφ, and εφ is later bounded in Lemma 11 by εF + εdct.
When we define εF as inff∈F ‖f −Q?‖2,µ, the εF part of εφ is subject to the

√
C penalty when there is distribution shift,

17In an early stage of the project, our algorithm actually checks whether f ∈ Ĝφ instead of the current Line 8. This alternative algorithm
also enjoys polynomial sample complexity.

18One may recall that this is also a preferred situation in the analyses of state abstractions (Paduraru et al., 2008; Jiang et al., 2015;
Jiang, 2018), as `∞ quantities are only statistically stable when each abstract state receives enough data. However, this is not the primary
reason for our recommendation: our statistic ‖f − T̂ µφ f‖2,D is stable and generalizes well regardless of the structure of φ, thanks to the
use of weighted `2 norm instead of `∞ norm; see Section 5.2.3.
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but the εdct part of εφ is an `∞ discretization error and intuitively should not be affected by distribution shift. However, since
we bundle εF and εdct together in εφ, εdct will suffer an additional

√
C penalty compared to our current analysis, leading to

additional dependence on C in the sample complexity.

One possible solution is to define εF as inff∈F supν:‖ν/µ‖∞≤C ‖f −Q
?‖2,ν , i.e., to capture distribution shift inside the

definition of εF , so that εF is still effectively (a soft version of) `∞ error. The same change needs to be made in the definition
of εφ. The difficulty with this approach is that such a “soft `∞” εF does not play well with Lemma 7: to avoid εφ being
amplified by

√
C, we need to also replace the LHS of Lemma 7 with supν ‖Q?−T

µ
φ Q

?‖2,ν . However, it is unclear whether
this quantity can be bounded by εφ without paying

√
C, as T µφ Q? = arg ming∈Gφ ‖g − T Q

?‖2,µ = arg ming∈Gφ ‖g −
Q?‖2,µ is the best approximation of Q? in Gφ under weighting µ, but ideally we want the best approximation under
worst-case ν to avoid

√
C penalty. We leave the resolution of this technical issue to future work.

F. Comparison to OPE in Model Selection
Section 7.1 discussed the application of BVFT to model selection. Another common approach to model selection is to
estimate J(π) for each candidate π via off-policy evaluation (OPE). Unfortunately, unbiased OPE with importance sampling
(IS) (Precup et al., 2000) incurs exponential variance in horizon when the behavior policy is significantly different from the
ones being evaluated (Jiang & Li, 2016), and recent marginalized IS (MIS) methods that overcome such a “curse of horizon”
require some nontrivial function-approximation assumptions. For example, even if one has a function class Q that realizes
Qπ for every π being evaluated, the state-or-the-art approaches only provide an interval that contains J(π) without tightness
guarantees (Jiang & Huang, 2020; Feng et al., 2020), and tightness requires further assumptions on realizing marginalized
importance weights (e.g., Liu et al., 2018; Uehara et al., 2020). On a related note, if a rich Q is used to better satisfy these
additional assumptions, one has to reserve a large amount of data as holdout dataset due to the statistical complexity of Q.
In comparison, BVFT only uses function classes of a well-controlled worst-case complexity O(1/ε2).

Despite the additional assumptions, OPE has its own advantages: OPE directly estimates J(π) instead of going through
‖f −Q?‖ as a surrogate, and as a consequence, it removes the assumption that the base algorithms need to approximate Q?

and hence enjoys wider applicability. The information about J(π) can also be valuable in certain application scenarios, which
cannot be obtained by our approach (we can at the best provide an upper bound on J(π?)− J(π)). To this end, OPE-based
methods and BVFT have very different characteristics when applied to model selection, and they are complementary and
may be used together to provide more information and help the practitioners in making the final decision.


