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A. Proof of Lemma 1
Proof. By the definition of Λ, we have∥∥Λλ(µ)− Λλ(µ′)

∥∥
H

=
∥∥Γ2

(
Γλ1 (µ), µ

)
− Γ2

(
Γλ1 (µ′), µ′

)∥∥
H

≤
∥∥Γ2

(
Γλ1 (µ), µ

)
− Γ2

(
Γλ1 (µ′), µ

)∥∥
H +

∥∥Γ2

(
Γλ1 (µ′), µ

)
− Γ2

(
Γλ1 (µ′), µ′

)∥∥
H triangle inequality

≤d2D
(
Γλ1 (µ),Γλ1 (µ′)

)
+ d3 ‖µ− µ′‖H Assumption 3

≤d1d2 ‖µ− µ′‖H + d3 ‖µ− µ′‖H , Assumption 2

which proves the lemma.

B. Technical Lemmas
The proofs of our main Theorems 1 and 2 involve several common steps. We summarize these steps as several lemmas,
which are proved below.

B.1. Properties of KL-Divergence

We start with two lemmas about boundedness and Lipschitzness of KL-divergence.

Lemma 2. Let p∗ and p ∈ ∆(A) and p̂ = (1− η)p+ η
1|A|
|A| . Then

DKL (p∗‖p̂) ≤ log
|A|
η
,

DKL (p∗‖p̂)−DKL (p∗‖p) ≤ 2η.

Proof. By definition we have

DKL (p∗‖p̂) =
∑
a∈A

p∗(a) log
p∗(a)

p̂(a)

=
∑
a∈A

p∗(a) log
p∗(a)

(1− η)p(a) + η
|A|

≤
∑
a∈A

p∗(a) log
1

0 + η
|A|

= log
|A|
η
,

thereby proving the first inequality.

Note that

DKL (p∗‖p̂)−DKL (p∗‖p) =
∑
a∈A

p∗(a) log

(
p(a)

p̂(a)

)
. (14)
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For each a such that p(a) ≤ p̂(a), we have

log

(
p(a)

p̂(a)

)
≤ 0 ≤ 2η;

for each a′ such that p(a′) ≥ p̂(a′), we have

log

(
p(a′)

p̂(a′)

)
= log

(
p(a′)

(1− η)p(a′) + η/|A|

)
≤ log

(
p(a′)

(1− η)p(a′)

)
≤ η

1− η
≤ 2η,

where the third step follows from the fact that log(z) ≤ z − 1 for all z > 0 and the last step holds as η ∈ [0, 1
2 ]. Applying

the above two inequalities to (14) completes the proof.

The following Lemma states that the KL-divergence is Lipschitz w.r.t. ‖ · ‖1 under certain conditions.

Lemma 3. Let x, y and z ∈ ∆(A). If x(a) ≥ α1, y(a) ≥ α1 and z(a) ≥ α2 for all a ∈ A, then

DKL(x‖z)−DKL(y‖z) ≤
(

1 + log
1

min {α1, α2}

)
· ‖x− y‖1 .

Proof. Under the lower bound assumption of the lemma, we have

dDKL(x‖z)
dx(a)

= 1 + log
x(a)

z(a)
≤ 1 + log

1

α2

and

−dDKL(x‖z)
dx(a)

≤ −1− logα1.

It follows that ∥∥∥∥dDKL(x‖z)
dx(a)

∥∥∥∥
∞
≤ max

{
1 + log

1

α2
,−1− logα1

}
≤ 1 + log

1

min {α1, α2}
.

Hence the function x 7→ DKL(x‖z) is Lipschitz w.r.t. ‖·‖1, the dual norm of ‖·‖∞ .

B.2. Policy Improvement

To analyze the convergence of policy sequence, we need the following lemma, which characterizes the policy improvement
step.

Lemma 4. For any distributions p∗, p ∈ ∆(A),state s ∈ S and function G : S × A → R, it holds for p′ ∈ ∆(A) with
p′(·) ∝ p(·) · exp [αG(s, ·)] that

DKL (p∗‖p′) ≤ DKL (p∗‖p)− α 〈G(s, ·), p∗ − p〉+ α2 ‖G(s, ·)‖2∞ /2.

Proof. For any function g : A → R and distribution p ∈ ∆(A), let z : A → R be a constant function defined by

z(a) = log

(∑
a′∈A

p(a′) · exp (αg(a′))

)
.

Note that for any distributions p∗, p′ ∈ ∆(A),〈z, p∗ − p′〉 = 0. Since

p′(·) ∝ p(·) · exp (αg(·)) ,
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we have αg(·) = z(·) + log(p′(·)/p(·)). Hence

α 〈g, p∗ − p′〉 = 〈z + log(p′/p), p∗ − p′〉
= 〈z, p∗ − p′〉+ 〈log(p∗/p), p∗〉+ 〈log(p′/p∗), p∗〉+ 〈log(p′/p),−p′〉
= DKL (p∗‖p)−DKL (p∗‖p′)−DKL (p′‖p) .

Therefore, for each state s ∈ S, we have

α 〈G(s, ·), p∗ − p〉 = α 〈G(s, ·), p∗ − p′〉+ α 〈G(s, ·), p′ − p〉
= DKL (p∗‖p)−DKL (p∗‖p′)−DKL (p′‖p) + α 〈G(s, ·), p′ − p〉
≤ DKL (p∗‖p)−DKL (p∗‖p′)−DKL (p′‖p) + α ‖G(s, ·)‖∞ · ‖p− p

′‖1 .

Rearranging terms yields

DKL (p∗‖p′) ≤ DKL (p∗‖p)− α 〈G(s, ·), p∗ − p〉 −DKL (p′‖p) + α ‖G(s, ·)‖∞ · ‖p− p
′‖1 . (15)

Meanwhile, by Pinsker’s inequality, it holds that

DKL (p′‖p) ≥ ‖p− p′‖21 /2. (16)

By combining (15) and (16), we obtain

DKL (p∗‖p′) ≤ DKL (p∗‖p)− α 〈G(s, ·), p∗ − p〉 − ‖p− p′‖21 /2 + α ‖G(s, ·)‖∞ · ‖p− p
′‖1

≤ DKL (p∗‖p)− α 〈G(s, ·), p∗ − p〉+ α2 ‖G(s, ·)‖2∞ /2,

which concludes the proof.

C. Proof of Theorem 1
In order to obtain an upper bound on the optimality gap

σtµ := ‖µt − µ∗‖H , (17)

where µ∗ is the embedded mean-field state of the entropy regularized NE, we also need to estimate the gap between πt and
the optimal solution π∗t to the entropy regularized MDPµt . We define

σtπ := Es∼ρ∗t [DKL (π∗t (·|s)‖πt(·|s))] (18)

to quantify the convergence of policy sequence.

Before proceeding, we establish the following properties of entropy regularized MDPs, which are central to the convergence
analysis.

Properties of Regularized MDP. The following lemma quantifies the performance difference between two policies for a
regularized MDP — measured in terms of the expected total reward — through the Q-function and their KL-divergence.
The proof is provided in Appendix C.1.

Lemma 5 (Performance Difference). For each µ ∈M and policies π : S → ∆(A), it holds that

Jλµ (π′)− Jλµ (π) +
λ

1− γ
Es∼ρπ′µ [DKL (π′(·|s)‖π(·|s))]

=
1

1− γ
Es∼ρπ′µ

[〈
Qλ,πµ (s, ·)− λ log π(·|s), π′(·|s)− π(·|s)

〉]
, (19)

where ρπ
′

µ is the discounted state visitation distribution induced by the policy π′ on MDPµ.
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We can characterize the optimal policy πλ,∗µ in terms of the optimal Q-function Qλ,∗µ as a Boltzmann distribution of the form
(Cen et al., 2020; Nachum et al., 2017)

πλ,∗µ (a|s) ∝ exp

(
Qλ,∗µ (s, a)

λ

)
. (20)

For the setting where the reward function is bounded, we then can obtain a lower bound on πλ,∗µ , as stated in the following
lemma. The proof is provided in Appendix C.2

Lemma 6. Suppose that there exists a constant Rmax > 0 such that 0 ≤ sup(s,a,µ)∈S×A×M r(s, a, µ) ≤ Rmax. For each
µ ∈M, and each policy π : S → ∆(A), we have∥∥Qλ,πµ ∥∥

∞ ≤ Qmax :=
Rmax + γλ log |A|

1− γ
.

Also, the optimal policy πλ,∗µ for the regularized MDPµ satisfies

πλ,∗µ (a|s) ≥ 1

eQmax/λ|A|
,∀s ∈ S, a ∈ A.

Convergence Analysis. We now move to the convergence analysis. For clarity of exposition, we use Eρ [‖π − π′‖1]
as shorthand for Es∼ρ [‖π(·|s)− π′(·|s)‖1], where ρ ∈ ∆(S); we also use Eρ [DKL (π‖π′)] as shorthand for
Es∼ρ [DKL (π(·|s)‖π′(·|s))]. We recall that the step sizes are chosen as

αt ≡ α = cαT
−2/5, βt ≡ β = cβT

−4/5,

where the parameters cα and cβ satisfy that:

cαT
−2/5λ < 1, cβT

−4/5d < 1. (21)

Here d := 1− d1d2 − d3 > 0, where d1 appears in Assumption 2, and d2, d3 appear in Assumption 3.

Step 1: Convergence of Policy. We first characterize the convergence behavior of the policy sequence {πt}t≥0. Recall
that σtπ = Es∼ρ∗t [DKL (π∗t (·|s)‖πt(·|s))] . We start with establishing a recursive relationship between σt+1

π and σtπ, as
stated in the following lemma. The proof is provided in Section C.3.

Lemma 7. Under the setting of Theorem 1, for each t ≥ 0, we have

σt+1
π ≤ (1− λαt)σtπ +

(
d0 log

|A|
η

+ κCρd1

)
‖µt+1 − µt‖H + 2εQαt +

Q2
max

2
α2
t + 2η, (22)

where κ = 4
1−γ log |A|η + 2Rmax

λ(1−γ) .

Recall that µt+1 = (1− βt)µt + βt · Γ2(πt, µt). Under Assumption 1, we have

‖µt+1 − µt‖H = βt ‖µt − Γ2(πt, µt)‖H ≤ 2βt. (23)

Lemma 7 implies that

σt+1
π ≤ (1− λαt)σtπ + C1βt + 2εQαt +

Q2
max

2
α2
t + 2η, (24)

where we define

C1 := 2

(
d0 log

|A|
η

+ κCρd1

)
.

With αt ≡ α, βt ≡ β, from Equation (24) we have that

σtπ≤
1

λα

(
σtπ − σt+1

π

)
+
C1β

λα
+

2εQ
λ

+
Q2

max

2λ
α+

2η

λα
. (25)
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Summing over t = 0, 1, . . . T − 1 on both sides of (25) and dividing by t gives

1

T

T−1∑
t=0

σtπ ≤
1

Tλα

(
σ0
π − σTπ

)
+
C1β

λα
+

2εQ
λ

+
Q2

max

2λ
α+

2η

λα

≤ 1

Tλα
σ0
π +

C1β

λα
+

2εQ
λ

+
Q2

max

2λ
α+

2η

λα
. (26)

When choosing α = O(T−2/5), β = O(T−4/5) and η = O(T−1), we have C1 = O(log T ). Therefore, we obtain

1

T

T−1∑
t=0

σtπ .
log T

λT 2/5
+

2εQ
λ
. (27)

If we let T be a random number sampled uniformly from {0, . . . , T −1}, then the above equation can be written equivalently
as

ET

[
σT
π

]
.

log T

λT 2/5
+

2εQ
λ
. (28)

Step 2: Convergence of Mean-field Embedding. We now proceed to characterize the optimality gap for the embedded
mean-field state. We obtain the following upper bound on the optimality gap σtµ = ‖µt − µ∗‖H. The proof is provided in
Section C.4.

Lemma 8. Under the setting of Theorem 1, we have

σt+1
µ ≤

(
1− βtd

)
σtµ + d2Cρβt

√
σtπ, ∀t ∈ [T ],

where d = 1− d1d2 − d3 > 0.

Lemma 8 implies that

σtµ ≤
1

dβt

(
σtµ − σt+1

µ

)
+
d2Cρ

d

√
σtπ. (29)

With βt ≡ β = O(T−4/5), averaging equation (29) over iteration t = 0, . . . , T − 1, we obtain

1

T

T−1∑
t=0

σtµ ≤
1

dβT

(
σ0
µ − σTµ

)
+
d2Cρ

dT

T−1∑
t=0

√
σtπ

≤
σ0
µ

dβT
+
d2Cρ

dT

T−1∑
t=0

√
σtπ

≤
σ0
µ

dβT
+
d2Cρ

d

√√√√ 1

T

T−1∑
t=0

σtπ,

where the last inequality follows from Cauchy-Schwarz inequality.

From Eq. (27), we have

1

T

T−1∑
t=0

σtµ .
σ0
µ

d
T−1/5 +

d2Cρ

d

√
log T

λT 2/5
+

2εQ
λ

.

√
log T

λT 2/5
+

2εQ
λ

.
1√
λ

(√
log T

T 1/5
+
√
εQ

)
.

This equation, together with Jensen’s inequality, proves equation (13) in Theorem 1.
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Turning to equation (12) in Theorem 1, we have

1

T

T−1∑
t=0

D (πt, π
∗
t ) = ET [D (πT, π

∗
T)]

= ETEs∼ρ∗ [‖π∗T(·|s)− πT(·|s)‖1]

= ETEs∼ρ∗T

[
ρ∗(s)

ρ∗T(s)
‖π∗T(·|s)− πT(·|s)‖1

]
(i)

≤

√√√√ETEs∼ρ∗T

[∣∣∣∣ ρ∗(s)ρ∗T(s)

∣∣∣∣2
]
· ETEs∼ρ∗T

[
‖π∗T(·|s)− πT(·|s)‖2

1

]
(ii)

≤
√
C

2

ρ · ETEs∼ρ∗T [2DKL (π∗T(·|s)‖πT(·|s))]

=

√
C

2

ρ · 2ET [σT
π ]

(iii)

.
1√
λ

(√
log T

T 1/5
+
√
εQ

)
,

where step (i) follows from Cauchy-Schwarz inequality, step (ii) follows from Assumption 4 and Pinsker’s inequality,
and step (iii) follows from the bound in equation (28). The above equation, together with Jensen’s inequality, proves
equation (12). We have completed the proof of Theorem 1.

C.1. Proof of Lemma 5

Proof. The proof follows similar argument as that of Lemma 1 in (Cen et al., 2020). We provide the full proof for
completeness. By the definition of V λ,πµ in (3), we have

V λ,π
′

µ (s)

=Eat∼π′(st),st+1∼P(·|st,at,µ)

[ ∞∑
t=0

γt
[
rλ,π

′

µ (s, a) + V λ,πµ (st)− V λ,πµ (st)
]
| s0 = s

]
.

=Eat∼π′(st),st+1∼P(·|st,at,µ)

[ ∞∑
t=0

γt
[
rλ,π

′

µ (s, a) + γV λ,πµ (st+1)− V λ,πµ (st)
]
| s0 = s

]
+ V λ,πµ (s). (30)

Recall that the Q-function Qλ,πµ of a policy π for the regularized MDPµ is related to V λ,πµ as

V λ,πµ (s) = Ea∼π(s)

[
Qλ,πµ (s, a)− λ log π(a|s)

]
=
〈
Qλ,πµ (s, ·), π(·|s)

〉
+ λH (π(·|s)) , ∀s ∈ S,

Qλ,πµ (s, a) = r(s, a, µ) + γEs1∼P(·|s,a,µ)

[
V λ,πµ (s1)

]
, ∀(s, a) ∈ S ×A.

We have

〈
Qλ,πµ (s, ·), π′(·|s)

〉
= Ea∼π′(s)

[
Qλ,πµ (s, a)

]
,

= Ea∼π′(s)
[
r(s, a, µ) + γEs1∼P(·|s,a,µ)

[
V λ,πµ (s1)

]]
= Ea∼π′(s),s1∼P(·|s,a,µ)

[
rλ,π

′

µ (s, a) + γV λ,πµ (s1) + λ log π′(a|s)
]

= Ea∼π′(s),s1∼P(·|s,a,µ)

[
rλ,π

′

µ (s, a) + γV λ,πµ (s1)
]
− λH (π′(·|s)) .

Therefore, 〈
Qλ,πµ (s, ·), π′(·|s)− π(·|s)

〉
=Ea∼π′(s),s1∼P(·|s,a,µ)

[
rλ,π

′
(s, a, µ) + γV λ,πµ (s1)

]
− λH (π′(·|s))− V λ,πµ (s) + λH (π(·|s))

=Ea∼π′(s),s1∼P(·|s,a,µ)

[
rλ,π

′
(s, a, µ) + γV λ,πµ (s1)− V λ,πµ (s)

]
− λ [H (π′(·|s))−H (π(·|s))] . (31)
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Plugging (31) into (30), we have

V λ,π
′

µ (s)− V λ,π
′

µ (s)

=Eat∼π′(st),st+1∼P(·|st,at,µ)

[ ∞∑
t=0

γt
〈
Qλ,πµ (st, ·), π′(·|st)− π(·|st)

〉
| s0 = s

]

+ Eat∼π′(st),st+1∼P(·|st,at,µ)

[ ∞∑
t=0

γtλ (H (π′(·|st))−H (π(·|st))) | s0 = s

]
. (32)

Recall the definition of Jλµ (π) in (4). Taking expectation with respect to s ∼ ν0 on both sides of (32) yields

Jλµ (π′)− Jλµ (π)

=Es0∼ν0,at∼π′(st),st+1∼P(·|st,at,µ)

[ ∞∑
t=0

γt
〈
Qλ,πµ (st, ·), π′(·|st)− π(·|st)

〉]

+ Es0∼ν0,at∼π′(st),st+1∼P(·|st,at,µ)

[ ∞∑
t=0

γtλ (H (π′(·|st))−H (π(·|st)))

]

=
1

1− γ
Es∼ρπ′µ

[〈
Qλ,πµ (s, ·), π′(·|s)− π(·|s)

〉
+ λ (H (π′(·|s))−H (π(·|s)))

]
. (33)

For the entropy term in (33), we have

Es∼ρπ′µ [H (π′(·|s))−H (π(·|s))]

=Es∼ρπ′µ

[〈
log

1

π′(·|s)
, π′(·|s)

〉
−
〈

log
1

π(·|s)
, π(·|s)

〉]
=Es∼ρπ′µ

[〈
log

1

π(·|s)
− log

π′(·|s)
π(·|s)

, π′(·|s)
〉
−
〈

log
1

π(·|s)
, π(·|s)

〉]
=Es∼ρπ′µ

[〈
log

1

π(·|s)
, π′(·|s)− π(·|s)

〉
−DKL (π′(·|s)‖π(·|s))

]
. (34)

Taking (34) into (33) yields the desired equation in Lemma 5.

C.2. Proof of Lemma 6

Proof. Note that the value function V λ,πµ can be written as

V λ,πµ (s) = E

[ ∞∑
t=0

γtrλ,πµ (st, at)|s0 = s

]
.

By the definition of rλ,πµ in (1), we have 0 ≤ Eπ
[
rλ,πµ (st, at)

]
≤ Rmax + λ log |A|. Therefore,

0 ≤ V λ,πµ (s) ≤ Rmax + λ log |A|
1− γ

, ∀s ∈ S,

and

0 ≤ Qλ,πµ (s, a) ≤ Rmax + γ
Rmax + λ log |A|

1− γ
=
Rmax + γλ log |A|

1− γ
, ∀s ∈ S, a ∈ A.

For the second inequality, we have

πλ,∗µ (a|s) =
exp

(
Qλ,∗µ (s, a)/λ

)
∑
b∈A exp

(
Qλ,∗µ (s, b)/λ

)
≥ 1∑

b∈A exp (Qmax/λ)
=

1

eQmax/λ|A|
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as claimed.

C.3. Proof of Lemma 7

Recall that at the t-th iteration, the policy is improved as follows:

π̂t+1(·|s) ∝ πt(·|s) · exp
[
αt

(
Q̂λt (s, ·)− λ log πt(·|s)

)]
.

Applying the Lemma 4 of policy improvement, we have for each s ∈ S,

DKL (π∗t (·|s)‖π̂t+1(·|s))

≤DKL (π∗t (·|s)‖πt(·|s))− αt
〈
Q̂λt (s, ·)− λ log πt(·|s), π∗t (·|s)− πt(·|s)

〉
+
∥∥∥Q̂λt ∥∥∥2

∞
α2
t /2

=DKL (π∗t (·|s)‖πt(·|s))− αt
〈
Qλt (s, ·)− λ log πt(·|s), π∗t (·|s)− πt(·|s)

〉
+ αt

〈
Qλt (s, ·)− Q̂λt (s, ·), π∗t (·|s)− πt(·|s)

〉
+
∥∥∥Q̂λt ∥∥∥2

∞
α2
t /2

≤DKL (π∗t (·|s)‖πt(·|s))− αt
〈
Qλt (s, ·)− λ log πt(·|s), π∗t (·|s)− πt(·|s)

〉
+ 2αt

∥∥∥Qλt (s, ·)− Q̂λt (s, ·)
∥∥∥
∞

+
∥∥∥Q̂λt ∥∥∥2

∞
α2
t /2.

Recall that πt+1(·|s) = (1− η)π̂t+1(·|s) + η
|A|1|A|. Lemma 2 implies that

DKL (π∗t (·|s)‖πt+1(·|s))
≤DKL (π∗t (·|s)‖π̂t+1(·|s)) + 2η. (35)

≤DKL (π∗t (·|s)‖πt(·|s))− αt
〈
Qλt (s, ·)− λ log πt(·|s), π∗t (·|s)− πt(·|s)

〉
+ 2αt

∥∥∥Qλt (s, ·)− Q̂λt (s, ·)
∥∥∥
∞

+
∥∥∥Q̂λt ∥∥∥2

∞
α2
t /2 + 2η︸ ︷︷ ︸

Yt(s)

. (36)

Taking expectation over ρ∗t on both sides of (36) yields

Eρ∗t [DKL (π∗t ‖πt+1)]

≤Eρ∗t [DKL (π∗t ‖πt)]− αtEs∼ρ∗t
[〈
Qλt (s, ·)− λ log πt(·|s), π∗t (·|s)− πt(·|s)

〉]
+ Es∼ρ∗t [Yt(s)]

(a)
=Eρ∗t [DKL (π∗t ‖πt)]− (1− γ)αt

[
Jλµt(π

∗
t )− Jλµt(πt)

]
− αtλEρ∗t [DKL (π∗t ‖πt)] + Es∼ρ∗t [Yt(s)]

(b)

≤(1− αtλ)Eρ∗t [DKL (π∗t ‖πt)] + Es∼ρ∗t [Yt(s)] , (37)

where step (a) follows from Lemma 5; step (b) follows from the fact that Jλµt(πt) ≤ J
λ
µt(π

∗
t ), as π∗t = Γλ1 (µt) is the optimal

policy for the regularized MDPµt .

Next we bound the difference between Eρ∗t+1

[
DKL

(
π∗t+1‖πt+1

)]
and Eρ∗t [DKL (π∗t ‖πt+1)]. By triangle inequality, we

have

Eρ∗t+1

[
DKL

(
π∗t+1‖πt+1

)]
≤Eρ∗t+1

[DKL (π∗t ‖πt+1)] +
∣∣∣Eρ∗t+1

[
DKL

(
π∗t+1‖πt+1

)
−DKL (π∗t ‖πt+1)

]∣∣∣
=Eρ∗t [DKL (π∗t ‖πt+1)] +

(
Eρ∗t+1

− Eρ∗t
)

[DKL (π∗t ‖πt+1)]︸ ︷︷ ︸
B1

+
∣∣∣Eρ∗t+1

[
DKL

(
π∗t+1‖πt+1

)
−DKL (π∗t ‖πt+1)

]∣∣∣︸ ︷︷ ︸
B2

. (38)

We now bound the first and second terms on the RHS of (38) separately.
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• For the first term B1: We have

B1 = Es∼ρ∗
[
ρ∗t+1(s)− ρ∗t (s)

ρ∗(s)
·DKL (π∗t ‖πt+1)

]
(a)

≤ Es∼ρ∗
[∣∣ρ∗t+1(s)− ρ∗t (s)

∣∣
ρ∗(s)

]
·KLmax,

(b)

≤ KLmax · d0 ‖µt − µt−1‖H , (39)

where step (a) uses the fact that `DKL (π∗t ‖πt+1) ≤ KLmax := log |A|η (cf. Lemma 2) and step (b) follows from
Assumption 5.

• For the second term B2: Note that π∗t+1 and π∗t are the optimal policy for the regularized MDPµt+1
and MDPµt ,

respectively. Define

τ :=
1

|A|
exp

(
−Rmax + γλ log |A|

λ(1− γ)

)
.

By Lemma 6, for all (s, a) ∈ S ×A, we have

π∗t+1(a|s) ≥ τ, and π∗t (a|s) ≥ τ.

Applying Lemma 3 yields

B2 ≤ κEs∼ρ∗t+1

[∥∥π∗t (·|s)− π∗t+1(·|s)
∥∥

1

]
= κEs∼ρ∗

[
ρ∗t+1(s)

ρ∗(s)
·
∥∥π∗t (·|s)− π∗t+1(·|s)

∥∥
1

]
≤ κCρEs∼ρ∗

[∥∥π∗t (·|s)− π∗t+1(·|s)
∥∥

1

]
Assumption 4

= κCρD
(
Γλ1 (µt),Γ

λ
1 (µt+1)

)
≤ κCρd1 ‖µt − µt+1‖H , Assumption 2 (40)

where

κ := 1 + log
1

min
{
τ, η
|A|

}
≤ 2 max

{
log
|A|
η
,

2

1− γ
log |A|+ Rmax

λ(1− γ)

}
≤ 4

1− γ
log
|A|
η

+
2Rmax

λ(1− γ)

=
4

1− γ
KLmax +

2Rmax

λ(1− γ)
.

Combining (37), (38), (40) and (39), we have

Eρ∗t+1

[
DKL

(
π∗t+1‖πt+1

)]
≤Eρ∗t [DKL (π∗t ‖πt+1)] + KLmax · d0 ‖µt+1 − µt‖H + κCρd1 ‖µt − µt+1‖H
≤(1− αtλ)Eρ∗t [DKL (π∗t ‖πt)] + Es∼ρ∗t [Yt(s)] + (d0 ·KLmax + κCρd1) ‖µt+1 − µt‖H . (41)

Note that

Es∼ρ∗t [Yt(s)] = 2αtEs∼ρ∗t
[∥∥∥Qλt (s, ·)− Q̂λt (s, ·)

∥∥∥
∞

]
+

∥∥∥Q̂λt ∥∥∥2

∞
2

α2
t + 2η

≤ 2αt

√
Es∼ρ∗t

[∥∥∥Qλt (s, ·)− Q̂λt (s, ·)
∥∥∥2

∞

]
+

∥∥∥Q̂λt ∥∥∥2

∞
2

α2
t + 2η

≤ 2εQαt +
Q2

max

2
α2
t + 2η, (42)
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where the last step holds by the assumption on the policy evaluation error and the fact that Q̂λt : S ×A → [0, Qmax] satisfies∥∥∥Q̂λt ∥∥∥∞ ≤ Qmax by definition. Combining (41) and (42) proves the lemma.

C.4. Proof of Lemma 8

Proof. According to the update rule (7) for the embedded mean-field state, we have

‖µt+1 − µ∗‖H
= ‖(1− βt)µt + βtΓ2(πt, µt)− µ∗‖H
=
∥∥(1− βt) (µt − µ∗) + βt

(
Γ2

(
Γλ1 (µt), µt

)
− µ∗

)
− βt

[
Γ2

(
Γλ1 (µt), µt

)
− Γ2(πt, µt)

]∥∥
H

≤(1− βt) ‖µt − µ∗‖H + βt
∥∥Γ2

(
Γλ1 (µt), µt

)
− µ∗

∥∥
H + βt

∥∥Γ2

(
Γλ1 (µt), µt

)
− Γ2(πt, µt)

∥∥
H

(i)
=(1− βt) ‖µt − µ∗‖H + βt

∥∥Γ2

(
Γλ1 (µt), µt

)
− Γ2

(
Γλ1 (µ∗), µ∗

)∥∥
H︸ ︷︷ ︸

(a)

+ βt
∥∥Γ2

(
Γλ1 (µt), µt

)
− Γ2(πt, µt)

∥∥
H︸ ︷︷ ︸

(b)

, (43)

where the equality (i) follows from the fact that µ∗ = Γ2

(
Γλ1 (µ∗), µ∗

)
.

Lemma 1 implies that Λ(µ) = Γ2

(
Γλ1 (µ), µ

)
is d1d2 + d3 Lipschitz. It follows that

(a) ≤ (d1d2 + d3) ‖µt − µ∗‖H . (44)

By Assumption 3, we have

(b) ≤ d2D
(
Γλ1 (µt), πt

)
. (45)

Combining Eqs. (43)-(45) yields

‖µt+1 − µ∗‖H ≤
(
1− βtd

)
‖µt − µ∗‖H + d2βtD

(
Γλ1 (µt), πt

)
(46)

where d = 1− d1d2 − d3 > 0.

Let us bound the second RHS term above. By the definition of policy distance D in equation (11), we have

D
(
Γλ1 (µt), πt

)
= Eρ∗

[∥∥Γλ1 (µt)− πt
∥∥

1

]
= Es∼ρ∗ [‖π∗t (·|s)− πt(·|s)‖1]

= Es∼ρ∗t

[
ρ∗(s)

ρ∗t (s)
‖π∗t (·|s)− πt(·|s)‖1

]

≤

{
Es∼ρ∗t

[∣∣∣∣ρ∗(s)ρ∗t (s)

∣∣∣∣2
]
· Es∼ρ∗t

[
‖π∗t (·|s)− πt(·|s)‖21

]}1/2

≤ Cρ
√
Es∼ρ∗t [DKL (π∗t (·|s)‖πt(·|s))], (47)

where the first inequality holds due to Cauchy-Schwartz inequality, the last inequality follows from Assumption 4 and
Pinsker’s inequality.

Combining (46)-(47) gives

‖µt+1 − µ∗‖H ≤
(
1− βtd

)
‖µt − µ∗‖H + d2βtCρ

√
Eρ∗t [DKL (π∗t ‖πt)].

This completes the proof.
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D. Proof of Corollary 1
Proof. Note that for each t ∈ [T − 1], we have

D(πt, π
∗) ≤ D (πt, π

∗
t ) +D (π∗t , π

∗)

= D (πt, π
∗
t ) +D

(
Γλ1 (µt),Γ

λ
1 (µ∗)

)
≤ D (πt, π

∗
t ) + d1 ‖µt − µ∗‖H ,

where the last step follows from Assumption 2 on the Lipschitzness of Γλ1 . It follows that

D

(
1

T

T−1∑
t=0

πt, π
∗

)
+

∥∥∥∥∥ 1

T

T−1∑
t=0

µt − µ∗
∥∥∥∥∥
H

≤ 1

T

T−1∑
t=0

D (πt, π
∗) +

1

T

T−1∑
t=0

‖µt − µ∗‖H

≤ 1

T

T−1∑
t=0

(D (πt, π
∗
t ) + d1 ‖µt − µ∗‖H) +

1

T

T−1∑
t=0

‖µt − µ∗‖H

.
1√
λ

(√
log T

T 1/5
+
√
εQ

)
,

where in the last step we apply the bounds (12) and (13) in Theorem 1.

E. Guarantees under Weaker Assumption On Concentrability
In this section, we show that the `∞ condition on concentrability coefficient in Assumption 4 can be relaxed to an `2
condition of the form

{
E
[∣∣ρπλ,∗µµ (s)/ρ∗(s)

∣∣2]}1/2 ≤ Cρ, under which we can establish an Õ(T−1/9) convergence rate.

We now provided the details. Consider the following distance metric between two policies π, π′ ∈ Π:

W (π, π′) :=

√
Es∼ρ∗

[
‖π(·|s)− π′(·|s)‖21

]
. (48)

Similarly as before, we assume certain Lipschitz properties for the two mappings Γλ1 :M→ Π and Γ2 : Π×M→M
defined in Section 2.3. In particular, we impose the following two assumtpions, both stated in terms of the new distance
metric W (·, ·) defined in (48) above.

Assumption 6. There exists a constant d1 > 0, such that for any µ, µ′ ∈M, it holds that

W
(
Γλ1 (µ),Γλ1 (µ′)

)
≤ d1 ‖µ− µ′‖H .

Assumption 7. There exist constants d2 > 0, d3 > 0 such that for any policies π, π′ ∈ Π and embedded mean-field states
µ, µ′ ∈M, it holds that

‖Γ2(π, µ)− Γ2(π′, µ)‖H ≤ d2W (π, π′) ,

‖Γ2(π, µ)− Γ2(π, µ′)‖H ≤ d3 ‖µ− µ′‖H .

Assumptions 6 and 7 immediately imply Lipschitzness of the composite mapping Λλ :M→M, which we recall is defined
as Λλ(µ) = Γ2

(
Γλ1 (µ), µ

)
.

Lemma 9. Suppose Assumptions 6 and 7 hold. Then for each µ, µ′ ∈M, it holds that∥∥Λλ(µ)− Λλ(µ′)
∥∥
H ≤ (d1d2 + d3) ‖µ− µ′‖H .

We also consider the following relaxed, `2-type assumption on the concentrability coefficients.
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Assumption 8 (Finite Concentrability Coefficients). There exist two constants Cρ, Cρ > 0 such that for each µ ∈M, it
holds that E

s∼ρ
π
λ,∗
µ
µ


∣∣∣∣∣∣ρ
πλ,∗µ
µ (s)

ρ∗(s)

∣∣∣∣∣∣
2



1/2

≤ Cρ and

E
s∼ρ

π
λ,∗
µ
µ

∣∣∣∣∣ ρ∗(s)

ρ
πλ,∗µ
µ (s)

∣∣∣∣∣
2


1/2

≤ Cρ.

With the above assumptions and the distance metric W , we can establish the following convergence result for Algorithm 1.

Theorem 2. Suppose that Assumptions 1, 5, 6, 7, and 8 hold and d1d2 + d3 < 1 and that the error in the policy evaluation
step in Algorithm 1 satisfies

Es∼ρ∗t

[∥∥∥Qλt (s, ·)− Q̂λt (s, ·)
∥∥∥2

∞

]
≤ ε2

Q, ∀t ∈ [T ].

With the choice of
η = cηT

−1, αt ≡ α = cαT
−4/9, βt ≡ β = cβT

−8/9,

for some universal constants cη > 0, cα > 0 and cβ > 0 in Algorithm 1, the resulting policy and embedded mean-field state
sequence {(πt, µt)}Tt=0 satisfy

W

(
1

T

T−1∑
t=0

πt,
1

T

T−1∑
t=0

π∗t

)
≤ 1

T

T−1∑
t=0

W (πt, π
∗
t ) .

1

λ1/4

(
(log T )1/4

T 1/9
+ ε

1/4
Q

)
, (49)∥∥∥∥∥ 1

T

T−1∑
t=0

µt − µ∗
∥∥∥∥∥
H

≤ 1

T

T−1∑
t=0

‖µt − µ∗‖H .
1

λ1/4

(
(log T )1/4

T 1/9
+ ε

1/4
Q

)
. (50)

The following corollary of Theorem 2 shows that after T iterations of our algorithm, the average policy-population pair(
1
T

∑T−1
t=0 πt,

1
T

∑T−1
t=0 µt

)
is an Õ

(
T−1/9

)
-approximate NE.

Corollary 2. Under the assumptions of Theorem 2, we have

W

(
1

T

T−1∑
t=0

πt, π
∗

)
+

∥∥∥∥∥ 1

T

T−1∑
t=0

µt − µ∗
∥∥∥∥∥
H

.
1

λ1/4

(
(log T )1/4

T 1/9
+ ε

1/4
Q

)
.

of Theorem 2. The proof follows similar lines as those of Theorem 1 and Corollary 1, with all appearances of the distance
D replaced by the new distance W . Below we only point out the modifications needed.

Lemma 7 remains valid as stated. For the proof of this lemma, the only different step is bounding the termB2 in equation (38).
In particular, the bounds in equation (40) should be replaced by the following:

B2 ≤ κEs∼ρ∗t+1

[∥∥π∗t (·|s)− π∗t+1(·|s)
∥∥

1

]
= κEs∼ρ∗

[
ρ∗t+1(s)

ρ∗(s)
·
∥∥π∗t (·|s)− π∗t+1(·|s)

∥∥
1

]

≤ κ

√√√√Es∼ρ∗
[(

ρ∗t+1(s)

ρ∗(s)

)2
]
· Es∼ρ∗

[∥∥π∗t (·|s)− π∗t+1(·|s)
∥∥2

1

]
≤ κCρ ·

√
Es∼ρ∗

[∥∥π∗t (·|s)− π∗t+1(·|s)
∥∥2

1

]
Assumption 8

= κCρW
(
Γλ1 (µt),Γ

λ
1 (µt+1)

)
≤ κCρd1 ‖µt − µt+1‖H . Assumption 6 (51)

Lemma 8 should be replaced by the following lemma.
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Lemma 10. Under the setting of Theorem 2, for each t ≥ 0, we have

σt+1
µ ≤

(
1− βtd

)
σtµ + d2

√
Cρβt

(
σtπ
)1/4

,

where d = 1− d1d2 − d3 > 0.

The proof of Lemma 10 is similar to that of Lemma 8. The only different step is the term D
(
Γλ1 (µt), πt

)
in equation (46)

should be replaced by W
(
Γλ1 (µt), πt

)
, which can be bounded as follows:

W
(
Γλ1 (µt), πt

)
=

√
Es∼ρ∗

[
‖π∗t (·|s)− πt(·|s)‖21

]
=

√
Es∼ρ∗t

[
ρ∗(s)

ρ∗t (s)
‖π∗t (·|s)− πt(·|s)‖21

]

≤

{
Es∼ρ∗t

[∣∣∣∣ρ∗(s)ρ∗t (s)

∣∣∣∣2
]
· Es∼ρ∗t

[
‖π∗t (·|s)− πt(·|s)‖41

]}1/4

(i)

.
√
Cρ ·

{
Es∼ρ∗t

[
‖π∗t (·|s)− πt(·|s)‖21

]}1/4

(ii)

.
√
Cρ
{
Es∼ρ∗t [DKL (π∗t (·|s)‖πt(·|s))]

}1/4
. (52)

where step (i) holds by Assumption 8 and the fact that ‖ν − ν′‖1 ≤ 2,∀ν, ν′ ∈ ∆(A), and step (ii) follows Pinsker’s
inequality.

We now turn to the proof of Theorem 2.

We first establish the convergence for σtπ by following the exactly same steps from equation (22) up to equation (26). We
restate the bound on 1

T

∑T−1
t=0 σtπ in (26) as follows:

1

T

T−1∑
t=0

σtπ ≤
1

Tλα
σ0
π +

C1β

λα
+

2εQ
λ

+
Q2

max

2λ
α+

2η

λα
. (53)

When choosing α = O(T−4/9), β = O(T−8/9) and η = O(T−1), we have C1 = O(log T ). Therefore, we obtain

1

T

T−1∑
t=0

σtπ .
log T

λT 4/9
+

2εQ
λ
. (54)

If we let T be a random number sampled uniformly from {0, . . . , T −1}, then the above equation can be written equivalently
as

ET

[
σT
π

]
.

log T

λT 4/9
+

2εQ
λ
. (55)

We now proceed to bound the average embedded mean-field state 1
T

∑T−1
t=0 σtµ. Lemma 10 implies

σtµ ≤
1

dβt

(
σtµ − σt+1

µ

)
+
d2

√
Cρ

d

(
σtπ
)1/4

. (56)
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With βt ≡ β = O(T−8/9), averaging equation (56) over iteration t = 0, . . . , T − 1, we obtain

1

T

T−1∑
t=0

σtµ ≤
1

dβT

(
σ0
µ − σTµ

)
+
d2

√
Cρ

dT

T−1∑
t=0

(
σtπ
)1/4

≤
σ0
µ

dβT
+
d2

√
Cρ

dT

T−1∑
t=0

(
σtπ
)1/4

(i)

≤
σ0
µ

dβT
+
d2

√
Cρ

d

√√√√ 1

T

T−1∑
t=0

√
σtπ

(ii)

≤
σ0
µ

dβT
+
d2

√
Cρ

d

(
1

T

T−1∑
t=0

σtπ

)1/4

where steps (i) and (ii) follow from Cauchy-Schwarz inequality.

From equation (54), we have

1

T

T−1∑
t=0

σtµ .
σ0
µ

d
T−1/9 +

d2

√
Cρ

d

(
log T

λT 4/9
+

2εQ
λ

)1/4

.

(
log T

λT 4/9
+

2εQ
λ

)1/4

.
1

λ1/4

(
(log T )1/4

T 1/9
+ ε

1/4
Q

)
.

This equation, together with Jensen’s inequality, proves equation (50) in Theorem 2.

Turning to equation (49) in Theorem 2, we have

1

T

T−1∑
t=0

W (πt, π
∗
t ) = ET [W (πT, π

∗
T)]

= ET

√
Es∼ρ∗

[
‖π∗T(·|s)− πT(·|s)‖2

1

]
(i)

≤

√
ETEs∼ρ∗T

[
ρ∗(s)

ρ∗T(s)
‖π∗T(·|s)− πT(·|s)‖2

1

]
(ii)

≤

{
ETEs∼ρ∗T

[∣∣∣∣ ρ∗(s)ρ∗T(s)

∣∣∣∣2
]
· ETEs∼ρ∗T

[
‖π∗T(·|s)− πT(·|s)‖41

]}1/4

(iii)

.
{
C

2

ρ · ETEs∼ρ∗T
[
‖π∗T(·|s)− πT(·|s)‖21

]}1/4

(iv)

.
√
Cρ ·

{
ETEs∼ρ∗T [DKL (π∗T(·|s)‖πT(·|s))]

}1/4

=

√
Cρ ·

{
ET

[
σT
π

]}1/4

(v)

.
1

λ1/4

(
(log T )1/4

T 1/9
+ ε

1/4
Q

)
,

where step (i) holds due to Jensen’s inequality, step (ii) follows from Cauchy-Schwarz inequality, step (iii) follows from
Assumption 8 and the fact that ‖ν − ν′‖1 ≤ 2,∀ν, ν′ ∈ ∆(A), step (iv) comes from Pinsker’s inequality, and step (v)
follows from the bound in equation (55). The above equation, together with Jensen’s inequality, proves equation (49). We
have completed the proof of Theorem 2.
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The proof of Corollary 2 is the same as that of Corollary 1 and is omitted here.


