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A. Proofs and Derivations
Stein’s Identity

Proof of Theorem 1

Proof. Let ω =
∑d
i=1 f

idθ(−i), where dθ(−i) = (−1)idθi+1 ∧ · · · ∧ dθd ∧ dθ1 · · · ∧ dθi−1 for i = 1, . . . , d. Then,

d(qJω) =

d∑
i=1

(
∂f i

∂θi
+ f i

∂

∂θi
log(qJ)

)
dθ1 ∧ · · · ∧ dθd = (qJA(1)

q f)dθ1 ∧ · · · ∧ dθd.

Therefore, from Theorem 1 and Corollary 1,

Eq[A(1)
q f ] =

∫
M
d(qJω) = 0.

Quadratic form of mKSD

Proof of Theorem 2

Proof. We show that, the mKSD admits the form of taking expectation over p for bivariate functions h(c)q which is
independent of p. h(c)q is also referred as the Stein kernel. The proof utilize the reproducing property of relevant RKHS and
the fact that A(c)

q is a linear functional of relevant test function f .

For c = 1, the test function is a stack of d-dimensional RKHS functions f ∈ Hd. Ep[A(1)
q f ] is a linear functional of f ∈ Hd.

Then, from the Riesz representation theorem, there uniquely exists r = (r1, . . . , rd) ∈ Hd such that Ep[A(1)
q f ] = 〈f, r〉Hd .

By using the reproducing property ofH associate with kernel k, we obtain

ri(x) = Ex̃∼p

[
k(x, x̃)

∂

∂θ̃i
log(qJ) +

∂

∂θ̃i
k(x, x̃)

]
, (18)

for i = 1, . . . , d. Thus, the maximization in mKSD(1)(p‖q) is attained by f = r/‖r‖Hd and mKSD(1)(p‖q)2 = ‖r‖2Hd .
Therefore, the quadratic form is obtained after straightforward calculations:

mKSD(1)(p‖q)2 =
〈

Ex∼p[A(1)
q k(x, ·)],Ex̃∼p[A(1)

q k(x̃, ·)]
〉
Hd

= Ex,x̃∼p

〈A(1)
q k(x, ·),A(1)

q k(x̃, ·)
〉
Hd︸ ︷︷ ︸


h
(1)
q (x,x̃)

,

and the assertion follows.

For c = 2, similar argument applies where the test function is a scalar-valued RKHS f̃ ∈ H. Instead of Eq.(18), we have
r̃ ∈ H, s.t. Ep[A(2)

q f ] = 〈f̃ , r̃〉H and

r̃(x) = Ex̃∼p

∑
ij

gij
(

∂

∂θ̃j
k(x, x̃)

∂

∂θ̃i
log(qJ) +

∂2

∂θ̃i∂θ̃j
k(x, x̃)

) , (19)

and the maximization in mKSD(2)(p‖q) is attained by f̃ = r̃/‖r̃‖H; thus mKSD(2)(p‖q)2 = ‖r̃‖2H. The assertion then
follows from the similar calculations as above.
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For c = 0, the quadratic form is readily obtained from derivation of maximum-mean-discrepancy (MMD) (Gretton et al.,
2007) form as shown in Theorem 4. Alternatively, for scalar test function h ∈ H, we can write,

mKSD(0)(p‖q) = sup
‖h‖H≤1

Ep[A(0)
q h] = sup

‖h‖H≤1
|Ep[h]− Eq[h]| ,

where taking the supreme we get,

mKSD(0)(p‖q)2 =
〈

Ep
[
k(x, ·)− Eq[k(x, ·)]

]
,Ep
[
k(x̃, ·)− Eq[k(x̃, ·)]

]〉
H

= Ex,x̃∼p
〈
k(x, ·)− Eq[k(x, ·)]︸ ︷︷ ︸

A(0)
q k(x,·)

, k(x̃, ·)− Eq[k(x̃, ·)]
〉
H
.

The assertion follows.

The quadratic form is useful when computing the empirical estimate for the expectation where only samples from unknown
distribution p is observed. We also note that Eq[k(x̃, ·)], in general, is not possible to obtain in analytical form, especially
when the density q is only given up to normalization. Samples from q, if possible to obtain from unnormalized density, can

be useful to estimate A(0)
q k(x, ·), where we denote as Â(0)

q k(x, ·).

Characterisation of mKSD

Proof of Theorem 3

Proof. Denote s(c)p (·) = Ex̃∼p[A(c)
q k(x̃, ·)] ∈ F and we can write mKSD(c)(p‖q)2 = ‖sp(·)‖2F ≥ 0, where F can beH for

c = 0, 2 orHd for c = 1. If p = q, then mKSD(c)(p‖q)2 = 0 from the Stein identity.

Conversely, if mKSD(c)(p‖q)2 = 0, then s(c)p (x) = 0, a zero vector in Rd for c = 1 and a scalar zero in R for c = 0, 2, ∀x,
s.t. p(x) > 0. Then, from log(q/p) = log(q) − log(p) = (log(q) − log(J)) − (log(p) − log(J)) = log(qJ) − log(pJ),
we obtain,

Ex̃∼p [Li(x̃)k(x̃, x)] = (s(1)p )i(x)− Ex̃∼p
[
A(1)
p k(x̃, x)

]
= 0,

and

Ex̃∼p [L(x̃)k(x̃, x)] = (s(c)p )(x)− Ex̃∼p
[
A(c)
p k(x̃, x)

]
= 0,

for c = 0, 2, for every x with positive densities. Since k is compact-universal, vanishes at ∂M andM is smooth and
compact, the injectivity result in Carmeli et al. (2010, Theorem 4(b)) implies that L(1)

i = 0,∀i (for c = 1, i ∈ {1, . . . , d};
for c = 0, 2, i = 1). Therefore, log(q/p) is constant onM. Since both p and q are both densities onM that integrate to
one, we conclude p = q.

Asymptotics of mKSD

Proof of Theorem 5

Proof. To show part 1, it is enough to check the mKSD statistics is degenerate U-statistics under H0 : p = q. By considering
test function f = k(x, ·) (or its relevant vector-valued form for c = 1), Stein identity shows that,

Ex̃∼p[A(c)
q k(x, x̃)] = 0,∀x ∈M,

so that the variance σ2
c = 0 for c = 0, 1, 2. Then the standard results for degenerate U-statistics in (Serfling, 2009, Section

5.5.2) apply and the assertions follow.

In addition, it is interesting to note link the result for c = 0 with the asymptotic result in as

h(0)q (x, x̃) = k(x, x̃)− µq(x)− µq(x̃) + cq,
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where cq = Ex,x̃∼qk(x, x̃) is a constant, and that µq(x) = Ex̃∼qk(x, x̃) being only a function of x, ξ(x̃) = Ex∼qk(x, x̃)
being only a function of x̃, are the mean embedding function for density q. The formulation is analogous to the asymptotic
results for MMD, as shown in (Gretton et al., 2007, Theorem 8): h(0)q (x, x̃) is equivalent to the notion of k̃(x, x̃) in (Gretton
et al., 2007).

Part 2 follows as σ2
c > 0 under H1 : p 6= q by Theorem 3. Apply asymptotic distribution of non-degenerate U-statistics

(Serfling, 2009, Section 5.5.1) and the assertions follow.

Asymptotics for mFSSD To compute the empirical version of mFSSD, we consider the empirical version sp(·) in Eq.(16)
from samples x1, . . . , xn ∼ p:

ŝp(·) =
1

n

∑
i

[A(1)
q k(xi, ·)].

Then the empirical mFSSD has the form

̂mFSSD2 =
1

dJ

d∑
i=1

J∑
j=1

(̂sp(vj))2i , (20)

for any set of test locations {vj}Jj=1.

Proposition 4. Assume the conditions in Theorem 3 hold, and Ex∼p[‖sp(x)‖2] <∞. Under H1 : p 6= q,

√
n ·
(

̂mFSSD2 −mFSSD2
)

d→ N (0, σ̃2
H1

),

where σ̃2
H1

denotes the variance for ̂mFSSD2.

Proof. With the assumed regularity conditions, Eq.(20) is in the form of the non-degenerate U-statistics with σ̃2
H1

> 0. The
asymptotic normality follows from (Serfling, 2009, Section 5.5.1), similarly described in (Jitkrittum et al., 2017, Proposition
2).

The asymptotic normality for ̂mFSSD2 in Proposition 4 enables derivation of the approximate test power, similarly as
described in Section 4.2 for kernel choice.

Proposition 5. [Approximate test power of n · ̂mFSSD2] Under H1, for large n and fixed r, the test power is

PH1
(n · ̂mFSSD2 > r) ≈ 1− Φ

(
r√
nσ̃2

H1

−
√
n

mFSSD2

σ̃2
H1

)
,

where Φ denotes the cumulative distribution function of the standard normal distribution, and σ̃2
H1

is defined in Proposition
4.

Due to
√
n scaling in Proposition 4, maximising the approximate test power for n · ̂mFSSD2 can be approximated by

maximizing mFSSD2

σ̃2
H1

to obtain optimal test locations under the alternative H1 : p 6= q, which is described in Section 5.

V = arg max
v

mFSSD2

σ̃H1

,

for V = {vj}Jj=1 as the set of test locations to be optimised.

B. More on Bahadur Efficiency
In this section, we introduce the relevant concepts to study Approximate Relative Efficiency (ARE) between two tests,
characterised by Bahadur slope (Bahadur et al., 1960) and corresponding Bahadur efficiency.
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B.1. Approximate Bahadur Slope

We first define Bahadur slope for general tests (Gleser, 1966) and its applications in kernel-based tests (Jitkrittum et al., 2017;
Garreau et al., 2017). Consider the test procedure with null hypothesis H0 : ω ∈ Ω0 and the alternative H1 : ω ∈ Ω\Ω0,
where Ω and Ω0 are arbitrary sets. Denote Tn as the test statistic computed from a sample of size n.
Definition 1. For ω0 ∈ Ω0, let F be the asymptotic null distribution

F (t) = lim
n→∞

Pω0
(Tn < t)

which is assumed to be continuous and common ∀ω0 ∈ Ω0. Assume that there exists a continuous strictly increasing function
ρ : (0,∞)→ (0,∞) s.t limn→∞ ρ(n) =∞. Denote

c(ω) = −2 plimn→∞
log(1− F (Tn))

ρ(n)
, (21)

for some bounded non-negative function c such that c(ω0) = 0 when ω0 ∈ Ω0. The function c(ω) is known as approximate
Bahadur slope.
Definition 2. Let D(a, t) be a class of all continuous cumulative distribution functions (CDF) F such that −2 log(1 −
F (x)) = axt(1 + o(1)), as x→∞ for a > 0 and t > 0.
Proposition 6. The approximate Bahadur slope (ABS) for the tests with mKSD(c), c = 0, 1, 2 is

c(mKSD(c)) :=
Ep[h

(c)
q (x, x̃)]

Eq[h
(c)
q (x, x̃)2]

1
2

,

where h(c)q (x, x̃) is the Stein kernel for mKSD(c), and ρ(n) = n.

Proof. Using Theorem 9 and Theorem 11 in (Jitkrittum et al., 2017), we know that n ·mKSD(c)
u (p‖q)2 in Eq.(10) is in the

class of D(a = 1/ωc, t = 1) for ω2
c is the variance of the statistic. By Stein identity, Ex∼qEx̃∼q

[
h
(c)
q (x, x̃)

]2
= 0. Hence,

using second point in Theorem 9 (Jitkrittum et al., 2017) and choosing ρ = n, we know that n ·mKSD(c)
u (p‖q)2\ρ(n)→

mKSD(c)(p‖q)2 by weak law of large numbers.

B.2. Asymptotic Relative Efficiencies Between Tests with Different Aqs

Asymptotic Relative Efficiency (ARE) between two statistical testing procedures measures how fast the p-values of one test
shrinks to 0, relatively to the other’s. If it is faster, for given problem under the alternative, it is more sensitive to pick up the
alternative, where we call the test more "statistically efficient". With ABS, we are ready to define approximate Bahadur
efficiency.

Definition 3. Given two sequences of test statistics, T (1)
n and T (2)

n and their ABS c(1) and c(2), the approximate Bahadur
efficiency of T (1)

n relative to T (2)
n is

E(ωA) :=
c(1)(ωA)

c(2)(ωA)
(22)

for ωA ∈ Ω\Ω0, in the space of alternative models.

If E(ωA) > 1, then T (1)
n is asymptotically more efficient than T (2)

n in the sense of Bahadur, for the particular problem
specified by ωA ∈ Ω\Ω0.

B.3. The Case Study on Circular distribution S1

Proof of Theorem 6

Proof. To compute E1,2(κ), we can rewrite the following:

E1,2(κ) =
Ep[h

(1)
q (x, x̃)]

Ep[h
(2)
q (x, x̃)]

· Eq[h
(2)
q (x, x̃)2]

1
2

Eq[h
(1)
q (x, x̃)2]

1
2
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The second term only involves integrals over q(x) ∝ 1, which is independent of κ and we can solve it as
Eq [h

(2)
q (x,x̃)2]

1
2

Eq [h
(1)
q (x,x̃)2]

1
2

=

1.692 > 1. For the first term, the ratio is monotonic decreasing w.r.t. κ > 0 and
Ep[h

(1)
q (x,x̃)]

Ep[h
(2)
q (x,x̃)]

is lower bounded by 2 due to

exponential-trace kernel and S1 embedded in R2. Hence, for κ > 0, E1,2 > 1.
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Figure 3. Relative Test Efficiency

We can apply similar approach to compare the relative test efficiency E0,1(κ)

between mKSD(0) and mKSD(1). We plot numerical solutions in Figure 3. From
Figure 3, we see that E1,2 and E0,1 both greater than 1 for κ ∈ (0, 10). For further
increase of κ, there is a trend for both relative efficiencies stabilising at some value
greater than 1. Theoretical analysis for such limiting behaviour is of an interesting
future topic. Although Figure 3 shows that E0,1(κ) > 1 for small perturbation
from the null, i.e. κ ∈ (0, 10) which suggest the relative efficiency of mKSD(0)

is higher than the first order test mKSD(1), it is usually not possible to compute
MMD analytically and the normalized density is required.

Intuitively, with sampling error of order
√
n and ρ(n) = n is chosen to compute

Bahadur slope, the MMD computed from samples are less efficient to perform
goodness-of-fit test compared to mKSD tests that directly access the unnormalized

density, as shown in Figure 1. Similar findings are also observed in other settings where MMD is considered to perform
goodness-of-fit tests (Liu et al., 2016; Jitkrittum et al., 2017; Yang et al., 2018; 2019; Xu & Matsuda, 2020). In addition,
correctly sampling from Riemannian manifold is non-trivial and can be time-consuming for sample-based tests.

C. More on Model Criticism
In this section, we provide additional details on model criticism for wind data present in Section 8.2. We fitted the model in
Eq.(2) by using noise contrastive estimation (Uehara et al., 2020) and our test does not find evidence to reject the fitted
model, suggesting a good fit for the wind direction data. In addition, we consider the model without interaction term between
two direcitons:

q̃(x1, x2 | η̃) ∝ exp{κ1 cos(x1 − µ1) + κ2 cos(x2 − µ2)}, (23)

which is equivalent to model in Eq.(2) by imposing λ12 = 0. This model can be viewed as product of marginal distributions
of x1 and x2 and we refer as factorised model. Our test reject the null at test level α = 0.05 suggesting a poor fit of the
factorised model.

To further visualize the difference between models in Eq.(2) and Eq.(23), we plot histogram of each wind direction in Figure
4(b) and samples from the factorised model q̃ in Figure 4(c) where no interactions are present between x1 and x2. Compare
with the wind direction data, shown again in Figure 4(a), we can see that Figure 4(c) differs the most at the regions of
x̃ = (x1, x2) = (2.8, π) (data model denser) and x̃′ = (x1, x2) = (1, 1) (q̃ model denser). Such difference is captured by
our optimized test locations from mFSSD in Figure 4(e), where x̃ is at the region with 3 stars in a row and x̃′ is around the
region with 4-stars in a row. It shows the effectiveness of mFSSD in distinguishing the differences between distributions.
As q̃ is referred as imposing data model in Eq.(2) to be 0, a negative λ12 = −1.1274 < 0 in the data model implies that
positive sin(x1 − µ1) sin(x2 − µ2) is less dense. With µ1 = 1.1499 = µ2, sin(x1 − µ1) sin(x2 − µ2) is positive around
the region the x̃′ making the data model less dense, as shown in Figure 4(a) and 4(c).
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(c) Samples from factorised model
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(d) Objective values for J = 10
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Figure 4. Visualizing the fitted model and rejected model for wind direction data.


