
Appendix and Supplement Material

We provide the technical proofs, experiment details as well as the relegated discussions mentioned in
the paper. The appendix for Section 4, 5, 6 are provided in A.1, A.2, A.3, respectively. The auxiliary
lemmas in our proofs are summarized in A.4. The additional experiment details are provided in A.5.

A.1 Material for Section 4

When optimized by the gradient descent: θ(t) = θ(t−1) − η∇L(θ(t−1)) using an infinitesimal
learning rate, the updates in the parameter space can be equivalently described by the gradient flow:

dθ(t)

dt
= −∇θL

(
θ(t)
)
.

A nice property of gradient flow is that if L is smooth, then the objective function is non-increasing
during the updates since:

dL
(
θ(t)
)

dt
= −

〈
∇L
(
θ(t)
)
,
dθ(t)

dt

〉
= −

∥∥∥dθ(t)

dt

∥∥∥2
2
, (A.1)

which is non-negative. Therefore, it saves the discussion of choosing the proper learning rate to
ensure the same property in gradient descent.

Another preparation work is to reformulated NCF, especially the input (which are essentially the
users and items embeddings), into a standard form of FFN: W1σ

(
W2xu,i

)
where xu,i, are fixed

and do not depend on the unknown embeddings.

We use eu ∈ R|U| and ei ∈ R|I| to denote the one-hot encoding of the user and item id. Also, we
use eu,i ∈ R|U||I| to denote the one-hot encoding of user+item id combined. Therefore, NCF with
addition can be efficiently represented as:

fNCF-a(u, i) = W1σ
(
W2xu,i

)
, with W2 =

[
Zᵀ
U ,Z

ᵀ
I

]ᵀ
and xu,i = [eu, ei]

ᵀ; (A.2)

and NCF with concatenation is:

fNCF-c(u, i) = W1σ
(
W2xu,i

)
, with W2 =

[
zi1 zu1

zi1 zu2

. . . · · ·

]ᵀ
and xu,i = eᵀ

u,i. (A.3)

Recall the linearization from Section 4, where we denote the first-order Taylor approximation of
f(θ; ·) by f̃(θ; ·) such that:

f̃
(
θ; (u, i)

)
:= f

(
θ(0); (u, i)

)
+
〈
θ − θ(0),∇f

(
θ(0); (u, i)

)〉
.

Also, we use d, d1 to denote the embedding dimension and the dimension of the first hidden layer in
the FFN for NCF, and assume d1 = d w.l.o.g. We still consider the scaled initialization N(0, α/d)
where α is a constant. Under the infinite-width limit, we can show that the NTK converges to a fixed
kernel at initialization, which we referred to as the collaborative filtering kernel.
Lemma A.1. For the MCF and NCF we described in Section 3.1, the neural tangent kernel
K
(
(u, i), (u′, i′)

)
=
〈
∇f
(
θ; (u, i)

)
,∇f

(
θ; (u′, i′)

)〉
have the following convergence result:

lim
d→∞

K
(
(u, i), (u′, i′)

)
= KCF

(
(u, i), (u′, i′)

)
:= a+ b · 1[i = i′] + c · 1[u = u′],
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A.1 MATERIAL FOR SECTION 4

where under the N(0, 1/d) initializations, a = 0, b = c = 1 for KMCF; a = 1/π, b = c = 1
2 −

1
2π

for KNCF-c, and a = 1/π, b = c = 1
2 −

(2−
√
3)

2π for KNCF-a.

Proof. We first consider NCF. We first reformulate NCF’s formulation in (A.2) and (A.3) as:

f(xu,i) =

√
2

d
W1σ

(
W2xu,i

)
,W1,W2 ∼ N(0, 1),

where we extract the 1/d variance to the front, and add the
√
2 factor for convenience.

Notice that: ∂f(xu,i)
∂W1,j

=
√
2/d
(
Wᵀ

2,jxu,i
)
+

, and

∇W2,jf(xu,i) =
√
2/dW1,jxu,i1

[
Wᵀ

2,jxu,i ≥ 0
]
,

where W1,j is the jth element of the vector W1, and W2,j is the jth column of the matrix W2. For
notation simplicity, we define vj = W1,j and wj = W2,j .

Therefore, the NTK for NCF is given by:

∇f(xu,i)ᵀ∇f(xu′,i′) =

2

d

d∑
j=1

(
wᵀ
j xu,i

)
+

(
wᵀ
j xu′,i′

)
+
+

2

d

d∑
j=1

(vjxu,i)
ᵀ(vjxu′,i′)1

[
wᵀ
j xu,i ≥ 0

]
1
[
wᵀ
j xu′,i′ ≥ 0

]
.

(A.4)

Using the mean and variance formula of truncated normal distribution, following the setup in (A.2)
and (A.3), for NCF with concatenation we have:

• When u 6= u′ and i 6= i′, we have:

K
(
(u, i), (u′, i′)

)
=

2

d

d∑
j=1

(wj)+(w
∗
j )+, w∗j is an i.i.d copy of wj

d→∞
= 2E

[
(wj)+(w

∗
j )+
]
=

4

π

• When u = u′ or i = i′, we have:

K
(
(u, i), (u′, i′)

)
=

1

d

d∑
j=1

(wj)
2
+ +

2

d

d∑
j=1

(wj)+(w
∗
j )+, w∗j is a copy of wj

d→∞
= var

(
(wj)+

)
+ 2E

[
(wj)+(w

∗
j )+
]
= 2 +

2

π

• When u = u′ and i = i′, we leverage the integral formulation of arc-cosine kernel K0 in
Lemma A.3 such that:

K
(
(u, i), (u′, i′)

)
= K0(xu,i,xu′,i′)−

2

d

d∑
j=1

(wj)+(w
∗
j )+ +

2

d

d∑
j=1

(wj)
2
+

d→∞
= 8− 16

π
.

The results for NCF under addition is obtained using basically the same computations. For MCF, on
the other hand, we reformulate the predictor as: f(u, i) = 1

d

〈
ZUZI ,Xu,i

〉
where Xu,i = eue

ᵀ
i , and

the embeddings follow N(0, 1) initializations. Then it holds that:

∇f(Xu,i)
ᵀ∇f(Xu′,i′) =

1

d

(
〈zu, zu′〉1[i = i′] + 〈zi, zi′〉1[u = u′]

)
, (A.5)

which directly leads to the stated results of KCF.
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Remark 1 (The parameterization of KCF and the intializations of MCF, NCF). It is evident from the
above proof that the relative scale of a, b and c in KCF can depend on the constant term α in the
intializations of N(0, α/d). For instance, if the infinite-width MCF initializes the user embeddings
ZU with N(0, α1/d) and the item embeddings ZI with N(0, α2/d), then by (A.5) we immediately
have b = α1 and c = α2.

Also, the parameterization of KCF for NCF is also dependent on the initialization. We observe from
(A.4) that a would not change as long as the initializations are i.i.d., but b and c again depend on
the individual α. The exact derivations for the NTK of FFN is stuided by [2], and in [23] the author
provides the NTK formulation for a broad range of neural networks.

Other than the convergence to a fixed kernel at initialization, the infinite-width limit also suggests
that the parameters varies little during the gradient flow updates, and the linearization of f̃ has a good
approximation:∥∥θ(t) − θ(0)

∥∥
2∥∥θ(0)

∥∥
2

= O(
√

1/d), and f̃
(
θ(t); (u, i)

)
= f

(
θ(t); (u, i)

)
+O(

√
1/d).

We formalize the above arguments in the following lemma.

Lemma A.2. Let the gradient flow updates under f̃ be denoted by θ̃(t). Under the exponential loss
or log loss, when the predictor f(θ; ·) is local Lipschitz and admits chain rule, the corresponding
decision boundaries for the two gradient flow trajectories satisfy the following result for any T > 0:

lim
d→∞

sup
t≤T

∥∥F (θ(t))− F̃ (θ̃(t))
∥∥
2
= 0. (A.6)

To the best of our knowledge, the similar infinite-width convergence results were studied under the
squared loss [2, 14], and we extend them to the classification setting.

Proof. By the chain rule, for any step T > 0, we have:∫ T

0

∥∥θ(t)
∥∥
2
dt =

∫ T

0

∥∥∇L(θ(t))
∥∥
2
dt ≤

√
T
(∫ T

0

∥∥∇L(θ(t))
∥∥2
2
dt
)1/2

,

by the Hölder’s inequality. According to (A.1), dL
(
θ(t)
)
/dt = −

∥∥∥∇L(θ(t))
∥∥∥2
2
, so we have:

sup
t≤T

∥∥θ(t) − θ(0)
∥∥
2
≤
√
TL
(
θ(t)
)
) .

√
1/d,

due to the scaled initializations. Denote the risk associated with a predictor by R
(
f(θ)

)
. It can

then be deduced that supt≤T
∥∥θ(t) − θ(0)

∥∥
2
≤ C1 and supt≤T

∥∥∇R(f(θ(t))
)∥∥

2
≤ C2, for some

constants C1 and C2.

Define δ(t) := ‖f(θ(t))− f̃(θ(t))‖2, and the NTK under a specific θ as K(θ). Since ‖K(θ)(t) −
K(θ)(0)‖2 = O(

√
1/d) according to [14, 2], we have:

dδ(t)

dt
≤
∥∥∥K(θ(t))∇R

(
f(θ(t))

)
−K(θ(0))R

(
f̃(θ(t))

)∥∥∥
2

≤
∥∥∥(K(θ(t))−K(θ(0))

)
∇R

(
f(θ(t))

∥∥∥
2
+
∥∥∥K(θ(0))

(
R
(
f(θ(t))−R

(
f̃(θ(t))

)∥∥∥
2

≤ C3/
√
d+ C4δ(t),

for some constants C3 and C4. Since δ(0) = 0, then δt is a sub-solution to the ordinary differential
equation: dδ(t)

dt = C3/
√
d + C4δ(t) with δ(0) = 0. It then follows: δ(t) ≤ C3(exp(C4t)−1)√

dC4
, so we

conclude that: limd→∞ supt≤T ‖F (θ(t))− F̃ (θ̃(t))‖2 = 0.

Proof for Theorem 1
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Proof. According to Corollary A.1 from A.2, under the exponential or log loss, the linearization
f̃(θ̃; ·) satisfies condition C1, C2 and C3, so the gradient flow optimization of θ̃(t) converges to the
stationary points of:

min ‖θ̃‖2 s.t. yu,if̃(θ̃; (u, i)) ≥ 1, ∀(u, i) ∈ Dtrain.

Combining the results from Lemma A.1 and Lemma A.2, under the gradient flow optimization, the
response surface of MCF and NCF converges to the minimum RKHS norm solution:

lim
t→∞

lim
d→∞

F
( θ(t)

‖θ(t)‖2

)
stationary points of→ argmin

f :(U,I)→R

∥∥f∥∥
KCF

s.t. yu,if(u, i) ≥ 1, ∀(u, i) ∈ Dtrain.

A.2 Material for Section 5

We first discuss the implications of condition C1, C2 and C3. Recall that:

C1. The loss function has the exponential-tail behavior such as the exponential loss and log loss;

C2. Both the MCF and NCF in are L-homogeneous, i.e. f(θ; ·) = ‖θ‖L2 · f
(
θ/‖θ‖2; ·

)
for some

L > 0, and have some smoothness property;

C3. The data is separable with respect to the overparameterized MCF and NCF.

The exponential decay on the tail of the loss function is important for the inductive bias of gradient
descent as `(u) behaves like exp(−u) when u→∞. Soudry et al. [20] first propose the notion of
tight exponential tail, where the negative loss derivative −`′(u) behave like:

−`′(u) .
(
1 + exp(−c1u)

)
e−u and − `′(u) &

(
1− exp(−c2u)

)
e−u,

for sufficiently large u, where c1 and c2 are positive constants. There is also a smoothness assumption
on `(·). There is a more general (and perhaps more direct) definition of exponential-tail loss function
[18], where `(u) = exp(−f(u)), such that:

• f is smooth and f ′(u) ≥ 0,∀u;
• there exists c > 0 such that f ′(u)u is non-decreasing for u > c and f ′(u)u → ∞ as
u→∞.

It is easy to verify that the exponential loss, log loss and cross-entropy loss satisfy both requirements.

The predictor of MCF is obviously homogeneous, but for NCF to be homogeneous, the bias terms
cannot be used for the hidden layers in the FFN. The requirement on the activation function is
relative mild, since ReLU, LeakyReLU and some other common activation functions all preserve the
homogeneity of the predictor.

On the other hand, the smoothness condition, which includes the locally Lipschitz condition and
differentiability. Notice that Lipschitz condition is rather mild assumption for neural networks, and
several recent paper are dedicated to obtaining the Lipschitz constant of deep learning models using
activation such as ReLU [10, 22]. The differentiablity condition is more technical-driven such that
we can analyze the gradients. In practice, neural networks with ReLU activation do not satisfy the
condition. We point out that there do exist smooth homogeneous activation functions, such as the
quadratic activation σ(x) = x2. Nevertheless, the ReLU activation admits the chain rule, so the same
analysis using gradients can be carried out by the sub-differentials. Therefore, in our experiments, we
use ReLU as the activation function for convenience, and assume differentiablity to provide a more
straightforward analysis.

Finally, by implying the separability, we also assume that there exists t0 such that:

∀t > t0,
1

|Dtrain|
∑

(u,i)∈D

exp
(
− yu,if

(
θ(t); (u, i)

))
< 1. (A.7)

In the following corollary, we prove a general result for gradient flow converging to the max-margin
solution under condition.
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Corollary A.1. For gradient flow optimization with the exponential loss, under condition C1, C2
and C3, limt→∞ θ(t)/‖θ(t)‖2 converges to the KKT points of:

min ‖θ‖2 s.t. yu,if
(
θ; (u, i)

)
≥ 1, ∀(u, i) ∈ Dtrain.

Compared with the results in [13], we do not assume the loss function already converged in direction.
Although we use the same type of constraint quality idea as in [18], their results focus on the
convergence of the normalized margin and our result emphasize the dynamics in the parameter space.
The interests in this result is also beyond the content of this paper.

Proof. First notice that the KKT condition for the original problem (where we add a 1
2 factor for

convenience): min 1
2‖θ‖2 s.t. yu,if

(
θ; (u, i)

)
≥ 1, ∀(u, i) ∈ Dtrain is given by:

∃λu,i ≥ 0, (u, i) ∈ Dtrain, s.t.

{
θ +

∑
(u,i)∈Dtrain

λu,iyu,i∇f
(
θ; (u, i)

)
= 0

λu,i

(
yu,if

(
θ; (u, i)

)
− 1
)
= 0, ∀(u, i) ∈ Dtrain.

(A.8)

As we mentioned in Section 5, when the constraints are non-convex, the stationarity of local or global
optimum does not equal KKT optimality, but when the Guignard constraint qualification (GCQ) is
satisfied [12], those two become exchangeable. GCQ might be the weakest constraint qualification in
some sense, but it is very difficult to check in practice.

On the other hand, the Mangasarian-Fromovitz constraint qualification (MFCQ), though stronger
than GCQ (and thus imply GCQ), is easier to examine. Specifically, it states for the stationary points
that:

∃d s.t.
〈
yu,i∇f

(
θ; (u, i)

)
,d
〉
> 0, for all (u, i) ∈ Dtrain.

Notice that L-homogeneous functions all satisfy MFCQ, because according to Lemma A.4, for any
stationary point θ∗ satisfying yu,if

(
θ∗; (u, i)

)
= 1, we let d∗ = θ∗ and it holds that:〈

yu,i∇f
(
θ∗; (u, i)

)
,d∗
〉
= L > 0.

As a consequence, the stationary points for the L-homogeneous predictors are indeed the KKT points.
Then we show the convergence of the gradient flow optimization path to the KKT points. We first
define the quantity:

γ̃
(
θ(t)
)
:=
− log

∑
(u,i) exp

(
− yu,if

(
θ(t); (u, i)

))
‖θ(t)‖22

= ‖θ(t)‖22 · log
1

L(θ(t))
,

which is smoothed version of the average margin normalized by the ‖θ(t)‖22.

We show the convergence by the following three steps.

S1. Under the gradient flow optimization, γ̃
(
θ(t)
)

is non-decreasing for t ≥ t0 (A.7), together with
L(θ(t))→ 0 and ‖θ(t)‖2 →∞.

S2. With a scaling factor α > 0, it holds that: ∃λu,i(t) ≥ 0, (u, i) ∈ Dtrain, s.t.
∥∥∥αθ(t) −

∑
(u,i)∈Dtrain

λu,iyu,i∇f
(
αθ(t); (u, i)

)∥∥∥
2
.

(
1−

〈
θ(t)

‖θ(t)‖2
, dθ(t)/dt
‖dθ(t)/dt‖2

〉)
1

γ̃
(
θ(t)
) (S2.1)

λu,i(t)
(
yu,if

(
αθ(t); (u, i)

)
− 1
)
. 1

γ̃
(
θ(t)
)
‖θ(t)‖22

(S2.2)

(A.9)
We mention that S2.2t→∞→ 0 will be a consequence of S1, and to show S2.1t→∞→ 0, we need to
prove

〈
θ(t)

‖θ(t)‖2
, dθ(t)/dt
‖dθ(t)/dt‖2

〉
→ 1. Once we have S2.1t→∞→ 0 + S2.2t→∞→ 0 + MFCQ, it holds that

limt→∞ θ(t)/‖θ(t)‖2 are proportional to the KKT points.

S3. Finally, the goal is show that
〈

θ(t)

‖θ(t)‖2
, dθ(t)/dt
‖dθ(t)/dt‖2

〉
→ 1.
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We follow our game plan and first prove the results in S1. To show that γ̃
(
θ(t)
)

is a non-decreasing

function of t, we derive
d log γ̃

(
θ(t)
)

dt and leverage (A.1) to show it’s non-negative:

d log γ̃
(
θ(t)
)

dt
=
d log log 1

L(θ(t))

dt
− Ld log ‖θ

(t)‖2
dt

=
1

log 1
L(θ(t))

L(θ(t))

(
− dL(θ(t))

dt

)
− L · d log ‖θ

(t)‖2
dt

.

(A.10)

Define qu,i(t) := yu,if(θ
(t); (u, i)) to be the margin of each data point during optimization. Notice

that:

• For all (u, i) ∈ Dtrain, minu,i qu,i(t) ≥ log 1
L(θ(t))

, therefore:

log
1

L(θ(t))
L(θ(t)) ≤

∑
(u,i)

exp
(
− qu,i(t)

)
qu,i(t), (A.11)

and we denote the RHS by Q(t). By the separability assumption, we have L(θ(t)) < 1 for
t > t0, which indicates Q(t) > 0 for t > t0.

• It holds that:
d‖θ(t)‖2

dt
= 2
〈
θ(t),

dθ(t)

dt

〉
= 2
〈
θ(t),∇L

(
θ(t)
)〉

by (A.1)

= 2
〈
θ(t),

∑
(u,i)

exp
(
− yu,if

(
θ(t); (u, i)

))
· yu,i∇f

(
θ(t); (u, i)

)〉
= 2L

∑
(u,i)

exp
(
− qu,i(t)

)
qu,i(t) by Lemma A.4.

Hence, we have:
d log γ̃

(
θ(t)
)

dt
=

1

2‖θ(t)‖22
d‖θ(t)‖22

dt
=

L

‖θ(t)‖22
exp

(
− qu,i(t)

)
qu,i(t)

=

〈
θ(t), dθ(t)/dt

〉
‖θ(t)‖22

.

(A.12)

Combining (A.1), (A.10), (A.11) and (A.12):

d log γ̃
(
θ(t)
)

dt
≥ 1

Q(t)

(∥∥∥dθ(t)

dt
−
〈 θ(t)

‖θ(t)‖22
,
dθ(t)

dt

〉∥∥∥2
2

)
=
‖θ(t)‖22
Q(t)

∥∥∥∥dθ(t)/‖θ(t)‖22
dt

∥∥∥∥2
2

= L

(
d log ‖θ(t)‖2

dt

)−1∥∥∥∥d ˜θ(t)

dt

∥∥∥∥2
2

≥ 0

where we defined ˜θ(t) = θ(t)

‖θ(t)‖2
.

Then we show L(θ(t))→ 0 and ‖θ(t)‖2 → 0 using the monotonicity of γ̃
(
θ(t)
)
. Note that:

−dL(θ(t))

dt
=
∥∥∥dθ(t)

dt

∥∥∥2
2
≥
〈 θ(t)

‖θ(t)‖2
,
dθ(t)

dt

〉2
= L2 Q(t)2

‖θ(t)‖22
by (A.12),

where the inequality is by applying the Cauchy-Schwartz inequality. By (A.11): Q(t) ≥

L(θ(t)) log 1
L(θ(t))

, and by the definition, we have: ‖θ(t)‖2 =
(
log 1
L(θ(t))

/γ̃
(
θ(t)
))1/L

. As a
consequence,

−dL(θ(t))

dt
≥ L2γ̃

(
θ(t)
)2/L

log
1

L(θ(t))

2−2/L
L(θ(t))

≥ L2γ̃
(
θ(t0)

)2/L
log

1

L(θ(t))

2−2/L
L(θ(t)),
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which indicates that:
d
(
1/L(θ)

)
dt

1

log 1
L(θ(t))

2−2/L ≥ l
2γ̃
(
θ(t0)

)2/L
.

Taking the intergral on both sides from t0 to t, we immediate have:∫ 1/L(θ(t))

1/L(θ(t0))

(
log u

)2/L−2
du ≥ L2γ̃

(
θ(t0)

)2/L
(t− t0)

t→∞→ ∞.

Therefore, 1/L(θ(t)) must diverge when L ≥ 1, which implies L(θ(t)) → 0. Due to the L-
homogeneous property of f(θ; ·), we must also have ‖θ(t)‖2 →∞, which completes S1.

Now we show the results for S2. We design the scaling factor to be: α(t) = minu,i qu,i(θ
(t))1/L.

Consequently, ∇θqu,i(θ
(t))/α(t)L−1 = ∇θqu,i

(
α(t)θ(t)

)
.

We then construct the Lagrange multipliers as:

λu,i(t) = α(t)L−2‖θ(t)‖2 exp
(
− qu,i(θ(t))

)/
‖dθ

(t)

dt
‖2.

Using the results in S1, and by straightforward calculations, we obtain:∥∥∥α(t)θ(t)−
∑

(u,i)∈Dtrain

λu,iyu,i∇f
(
α(t)θ(t); (u, i)

)∥∥∥2
2
≤ 2

γ̃
(
θ(t)
)2/L(1−〈 θ(t)

‖θ(t)‖2
,
dθ(t)/dt

‖dθ(t)/dt‖2

〉)
(A.13)

and

λu,i(t)
(
yu,if

(
α(t)θ(t); (u, i)

)
− 1
)
.

2e|Dtrain|
Lγ̃
(
θ(t)
)2/L+1‖θ(t)‖22

. (A.14)

According to the game plan, we then need to show
〈

θ(t)

‖θ(t)‖2
, dθ(t)/dt
‖dθ(t)/dt‖2

〉
→ 1 to show (A.13)→ 0,

since (A.14)→ 0 is implied by S1. First notice that 〈 θ(t)

‖θ(t)‖2
, dθ(t)/dt
‖dθ(t)/dt‖2

〉
≤ 1 by the Cauchy-

Schwartz inequality. We then need to show it is ≥ 1 as t → ∞. Using the results in S1, we have:

dγ̃
(
θ(t)
)

dt
≥ ‖θ

(t)‖22
Q(t)

·
∥∥∥d ˜θ(t)

dt

∥∥∥2
2
= L

∥∥∥‖θ(t)‖22
LQ(t)

d ˜θ(t)

dt

∥∥∥2
2
· LQ(t)

‖θ(t)‖22

= L
∥∥∥‖θ(t)‖22
LQ(t)

· d
˜θ(t)

dt

∥∥∥2
2
· d log ‖θ

(t)‖2
dt

.

(A.15)

Since ∥∥∥‖θ(t)‖22
LQ(t)

d ˜θ(t)

dt

∥∥∥2
2
=
∥∥∥‖θ(t)‖22
LQ(t)

· 1

‖θ(t)‖2

(
I− ˜θ(t) ˜θ(t)

ᵀ)dθ(t)

dt

∥∥∥2
2

=

∥∥∥dθ(t)

dt

∥∥∥2
2
−
〈

˜θ(t), dθ
(t)

dt

〉2
〈

˜θ(t), dθ
(t)

dt

〉2
=

〈
θ(t)

‖θ(t)‖2
,
dθ(t)/dt

‖dθ(t)/dt‖2

〉−2
− 1,

(A.16)

combining (A.15) and (A.16), we have:〈
θ(t)

‖θ(t)‖2
,
dθ(t)/dt

‖dθ(t)/dt‖2

〉
≥

√
1 +

d log γ̃
(
θ(t)
)
/dt

L · d log ‖θ(t)‖2/dt
≥
√
1 +

ε(t)

L
for some ε(t) ≥ 0,

because both d log ‖θ(t)‖2/dt ≥ 0 and d log γ̃
(
θ(t)
)
/dt ≥ 0. Hence, by the previous argument, we

have limt→∞

〈
θ(t)

‖θ(t)‖2
, dθ(t)/dt
‖dθ(t)/dt‖2

〉
= 1. By showing the resutls in S1, S2 and S3, we see that αθ(t)

converges in direction to the KKT points, which completes the proof.
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Proof for Theorem 2.

Proof. The first part of the results for NCF is a direct consequence of Corollary A.1. To show the
second part for MCF, we need to consider the symmetrized setting with:

W := ZUZᵀ
I , W̃ =

[
M1 W
W M2

]
, X̃u,i = eue

ᵀ
i + eie

ᵀ
u,

where M1 and M2 are two p.s.d matrices that are irrelevant for the objective, and the definition of
eu, ei are provided in A.1. Notice that in the main paper, we use X to denote the predictor which
is now given by W. Hence, the MF parameterization can be considered by: Z̃Z̃ᵀ = W̃, and the
objective becomes:

min
Z̃
L(Z̃) =

∑
(u,i)∈Dtrain

`
(
− yu,i

〈
Z̃Z̃ᵀ, X̃u,i

〉)
.

It is easy to verify that the symmetrized MCF corresponds exactly to the original problem instance,
and satisfy the conditions in Corollary A.1 under exponential or log loss. Since limt→∞

W(t)∥∥W(t)

∥∥
∗

=

limt→∞
Z̃(t)∥∥Z̃(t)

∥∥
F

Z̃(t)∥∥Z̃(t)

∥∥
F

ᵀ
, and the MCF predictor is convex, we conclude that the predictor of MCF

converges in direction to the stationary point of:

min ‖W‖∗ s.t. yu,iWu,i ≥ 1, ∀(u, i) ∈ Dtrain. (A.17)

A.3 Material for Section 6

The major tools we use to show the generalization results are the Rademacher complexities. The
procedure of bounding the inductive generalization error via the symmetrization technique and
Talagrand’s contraction inequalities are more often encountered in the literature [4]. The similar
ideas can also be applied to bound the transductive generalization error, but specific modifications are
required [9].

The different meaning of generalization decides the distinctive definitions of Rademacher complexi-
ties. We use X to denote the domain (of user and items) for the CF predictors, n1 to denote |Dtrain|
and n2 to denote |Dtest|. We first provide the definitions of Rademacher complexities, and briefly
discuss their different implications for the transductive and inductive learning.
Definition 1. Recall that n1 = |Dtrain| and n2 = |Dtest|.

• Transductive Rademacher complexity. Let V ∈ Rn1+n2 and p ∈ [0, 1/2], and εi(p) be
i.i.d random variables such that:

εi(p) =

{
1 with probability p
−1 with probability p
0 with probability 1− 2p,

then the trasductive Rademacher complexity of V is:

Rn1+n2
(V, p) =

( 1

n1
+

1

n2

)
E
{
sup
v∈V

ε(p)ᵀv
}
, (A.18)

where ε(p) =
[
ε1(p), . . . , εn1+n2

(p)
]ᵀ

.

• Inductive Rademacher complexity. Let F be a function class with domain X , and {Xi} be
a set of samples generated by a distribution PX on X . Let εi be shorthand of the same i.i.d
random variables as above, with p = 1/2. Then the empirical Rademacher complexity of F
is:

R̂n(F) = E
{
sup
f∈F

∣∣∣ 1
n

n∑
i=1

εif(Xi)
∣∣∣|X1, . . . , Xn

}
,

and the Rademacher complexity is given by: Rn(F) = EPX R̂n(F).



A.3 MATERIAL FOR SECTION 6

A important difference between the two settings is that the transductive complexity is an empirical
quantity that does not depend on any underlying distributions, and it depends on both the training and
testing data. The other difference is reflected in the specific formulations are:

1. transductive Rademacher complexity depends on both n1 and n2 because of the need to bound the
test error: Dtest, i.e. ErrDtest(f) :=

∑
(u,i)∈Dtest

1
[
yu,if(u, i) ≤ 0

]
;

2. it depends only on the outcomes’ vector space rather than the underlying function space that
produces the outcomes.

The different definitions of Rademacher complexity induces the two versions of contraction inequali-
ties, which we provide in Lemma A.5 and Lemma A.6. We first prove the results in Theorem 3 for
the transductive setting. Using the idea of symmetrization, the bound on the testing error for the
transductive learning can be stated as in the following Corollary.
Corollary A.2 (Adapted from El-Yaniv and Pechyony [9]). Let V be a set of real-valued vec-
tors in [−B,B]n1+n2 , where n1 > n2 by our assumption. Define Q = (1/n1 + 1/n2),
S = n1+n2

(n1+n2−1/2)(1−n1/2)
. Then for all v ∈ V , with probability of at least 1 − δ over the ran-

dom permutation of v, which we deonote by ṽ, we have:
n1+n2∑
j=n1+1

ṽj ≤
n1∑
j=1

ṽj +Rn1+n2(V, p0) +Bc0Q
√
n2 +B

√
S

2
Q log

1

δ
,

where c0 =
√
32 log(4e)/3 and p0 = n1n2/(n1 + n2)

2.

By defining the V in the above corollary by the scores of the predictor, and using Lemma A.6 for
contraction, we are able to show the results in Theorem 3.

Proof for Theorem 3.

Proof. Define h ∈ Hout ∈ Rn1+n2 as the output scores of the predictor, and consider v in Corollary
A.2 as `

(
yu,if(θ; (u, i))

)
where `(u) = 1[u < 0]. Define `γ(yu,if(θ,xu,i)) to be the margin loss:

`γ(u) = min{1, 1− u/γ}. Note that the margin loss is an upper bound on the classification error.

Therefore, using the results in Corollary A.2 and Lemma A.6, for any fixed γ > 0 and h ∈ Hout,
with probability of at least 1− δ over the random splits of D:

1

n2

∑
(u,i)∈Dtest

1
[
yu,if

(
θ, (u, i)

)
< 0
]
≤ 1

n1

∑
(u,i)∈Dtrain

1
[
yu,if

(
θ, (u, i)

)
< γ

]
+
Rn1+n2(Hout, p0)

γ
+ c0Q

√
n2 +

√
S

2
Q log

1

δ
.

We first show the bound for the transductive Rademacher complexity for NCF. Recall thatHout for
NCF is given by the form of: W1σ(W2σ(. . . σ(Wqσ(Wq+1Xu,i)))), where Wq+1 is given by
(A.2) or (A.3), with max(u,i)∈D ‖zu + zi‖2 ≤ BNCF for NCF with addition, and ‖Wi‖F ≤ λi for
i = 1, . . . , q. We denote the output of the kth layer by Hk

out ∈ Hkout. It holds that:

Rn1+n2(Hout, p0) =
( 1

n1
+

1

n2

)
E
{

sup
‖W1‖F≤λ1

∑
(u,i)∈Dtrain

εu,i
[
W1H

(q−1)
out

]
u,i

}
≤ λ1

( 1

n1
+

1

n2

)
E
{

sup
‖W2‖F≤λ2

∑
(u,i)∈Dtrain

εu,i
[
W2H

(q−2)
out

]
u,i

}
(applying Lemma A.6 on ReLU)

recursively apply the peeling argument

≤
q∏
i=1

λi
( 1

n1
+

1

n2

)
E
{

sup
max ‖zu+zi‖2≤BNCF

〈
zu + zi,

∑
(u,i)∈Dtrain

εu,iXu,i

〉}
( under addition, for example)

≤ BNCF

q∏
i=1

λi
( 1

n1
+

1

n2

)
E
∥∥∥ ∑

(u,i)∈Dtrain

εu,iXu,i

∥∥∥
2
,

(A.19)
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where we use εu,i as a shorthand for εu,i(p0). By Jensen’s inequality, the last line is upper-bounded
by:

BNCF

q∏
i=1

λi
( 1

n1
+

1

n2

)√ ∑
(u,i)∈Dtrain

E
[
εu,i(p0)2

]
‖Xu,i‖2 ≤ BNCF

q∏
i=1

λi
n1 + n2
n1n2

,

where it is easy to compute that: E
[
εu,i(p0)

2
]
= 2n1n2

(n1+n2)2
. By plugging in the relation between n1

and n2, we obtain the result stated in Theorem 3 for NCF.

We then show the results for MCF. We use Σ(p) to denote the matrix of transductive Rademacher
random variables such that Σu,i(p) = εu,i(p). For H := ZUZᵀ

I ∈ Hout under
∥∥ZUZᵀ

I

∥∥
∗ ≤ λnuc,

we have:

Rn1+n2
(Hout, p0) =

( 1

n1
+

1

n2

)
E
{

sup
H:‖H‖∗≤λnuc

∑
(u,i)∈Dtrain

Σu,iHu,i

}
≤ λnuc

( 1

n1
+

1

n2

)
E
∥∥Σ∥∥

sp
(by Hölder inequality, where ‖ · ‖sp is the spectral norm)

. λnuc
(n1 + n2)

√
|I| 4
√
log |U|

n1n2
(by Lemma A.7).

(A.20)

The second line holds because nuclear norm is the dual of the spectral norm. Again we plug in the
relation between n1 and n2 and obtain the stated result for MCF.

We move on to proving the generalization results for the inductive CF. We first state a useful corollary
for inductive learning, when the training and testing distribution are different.
Corollary A.3. Consider an arbitrary function class F such that ∀f ∈ F we have

∑
x∈X |f(x)| ≤

C. Then, with probability at least 1− δ over the sample, for all margins γ > 0 and all f ∈ F we
have,

Ptest

(
yf(x) ≤ 0

)
≤ 1

n

n∑
i=1

η(xu,i)1
(
yif(xu,i) < γ

)
+ 4

Rn,η(F)
γ

+

√
log(log2

4C
γ )

n
+

√
log(1/δ)

2n
,

(A.21)

where η(xu,i) = Ptest(xu,i)/Ptrain(xu,i) gives the importance weighting, and Rn,η(F) =

E
[
supf∈F

1
n

∑n
i=1 η(xu,i)f(xu,i)εi

]
is the weighted Rademacher complexity.

Proof. This corollary is adapted from the more general Theorem 1 of [16] by considering the
deviation of the testing distribution from the training distribution. The stated result is then obtained
following the Theorem 5 of [15].

Therefore, the key step for proving the results in Theorem 4 is to bound the weighted Rademacher
complexity for NCF and MCF.

Proof for Theorem 4.

Proof. We first show the results for NCF, where we denote the predictor family by FNCF. Here, using
the similar setup from Theorem 1 of [11], and combining the same arguments from the proof of
Theorem 3, we arrive at

n1Rn1,η(FNCF) ≤
1

λ
log
(
2q · Eε

(
Mλ‖

n1∑
i=1

εiη(xu,i)xu,i‖
))
,

where M = BNCF
∏q
h=1 λi. Consider Z :=M · ‖

∑n1

i=1 εiη(xu,i)xu,i‖ that is a random function of
the n1 Rademacher variables. Then

1

λ
log
{
2qE exp(λZ)

}
=
q log(2)

λ
+

1

λ
log{E expλ(Z − EZ)}+ EZ.
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By Jensen’s inequality, we have

E[Z] ≤M

√√√√Eε‖
n1∑
i=1

εiη(xu,i)xu,i‖2 =M

√√√√ n1∑
i=1

η(xu,i)2‖xu,i‖2.

In addition, we note that

Z(ε1, . . . , εi, . . . , εn1
)− Z(ε1, . . . ,−εi, . . . , εn1

) ≤ 2Mη(xu,i)‖xu,i‖.

By the bounded-difference condition [5], Z is a sub-Gaussian with variance factor v =
1
4

∑n1

i=1(2Mη(xu,i)‖xu,i‖)2 =M2
∑n1

i=1 η(xu,i)
2‖xu,i‖2. So

1

λ
{E expλ(Z − EZ)} ≤

λM2
∑n1

i=1 η(xu,i)
2‖xu,i‖2

2
.

Taking λ =

√
2 log(2)q

M
√∑n1

i=1 η(xu,i)2‖xu,i‖2
, it follows that

1

λ
{2qE expλZ}

≤M(
√

2 log(2)q + 1)

√√√√ n1∑
i=1

η(xu,i)2‖xu,i‖2 ≤
√
n1CM(

√
2 log(2)q + 1)

√√√√ 1

n1

n1∑
i=1

η(xu,i)2,

(A.22)

where C = 1 for NCF-c and C =
√
2 for NCF-a. By law of large number, 1

n1

∑n1

i=1 η(xu,i)
2 =

D(Ptest||Ptrain) + 1 + o( 1√
n1

). The desired result for NCF follows.

Then we show the result for MCF. Here, we provide a general result for generalization of using
importance weighting under distribution shift. We assume the training distribution is P , testing
distribution is Q, and the weight for any (u, i) instance is therefore given by: wi = Q(i)/P (i). We
define N ( 1n ,F , `

n
2 ) as the 1

n -covering number for F in ‖ · ‖2 based on n i.i.d samples from P , and
d(P‖Q) =

∫
SQ(dP/dQ)dP is a divergence measure, where S is used to denote the support of a

distribution. We use EQR(f) to denote the testing risk, and use EPn,w
R(f) to denote the weighted

empirical training risk.

Our proof leverages the classical "double sampling" technique from Anthony and Bartlett [1]. We
use ~z = [z1, . . . , zn] to denote the observed samples, and ~z′ = [z′1, . . . , z

′
n] to denote an i.i.d copy of

~z. We first define by:

UB1(f,~z, t) =
1

n

n∑
i=1

wi`f (zi) +
3Mt

n
+

√
2d(P‖Q)t

n
,

and

UB2(f,~z, t) =
1

n

n∑
i=1

wi`f (zi) +
9Mt

n
+

√
18d(P‖Q)t

n
.

Given f ∈ F , let A := EQR(f) + 6Mt
n +

√
8d(P‖Q)t

n it holds:

P
(
UB2(f,~z

′, t) ≤ UB1(f,~z, t)
)
≤ P

(
UB2(f,~z

′, t) ≤ A
)
+ P

(
UB1(f,~z, t) ≥ A

)
≤ 2P

(∣∣EQR(f)− 1

n

∑
wi`f (zi)

∣∣ ≥ 3Mt

n
+

√
2d(P‖Q)t

n

)
≤ 4e−t,

where the last line follows from Lemma A.8. Next, we define C(ε, ` ◦ F , `1(Pn,w)) be the ε-cover
of ` ◦ F with the empirical `1 norm under Pn,w such that for any f ∈ ` ◦ F , there exists f̃ in
C(ε, ` ◦ F , `n1 ):

∣∣ 1
n

∑
wif(zi)− 1

n

∑
wif̃(zi)

∣∣ ≤ ε, for (z1, . . . , zn) sampled i.i.d from P . It then
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holds:

P
(
∃f ∈ F : EQR(f) ≥ UB2(f,~z, t) + ε

)
= E~z sup

f∈F
I[EQR(f) ≥ UB2(f,~z, t) + ε]

(a)

≤ E~z sup
f∈F

I[EQR(f) ≥ UB2(f,~z, t) + ε] · 2E~z′I[UB1(f,~z
′, t) ≥ EQR(f)]

≤ 2E~z,~z′ sup
f∈F

I[UB1(f,~z
′, t) ≥ UB2(f,~z, t) + ε]

(b)

≤ 2Pσ(~z,~z′)
(
∃f̃ ∈ C(ε, ` ◦ F , `1(Pn,w)) : UB1(f, σ(~z,~z

′), t) ≥ UB2(f, σ(~z,~z
′), t)

)
≤ 8N (ε, ` ◦ F , `1(Pn,w)) · e−t,

where (a) follows from the fact that E~z′I[UB1(f,~z
′, t) ≥ EQR(f)] ≥ 1

2 as suggested by Lemma
A.8, and in step (b) we let σ(~z,~z′)i takes the value of zi, z

′
i with equal probability, and the inequality

follows from the definition of the ε cover. Notice that N (ε, ` ◦ F , `1(Pn,w)) ≤ N (ε/M, ` ◦ F , `n2 ).
We take ε = 1

n , which solves for t = c log 1
δ + logN (ε/M, ` ◦ F , `n2 ) for some constant c. We use

N2(ε,F
)

as a shorthand to denote the covering number under the empirical `2 norm.

By rearranging terms, we have that for any δ > 0, with probability at least 1− δ, it holds:

EQR(f) . EPn,w
R(f) +

M
(
log 1

δ + logN2(
1
n ,F

)
n

+

√
Md(P‖Q)

(
log 1

δ + logN2(
1
n ,F

)
n

,

(A.23)

when the loss function ` is Lipschitz and we ignore the constants. Hence, the remaining task is to
bound the covering number of the matrix factorization class FMCF with a bounded nuclear norm.
When ‖X‖F = 1, the nunclear norm is strictly a lower bound of the matrix rank. Therefore, we use
the covering number of low-rank matrix as a upper bound, which according to Lemma 3.1 of , if
rank(X) ≤ λnuc, then the covering number for FMCF under the matrix Frobenius norm obeys:

N (ε,FMCF, ‖ · ‖F ) ≤ (9/ε)(|U|+|I|+1)λnuc ,

which we plug back to (A.23) and obtain the desired result.

Discussion: the tightness of the generalization bounds.

When proving the bounds for both the transductive and inductive CF, we use the standard generaliza-
tion results based on Rademacher complexity, according to Bartlett and Mendelson [4] and El-Yaniv
and Pechyony [9]. Their results rely on the following components:

• a symmetrization argument to bound the testing error;
• the Mcdiarmid’s inequality for bounded difference;
• the Rademacher contraction inequalities (Lemma A.5 and Lemma A.6).

All these results are known to be tight, so the question narrows down to the tightness of our bounds
on the Rademacher complexities. To see that the provided result for NCF are tight up to a constant
factor of

√
q, we simply consider the following construction: xu,i 7→ λ1 · λ2 · · ·λq · σ(Wq+1xu,i),

which belongs to the general NCF family, and the worst-case scenario for computing Rademacher
complexity is obvious given by:

λ1 · λ2 · · ·λq · σ
(

max
u,i:‖zu+zi‖2

zu + zi

)
,

where we use NCF-a for example. Here, all the training samples are (u, i) = argmaxu,i:‖zu+zi‖2 .
Consequently, the Rademacher complexity is at least BNCF

∏q
i=1 λi.

On the MCF side, it is pointed out by [3] that for the spectral norm of Rademacher matrix, the
dependency on

√
|I| and 4

√
log |U| are inevitable, and therefore our result for transdutive MCF is

also tight up to constants. As for the inductive setting, we refer to the results in Candès and Recht [6]
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that the bound with
√

(
√
|D|+

√
|U|)

/√
n1 is not improvable. Notice that they assume a uniform

distribution over the matrix indices, where our result is distribution-free. However, despite several
minor discrepancies, their setting can be recognized as a special case of our problem, and thus we
conjecture that our results for MCF can be further tightened to get rid of the log n dependency, e.g.
by deriving the covering number for nuclear-norm-constraint matrices instead of using the existing
result for low-rank matrices.

A.4 Auxiliary Lemmas

Lemma A.3 (Adapted from Cho and Saul [7]). Define the shorthand ς(u) := 1
2 (1 + sign(u)). For

x,y ∈ Rd, the nth order arc-cosine kernel is defined as:

Kn(x,y) =
1

π
‖x‖n2‖y‖n2Jn(θ),

where Jn(θ) = (−1)n(sin θ)2n+1
(

1
sin θ

d
dθ

)n(π−θ
sin θ

)
. Then the arc-cosine kernel has an equivalent

integral representation:

Kn(x,y) = 2

∫
dw

exp(−‖w‖
2
2

2 )

(2π)d/2
ς(wᵀx)ς(wᵀy)(wᵀx)n(wᵀy)n.

For instance, when n = 0, K0(x,y) = 1− 1
π cos−1 xᵀy

‖x‖2‖y‖2 .

Lemma A.4 (Euler’s Theorem for homogeneous functions). If f(θ, ·) is L-homogeneous, then:

• ∇f(αθ, ·) = αL−1∇f(θ, ·),

•
〈
θ,∇f(θ, ·)

〉
= L · f(θ, ·),

if f(θ, ·) is differentiable.

The proof for the Lemma is relatively standard, so we do not repeat it here.
Lemma A.5 (Ledoux and Talagrand [17]). Let f : R+ →: R+ be convex and increasing. Let
φi : R→ R satisfy φi(0) = 0 and is Lipschitz with constant L. Then for any V ∈ Rn:

Ef
(1
2
sup
v∈V

∣∣∣ n∑
i=1

εiφi(vi)
∣∣∣) ≤ Ef

(
L · 1

2
sup
v∈V

∣∣∣ n∑
i=1

εivi

∣∣∣),
where εi are the standard Rademacher random variables.

The similar contraction result in the transductive setting is given as below.
Lemma A.6 (Lemma 5 of El-Yaniv and Pechyony [9]). Consider V ∈ Rn1+n2 . Let f, g : R→ R be
such that for all 1 ≤ i ≤ n1 + n2 and v,v′ ∈ V ,

∣∣f(v1)− f(v′1)
∣∣ ≤ L∣∣g(v1)− g(v′1)

∣∣, then:

E
{
sup
v∈V

n1+n2∑
i=1

εi(p)f(vi)
}
≤ E

{
L · sup

v∈V

n1+n2∑
i=1

εi(p)g(vi)
}
,

for any p ∈ [0, 1/2].
Lemma A.7 (Concentration of random matrices.). Let X be a m× n matrix with m > n.

• By Bandeira et al. [3], if X is composed of independent Rademacher random variables,
then:

E‖X‖sp . 4
√
log n

√
m.

• By Tropp [21], if X is composed of independnet zero-mean random variables, then:

E‖X‖sp . max
i

√∑
j

EX2
i,j +max

j

√∑
i

EX2
i,j + 4

√∑
i,j

EX4
i,j



A.5 EXPERIMENT DETAILS

Lemma A.8. Let P and Q be the training and target distribution supported on SP ,SQ ⊆ D, and
w(u, i) = Q(u,i)

P (u,i) , for (u, i) ∈ SP ∩ SQ. Dn consists of training instances sampled i.i.d from P .
Given a single hypothesis f ∈ F , suppose wui ∈ (0, 1), for any δ > 0, it holds with probability at
least 1− δ that:

EQR(f) ≤ EPn,wR(f) +
2 log 1

δ

3n
+

√
2d(P‖Q) log 1

δ

n
,

where d(P‖Q) =
∫
SQ(dP/dQ)dP .

The above result for importance weighting of a single hypothesis is stated in the Theorem 1 of [8].

A.5 Experiment details

Both MCF and NCF are implemented in Tensorflow 2.3, and the computation infrastructure involves
a Nvidia Tesla V100 GPU with 32 Gb memory. We provide a kernel SVM implementation using the
python Scikit-learn package, and a CVX implementation using the Python CVXOPT API. The code
is also provided as a part of the supplementary material.

As we mentioned in the main paper, we use the log loss `(u) = log(1 + exp(−u)) for all our
experiments. The metrics we consider, i.e. the ranking AUC, top-k hitting rate and NDCG are
computed from a scan over all the possible candidates. Since there is only one relevant item (the last
interacted item) for each user, then according to Rendle [19], the metric computations are simplified
to:

• Suppose the ranking of the relevant item, among the whole set of candidate items: Ĩ(u) =
I − {i | (u, i) ∈ Dtrain}, is given by r for user u. Then the ranking AUC for user u is given
by: AUC(u)=

(
|Ĩ(u)| − r

)
/
(
|Ĩ(u)| − 1

)
;

• The top-k hitting rate for user u is: HR@k(u)= 1[r ≤ k];
• the top-k NDCG for user u is: NDCG@k(u)= 1[r ≤ k] 1

log2(r+1) .

Then the overall metric is computed by taking the population average.

Since a large proportion of our discussion surrounds the gradient descent, we use the SGD optimizer
unless otherwise specified.

Experiment for Figure 1.

We point out that the data is relatively small after the subsampling so that the performance can
vary significantly across different sampled datasets. Therefore, we do not repeat the experiments on
different sampled datasets, but on the different splits (of generating negative samples). We point out
that sampling the movies by popularity is necessary, because otherwise, the obtained data will be
very sparse and thus not representative of the original dataset. After sampling 200 movies and 200
users, we end up with approximately 30,000 records for training when setting the number of negative
samples to 4. Notice that this already requires a 30,000×30,000 matrix for the kernel method.

The experiment setting follows that of the transductive CF, where the negative samples are constructed
via sampling without replacement, and the random splits are conducted before training. As for the
positive label, we adopt the standard setting where the last user-item interaction is used for testing,
and the rest are used for training. Notice that we do not need validation data in this case, because there
are no tuning parameters as we fixed the dimensions and learning rate, and do not use regularizations
of any kind.

Experiment for Figure 2.

We first use CVXOPT to obtain the exact solution of the convex nuclear-norm max-margin problem
in Theorem 2. The optimality is reached with the duality gap ≤ 1e−19. We use the same dataset
generated for the experiments in Figure 1. As we stated before, we consider the unscaled N(0, 0.1)
initialization, set the moderate width of d = 32 and the learning rate of 0.1. Again, the repetitions
are over the random splits of the negative samples. The normalized margin for the nuclear-norm
max-margin problem is obtained via: γSVM

u,i = yu,iXu,i/‖X‖∗, and the normalized margin for MCF
is obtained via: γMCF

u,i = yu,i〈zu, zi〉
/
‖ZUZᵀ

I‖∗.
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Experiment for Figure 3.

We use all the data for the inductive CF task, where the last user-item interaction is used for testing,
the second-to-last is used for validation, and the rest are used for training. The negative samples
are also obtained via sampling without replacement, where we fix the number of negative samples
to 4 for each positive interaction. Due to the sampling without replacement, setting the number of
negative samples per positive to a high value may not increase the total number of negative samples
proportionally (e.g. a user may have watched 300 out of the 1,000 movies). Therefore, we do not
tune the number of negative samples per positive.

We select d from {16, 32, 48} for MCF, and d ∈ {16, 32, 48}, d1 ∈ {8, 16, 24} for NCF (since we
study the two-layer setting). We experiment with a learning rate of {0.01, 0.05, 0.1, 0.2}, and do not
find a significant difference since we study the converged behavior after several thousand epochs. For
illustration purpose, we use 0.1 as the learning rate. We make the hyper-parameter selection over
one run and fix it during the rest repetitions. We find d = 32 and d = 32, d1 = 16 gives the best
performance for MCF and NCF, as we reported in Figure 3. The results reported in Figure 1 are the
average over 10 random splits of the negative samples (and random initializations).

Experiment for Figure 4 and 5.

The learning of the relevance mechanism, exposure mechanism and the final data generating mech-
anism are stated in Section 6. When learning the relevance and exposure mechanism, we do not
conduct the train/test split, since this step aims to construct the mechanisms according to the data,
rather than examining how the models fit the data. When the grel and gexpo are given by the MCF,
we use d = 32; and when they are given by the NCF, we use d = 32, d1 = 8. We do not tune these
hyperparameters due to the same reason stated above. We use the mean squared-root error (MSE)
and the binary cross-entropy loss when training the relevance and exposure models. Unlike training
for the CF tasks, we use the Adam optimizer with a learning rate of 0.001, which we find to work
well with the MSE.

After we settle down with the learnt relevance and exposure mechanism, we generate the observed
data according to the click model. Before that, we tune the µ and ρ in the relevance model to ensure
the generated data has about the same sparsity as the original data. Since neither MCF nor NCF
leverage the sequential information, the order by which we generate the interacted items for a specific
user is not important. After we generate the click data for all the user-item pairs, we sample from
the positive and negative parts with replacement to construct the training, validation and testing data,
according to the empirical data distribution (which is a uniform distribution over the indices).

All the results reported in Figure 4 and 5 about NCF are from the concatenation. We observe
that NCF with addition has very similar patterns in the inductive CF experiments, so we do not
report its results to avoid repetition. For MCF, we select d ∈ {16, 32, 48}, and for NCF we
select d ∈ {16, 32, 48}, d1 ∈ {8, 16, 24}. We also do not experiment on using regularizations
here. We repeat the generation, training, evaluation process for ten times. Each time, we tune the
hyperparameters according to the validation performance. The evaluation metric we report is the
biased and unbiased ranking AUC, where the biased AUC is computed in the regular fashion, and
the unbiased AUC is computed via: unbiased-AUC(u,i)=

(
|Ĩ(u)| − r(i)

)
/
(
|Ĩ(u)| − 1

)
· 1
p(Ou,i=1) ,

where r(i) is the ranking of item i in Ĩ(u).
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