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Abstract
While semi-supervised learning (SSL) has re-
ceived tremendous attentions in many machine
learning tasks due to its successful use of unla-
beled data, existing SSL algorithms use either all
unlabeled examples or the unlabeled examples
with a fixed high-confidence prediction during the
training progress. However, it is possible that too
many correct/wrong pseudo labeled examples are
eliminated/selected. In this work we develop a
simple yet powerful framework, whose key idea
is to select a subset of training examples from
the unlabeled data when performing existing SSL
methods so that only the unlabeled examples with
pseudo labels related to the labeled data will be
used to train models. The selection is performed
at each updating iteration by only keeping the
examples whose losses are smaller than a given
threshold that is dynamically adjusted through the
iteration. Our proposed approach, Dash, enjoys
its adaptivity in terms of unlabeled data selec-
tion and its theoretical guarantee. Specifically,
we theoretically establish the convergence rate of
Dash from the view of non-convex optimization.
Finally, we empirically demonstrate the effective-
ness of the proposed method in comparison with
state-of-the-art over benchmarks.

1. Introduction
In spite of successful use in a variety of classification and
regression tasks, supervised learning requires large amount
of labeled training data. In many machine learning ap-
plications, labeled data can be significantly more costly,
time-consuming and difficult to obtain than the unlabeled
data (Zhu, 2005), since they usually require experienced
human labors from experts (e.g., a doctor in detection of
covid-19 by using X-ray images). Typically, only a small
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amount of labeled data is available, but there is a huge
amount of data without label. This is one of key hurdles
in the development and deployment of machine learning
models.

Semi-supervised learning (SSL) is designed to improve
learning performance by leveraging an abundance of un-
labeled data along with limited labeled data (Chapelle et al.,
2006). In much recent work, SSL can be categorized into
several main classes in terms of the use of unlabeled data:
consistency regularization, pseudo labeling, generic regular-
ization (e.g., large margin regularization, Laplacian regular-
ization, etc (Chapelle et al., 2006)), and their combinations.
With the image data augmentation technique, consistency
regularization uses unlabeled data (Baird, 1992; Schmidhu-
ber, 2015) based on the condition that the model predictions
between different perturbed versions of the same image are
similar. Another line of work is to produce artificial label for
unlabeled data based on prediction model and add them to
the training data set. With different approaches of artificial
label production, varies of SSL methods have been proposed
in the literature including self-training (Yarowsky, 1995;
Lee, 2013; Rosenberg et al., 2005; Sajjadi et al., 2016; Laine
& Aila, 2017; Xie et al., 2020b) and co-training (Blum &
Mitchell, 1998; Zhou & Li, 2005; Sindhwani & Rosenberg,
2008; Wang et al., 2008; Yu et al., 2008; Wang & Zhou,
2010; Chen et al., 2011). Due to its capability to handle both
labeled data and unlabeled data, SSL has been widely stud-
ied in diverse machine learning tasks such as image classifi-
cation (Sajjadi et al., 2016; Laine & Aila, 2017; Tarvainen &
Valpola, 2017; Xie et al., 2020a; Berthelot et al., 2019b;a),
natural language processing (Turian et al., 2010), speech
recognition (Yu et al., 2010), and object detection (Misra
et al., 2015).

Numerous empirical evidences show that unlabeled data in
SSL can help to improve the learning performance (Berth-
elot et al., 2019b;a; Sohn et al., 2020), however, a series of
theoretical studies (Ben-David et al., 2008; Singh et al.,
2009; Li & Zhou, 2011b; Balcan & Blum, 2005) have
demonstrated that this success is highly relying on a nec-
essary condition that labeled data and unlabeled data with
pseudo label come from the same distribution during the
training process (Zhu, 2005; Van Engelen & Hoos, 2020).
Unfortunately, it has been shown that this condition does
not always hold in real applications and thus it could hurt
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(a) Number of selected unlabeled examples with correct
pseudo labels
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(b) Number of selected unlabeled examples with wrong
pseudo labels

Figure 1. An example of experimental results on Wide ResNet-28-8 for CIFAR-100 with 400 labeled images illustrates the reason of
dynamically selecting unlabeled data to train learning models. Pseudo labels are generated based on the prediction models. FixMatch
selects unlabeled example if its confidence prediction is greater than 0.95, while the proposed Dash algorithm selects unlabeled example
based on a dynamic threshold through optimization iterations. (a) The proposed Dash selects more examples with correct pseudo labels
than that of FixMatch. (b) The proposed Dash maintains much more examples with wrong pseudo labels at the beginning but it will drop
off more examples with wrong pseudo labels after several epochs, comparing to FixMatch.

the performance (Li et al., 2017; Oliver et al., 2018). For ex-
ample, the pseudo label of an unlabeled example generated
by conventional SSL methods during the training progress
is not correct (Hataya & Nakayama, 2019; Li et al., 2020).
In this case, the degradation of model performance has been
observed when using unlabeled data compared to the simple
supervised learning model not using any unlabeled data at
all (Chapelle et al., 2006; Oliver et al., 2018). Thus, not all
unlabeled data are needed in SSL.

To improve SSL performance, multiple studies (Guo et al.,
2020; Ren et al., 2020) examined the strategies of weighting
different training unlabeled examples by solving a bi-level
optimization problem. It is also a popular idea to select a
subset of training examples from unlabeled examples for
SSL. For example, FixMatch (Sohn et al., 2020) uses the
unlabeled examples with a fixed high-confidence prediction
(e.g., 0.95) in classification tasks using cross entropy loss.
However, the fixed threshold may lead to eliminate too many
unlabeled examples with correct pseudo labels (see Figure 1
(a)) and may lead to select too many unlabeled examples
with wrong pseudo labels (see Figure 1 (b)). That is to
say, the fixed threshold is possible not good enough during
the training progress and thus it could degrade the overall
performance.

Unlike the previous work, we aim to the proposed approach
enjoys its adaptivity in terms of unlabeled data selection
and its theoretical guarantee. This inspires us to consider
answering the following question in this study.

Can we design a provable SSL algorithm that selects
unlabeled data with dynamic thresholding?

To this end, we propose a generic SSL algorithm with
Dynamic Thresholding (Dash) that can dynamically select
unlabeled data during the training process. Specifically,
Dash firstly runs over labeled data and obtains a threshold
for unlabeled data selection. It then selects the unlabeled
data whose loss values are smaller than the threshold to
the training data-set. The value of threshold is gradually
decreased over the optimization iterations. It can be inte-
grated with existing SSL methods like FixMatch (Sohn et al.,
2020). From the view of optimization, we show that even-
tually the proposed Dash can non-asymptotically converge
with theoretical guarantee. Empirical evaluations on image
benchmarks validate the effectiveness of Dash comparing
with the state-of-the-art SSL algorithms.

2. Related Work
There has been growing interest in semi-supervised learn-
ing for training machine learning and deep learning (Flach,
2012; Goodfellow et al., 2016). A number of SSL methods
have been studied by leveraging the structure of unlabeled
data including consistency regularization (Bachman et al.,
2014; Sajjadi et al., 2016; Laine & Aila, 2017; Tarvainen
& Valpola, 2017; Miyato et al., 2018; Xie et al., 2020a),
entropy minimization (Grandvalet & Bengio, 2005; Lee,
2013), and other interesting approaches (Berthelot et al.,
2019b;a). In addition, several studies on SSL have been



Dash: Semi-Supervised Learning with Dynamic Thresholding

proposed to keep SSL performing safe when using unla-
beled data, which is known as safe SSL (Li & Zhou, 2015).
An non-exhaustive list of those studies include (Cozman
et al., 2003; Singh et al., 2009; Li & Zhou, 2011a; Balsubra-
mani & Freund, 2015; Loog, 2015; Li et al., 2017; Krijthe
& Loog, 2017; Li et al., 2021; Mey & Loog, 2019; Guo
et al., 2020). For example, Ren et al. (2020) proposed a
new SSL framework that uses an individual weight for each
unlabeled example, and it updates the individual weights
and models iteratively by solving a bi-level optimization
problem approximately. In this paper, we mainly focus on
improved deep SSL methods with the use of unlabeled data
selection. Comprehensive surveys on SSL methods could
be refer to (Zhu, 2005; Chapelle et al., 2006; Zhu & Gold-
berg, 2009; Hady & Schwenker, 2013; Van Engelen & Hoos,
2020).

The use of unlabeled data selection by a threshold is not
new in the literature of SSL. As a simple yet widely used
heuristic algorithm, pseudo-labeling (Lee, 2013) (a.k.a. self-
training (McLachlan, 1975; Yarowsky, 1995; Rosenberg
et al., 2005; Sajjadi et al., 2016; Laine & Aila, 2017; Xie
et al., 2020b)) uses the prediction model itself to generate
pseudo labels for unlabeled images. Then the unlabeled im-
ages whose corresponding pseudo label’s highest class prob-
ability is larger than a predefined threshold will be used for
the training. Nowadays, pseudo-labeling has been become
an important component of many modern SSL methods (Xie
et al., 2020a; Sohn et al., 2020).

With the use of weak and strong data augmentations, sev-
eral recent works such as UDA (Xie et al., 2020a), ReMix-
Match (Berthelot et al., 2019a) and FixMatch (Sohn et al.,
2020) have been proposed in image classification problems.
Generally, they use a weakly-augmented 1 unlabeled image
to generate a pseudo label and enforce consistency against
strongly-augmented 2 version of the same image. In par-
ticular, UDA and FixMatch use a fixed threshold to retain
the unlabeled example whose highest probability in the pre-
dicted class distribution for the pseudo label is higher than
the threshold. For example, UDA sets this threshold to be
0.8 for CIFAR-10 and SVHN, and FixMatch sets the thresh-
old to be 0.95 for all data-sets. To encourage the model
to generate high-confidence predictions, UDA and ReMix-
Match sharpen the guessed label distribution by adjusting
its temperature and then re-normalize the distribution. Sohn
et al. (2020) have shown that the sharpening and threshold-
ing pseudo-labeling have a similar effect.

By contrast, the proposed Dash method selects a subset

1Both UDA and ReMixMatch use crop and flip as “weak”
augmentation while FixMatch uses flip and shift.

2For “strong” augmentation, UDA uses RandAugment (Cubuk
et al., 2020), ReMixMatch uses CTAugment (Cubuk et al., 2019),
and FixMatch uses both.

of unlabeled data to be used in training models by a data-
dependent dynamic threshold, and its theoretical conver-
gence guarantee is established for stochastic gradient de-
scent under the non-convex setting, which is applicable to
deep learning.

3. Preliminary and Background
3.1. Problem Setting

We study the task of learning a model to map an input
x ∈ X ⊆ Rd onto a label y ∈ Y . In many machine learning
applications, x refers to the feature and y ∈ Y refers to
the label for classification or regression. For simplicity, let
ξ denote the input-label pair (x,y), i.e. ξ := (x,y). We
denote by P the underlying distribution of data pair ξ, then
ξ ∼ P . The goal is to learn a model w ∈ Rd via minimizing
an optimization problem whose objective function F (w) is
the expectation of random loss function f(w; ξ):

min
w∈Rd

F (w) := Eξ∼P [f (w; ξ)] , (1)

where Eξ[·] is an expectation taking over random variable
ξ ∼ P . The optimization problem (1) covers most machine
learning and deep learning applications. In this paper, we
consider the classification problem with K-classes, whose
loss function is the cross-entropy loss given by

f(w; ξi) = H(yi,p(w;xi))

:=

K∑
k=1

−yi,k log

(
exp(pk(w;xi))∑K
j=1 exp(pj(w;xi))

)
, (2)

where p(w;x) is the prediction function and H(q,p) is the
cross-entropy between q and p. In this paper, we do not
require the function f(w; ξ) to be convex in terms of w,
which is applicable to various deep learning tasks.

In SSL, it consists of labeled examples and unlabeled exam-
ples. Let

Dl := {(xi,yi), i = 1, . . . , Nl} (3)

be the labeled training data. Given unlabeled training ex-
amples {xui , i = 1, 2, . . . , Nu}, one can generate pseudo
label ŷui based on the predictions of a supervised model
on labeled data. Different SSL methods such as pseudo-
labeling (Lee, 2013), Adversarial Training (Miyato et al.,
2018), UDA (Xie et al., 2020a), and FixMatch (Sohn et al.,
2020) have been proposed to generate pseudo labels. We
denote by

Du := {(xui , ŷui ), i = 1, . . . , Nu} (4)

the unlabeled data, where ŷui ∈ Y is the pseudo label. Al-
though it contains pseudo label, we still call Du unlabeled
data for simplicity in our analysis. Usually, the number
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of unlabeled examples is much larger than the number of
labeled examples, i.e., Nu � Nl. Finally, the training data
consists of labeled data Dl and unlabeled data with pseudo
label Du, and thus the training loss of an SSL algorithm usu-
ally contains supervised loss Fs and unsupervised loss Fu
with a weight λu > 0: Fs + λuFu, where Fs is constructed
on Dl and Fu is constructed on Du. In image classification
problems, Fs is just the standard cross-entropy loss:

Fs(w) :=
1

Nl

Nl∑
i=1

f(w; ξi), (5)

where ξi ∈ Dl and f is defined in (2). Thus, different
constructions of the unsupervised loss Fu lead to different
SSL methods. Typically, there are two ways of constructing
Fu: one is to use pseudo labels to formulate a “supervised”
loss such as cross-entropy loss (e.g., FixMatch), and another
one is to optimize a regularization that does not depend on
labels such as consistency regularization (e.g., Π-Model).
Next, we will introduce a recent SSL work to interpret how
to generate pseudo labels and construct unsupervised loss
Fu.

3.2. FixMatch: An SSL Algorithm with Fixed
Thresholding

Due to its simplicity yet empirical success, we select Fix-
Match (Sohn et al., 2020) as an SSL example in this subsec-
tion. Besides, we consider FixMatch as a warm-up of the
proposed algorithm, since FixMatch uses a fixed threshold
to ratain unlabeled examples and it will be used as a pipeline
in the proposed algorithm.

The key idea of FixMatch is to use a separate weak and
strong augmentation when generating models predicted
class distribution and one-hot label in unsupervised loss.
Specifically, based on a supervised model w and a weak
augmentation α, FixMatch predict the class distribution

hi = p(w, α(xui )) (6)

for a weakly-augmented version of a unlabeled image xui ,
where p(w,x) is the prediction function. Then it creates a
pseudo label by

ŷui = arg max(hi). (7)

Following by (Sohn et al., 2020), the arg max applied to
a probability distribution produces a “one-hot” probability
distribution. To construct the unsupervised loss, it computes
the model prediction for a strong augmentation T of the
same unlabeled image xui :

p(w, T (xui )). (8)

The unsupervised loss is defined as the cross-entropy be-
tween ŷui and pi:

H(ŷui ,p(w, T (xui ))). (9)

Eventually, FixMatch only uses the unlabeled examples with
a high-confidence prediction by selecting based on a fixed
threshold τ = 0.95. Therefore, in FixMatch the cross-
entropy loss with pseudo-label and confidence for unlabeled
data is given by

Fu(w) =
1

Nu

Nu∑
i=1

I(max(hi) ≥ τ)H(ŷui ,p(w, T (xui ))),

(10)

where I(·) is an indicator function.

As we discussed in introduction, this fixed threshold may
lead to eliminate/select too many unlabeled examples with
correct/wrong pseudo labels (see Figure 1), which even-
tually could drop off overall performance. It is a natural
choice: the threshold is not fixed across the optimization
iterations. Thus, in the next section, we are going to propose
a new SSL scheme having a dynamic threshold.

4. Dash: An SSL Algorithm with Dynamic
Thresholding

Before introducing the proposed method, we would like
to point out the importance of unlabeled data selection in
SSL from the theoretical view of optimization. Classical
SSL methods (Zhu, 2005; Chapelle et al., 2006; Zhu &
Goldberg, 2009; Hady & Schwenker, 2013; Van Engelen
& Hoos, 2020) assume that labeled data and unlabeled data
are from the same distribution. That is to say, ξ ∼ P holds
for ξ ∈ Dl ∪ Du. Then SSL methods aim to solve the
optimization problem (1) by using a standard stochastic
optimization algorithm like mini-batch stochastic gradient
descent (SGD). Specifically, at iteration t, mini-batch SGD
updates intermediate solutions by

wt+1 = wt −
η

m

m∑
i=1

∇f(wt; ξt,i), (11)

where m is the mini-batch size, ξt,i is sampled from train-
ing data Dl ∪Du, ∇f(w; ξ) is the gradient of f(w; ξ) in
terms of w. In this situation, the theoretical convergence
guarantee of SSL algorithms can be simply established un-
der mild assumptions on objective function f(w; ξ) such as
smoothness and bounded variance (Ghadimi et al., 2016). If
the labeled data and unlabeled data are not from the same
distribution such as some of pseudo labels are not correct,
classical SSL methods with standard stochastic optimiza-
tion algorithm may lead to the performance drops (Chapelle
et al., 2006; Oliver et al., 2018). Besides, the theoretical
guarantee of the optimization algorithm for this case is not
clear. This inspires us to design a new algorithm to over-
come this issue. To this end, we proposed an SSL method
that can dynamically select unlabeled examples during the
training progress.
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Algorithm 1 Dash: Semi-Supervised Learning with Dynamic Thresholding
Input: learning rate η0 and mini-batch size m0 for stage one, learning rate η and parameter m of mini-batch size for stage
two, two parameters C > 1 and γ > 1 for computing threshold, and violation probability δ.
// Warm-up Stage: run SGD in T0 iterations.
Initialization: u0 = w0

for t = 0, 1, . . . , T0 − 1 do
Sample m0 examples ξt,i (i = 1, . . . ,m0) from Dl,
ut+1 = ut − η0g̃t where g̃t = 1

m0

∑m0

i=1∇fs(ut; ξt,i)
end for
// Selection Stage: run SGD in T iterations.
Initialization: w1 = uT0 .
Compute the value of ρ̂ as in (16). // In practice, ρ̂ can be obtained as in (17).
for t = 1, . . . , T do

1) Sample nt = mγt−1 examples from Du, where the pseudo labels in Du are generated by FixMatch
2) Set the threshold ρt = Cγ−(t−1)ρ̂.
3) Compute truncated stochastic gradient gt as (18).
4) Update solution by SGD using stochastic gradient gt and learning rate η: wt+1 = wt − ηgt.

end for
Output: wT+1

First, let us define the loss function for the proposed method.
Same as FixMatch, the supervised loss Fs(w) for the pro-
posed method is the standard cross-entropy loss on labeled
data Dl:

Fs(w) :=
1

Nl

Nl∑
i=1

fs(w; ξi), (12)

where ξi = (xi,yi) is sampled from Dl, fs(w; ξi) =
H(yi,p(w;α(xi))), and α(x) is the weakly-augmented
version of x. Since the new dynamic threshold is not fixed,
we let it rely on the optimization iteration t and it is denoted
by ρt. Then the unsupervised loss is given by

Fu(w) =
1

Nu

Nu∑
i=1

I(fu(w; ξui ) ≤ ρt)fu(w; ξui ), (13)

where ξui = (xui , ŷ
u
i ) is sampled from Du, fu(w; ξui ) =

H(ŷui ,p(w; T (xui ))), T (x) is the strongly-augmented ver-
sion of x, and the pseudo label ŷui is generated based on (6)
and (7) using prediction model w and a unlabeled image xui .
The unsupervised loss (13) shows that the Dash will retain
the unlabeled example whose loss is smaller than the thresh-
old ρt. If we rewrite the indicator function I(max(hi) ≥ τ)
in (10) to an equivalent expression

I(− log(max(hi)) ≤ − log(τ)), (14)

we can consider − log(max(hi)) as a cross-entropy loss
for one-hot label. Roughly speaking, FixMatch retains the
unlabeled images with the loss − log(max(hi)) smaller
than −log(0.95) ≈ 0.0513. It is worth nothing that the
loss − log(max(hi)) contains the information of weakly-
augmented images, while the loss fu(w; ξui ) in (13) in-
cludes the information of both weakly-augmented and
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Figure 2. Comparison of fixed threshold and dynamic threshold.
Fixed threshold is in the scale of negative log: − log(0.95), dy-
namic threshold ρt = 1.0001γ−(t−1).

strongly-augmented images, meaning that the proposed
method considers the entire loss function.

We then need to construct ρt. Intuitively, with the increase
of the optimization iteration t, the loss function would de-
crease in general, so that ρt is also required to decrease.
Mathematically, we set the dynamic threshold ρt as a de-
creasing function of t, which is given by

ρt := Cγ−(t−1)ρ̂, (15)

where C > 1, γ > 1 are two constants. For example,
we set C = 1.0001 in our experiments and thus at first
iteration (i.e., t = 1) the unlabeled examples whose loss
values are smaller than ρt = 1.0001× ρ̂ will be used in the
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training. Figure 2 shows a comparison of fixed threshold
used in FixMatch and dynamic threshold ρt in (15) with
C = 1.0001, ρ̂ = 1 and different γ, where the threshold
in FixMatch is in the scale of negative log. It seems our
thresholding strategy matches the curve of training loss in
many real applications (e.g., see Figure 1 (a) of (Zhang et al.,
2017)).

Next, it is important to estimate the value of ρ̂. In theory, it
can be estimated by

ρ̂ = max

{
a,

4G2 (1 + δb0m)

δµa0m

}
, (16)

where contains several parameters related to the property of
considered problem (1) whose detailed definitions can be
found in Theorem 1. Please note that the estimation of ρ̂ in
(16) is for the use of convergence analysis only. In practice,
we can use the following averaged loss from the training set
Dl as the approximate ρ̂:

ρ̂ ≈ 1

|Dl|
∑
ξi∈Dl

f(w1; ξi), (17)

where |Dl| is the number of examples in Dl, and w1 can
be learned on Dl. We can see from (17) with (13) and (15)
that the unlabeled examples whose losses are smaller than
the averaged loss of labeled examples will be maintained
during the training process.

Finally, it is ready to describe the proposed Dash algorithm
in details that contains two stages: warm-up stage and se-
lection stage. In the warm-up stage, it runs SGD to train a
model over labeled data Dl in certain steps. Not only for
warm-up, this stage is also used for estimating ρ̂ in (17).
In the selection stage, we conduct SGD against Du using
w1 as the initial solution. At each iteration t, we sample
nt = mγt−1 training examples from Du, where m > 1
is a parameter defined in (24). We compute the stochastic
gradients according to (13):

gt =

∑nt

i=1 I(fu(wt; ξ
u
t,i) ≤ ρt)∇fu(wt; ξ

u
t,i)∑nt

i=1 I(fu(wt; ξut,i) ≤ ρt)
. (18)

Since Nl is small, in practice we can also construct the
stochastic gradient by using all labeled data as

gt =

∑nt−Nl

i=1 I(fu(wt; ξ
u
t,i) ≤ ρt)∇fu(wt; ξ

u
t,i)

Nl +
∑nt−Nl

i=1 I(fu(wt; ξut,i) ≤ ρt)

+

∑Nl

i=1∇fs(wt; ξt,i)

Nl +
∑nt−Nl

i=1 I(fu(wt; ξut,i) ≤ ρt)
, (19)

where ξut,i = (xut,i, y
u
t,i) ∈ Du and ξt,i = (xt,i, yt,i) ∈ Dl.

The solution is then updated by mini-batch SGD, whose
update step is given by

wt+1 = wt − ηgt. (20)

The detailed updating steps of the proposed algorithm are
presented in Algorithm 1, which called SSL with Dynamic
Thresholding (Dash).

5. Convergence Result
To establish the convergence result of the proposed Dash
algorithm, we need to give some preliminaries. Recall that
the training examples for the labeled data Dl follow the
distribution P , and we aim to minimize the optimization
problem (1). For the examples coming from the unlabeled
data Du, suppose it is a mixture of two distributions, P and
Q. More specifically, with a probability q, we will sample
an example from P and with a probability 1 − q sample
from Q:

ξ ∼ qP + (1− q)Q, where ξ ∈ Du, q ∈ (0, 1). (21)

We define the objective function B(w) as the expected loss
for distribution Q, i.e.

B(w) := Eξ∼Q [f (w; ξ)] . (22)

For the simplicity of convergence analysis, we do not con-
sider the weak and strong augmentations, i.e., let fs = fu =
f in (12) and (13). Without loss of generality, we assume
that our loss function is non-negative and is bounded by
1, i.e. f(w; ξ) ∈ [0, 1] for any w and ξ. Then by (1) and
(22), we have F (w) ∈ [0, 1] and B(w) ∈ [0, 1]. In order
to differentiate the two distribution, we follow the idea of
Tsybakov noisy condition (Mammen et al., 1999; Tsybakov,
2004), and assume, for any solution w, if F (w) ≤ a, then

Eξ∼Q
[
I{ξ:f(w;ξ)≤F (w)}(ξ)

]
≤ bAθ(w), (23)

where IS(ξ) is an indicator function, θ ≥ 1, and b is con-
stant.

Finally, we made a few more assumptions that are com-
monly used in the studies of non-convex optimization (e.g.,
deep learning) (Ghadimi & Lan, 2013; Yuan et al., 2019).
Throughout this paper, we also make the assumptions on
the problem (1) as follows.
Assumption 1. Assume the following conditions hold:

(i) The stochastic gradient∇f(w; ξ) is unbiased, i.e.,

Eξ∼P [∇f(w; ξ)] = ∇F (w),

and there exists a constant G > 0, such that

‖∇f(w; ξ)‖ ≤ G.

(ii) F (w) is smooth with a L-Lipchitz continuous gradient,
i.e., it is differentiable and there exists a constantL > 0
such that

‖∇F (w)−∇F (u)‖ ≤ L‖w − u‖,∀w,u ∈ Rd.
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Table 1. Comparison of top-1 testing error rates for different methods using Wide ResNet-28-2 for CIFAR-10, Wide ResNet-28-8 for
CIFAR-100 (in %, mean ± standard deviation).

CIFAR-10 CIFAR-100

Algorithm 40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels
Π-Model - 54.26±3.97 14.01±0.38 - 57.25±0.48 37.88±0.11

Pseudo-Labeling - 49.78±0.43 16.09±0.28 - 57.38±0.46 36.21±0.19
Mean Teacher - 32.32±2.30 9.19±0.19 - 53.91±0.57 35.83±0.24

MixMatch 47.54±11.50 11.05±0.86 6.42±0.10 67.61±1.32 39.94±0.37 28.31±0.33
UDA 29.05±5.93 8.82±1.08 4.88±0.18 59.28±0.88 33.13±0.22 24.50±0.25

ReMixMatch 19.10±9.64 5.44±0.05 4.72±0.13 44.28±2.06 27.43±0.31 23.03±0.56
RYS (UDA) - 5.53±0.17 4.75±0.28 - - -

RYS (FixMatch) - 5.05±0.12 4.35±0.06 - - -
FixMatch (CTA) 11.39±3.35 5.07±0.33 4.31±0.15 49.95±3.01 28.64±0.24 23.18±0.11

Dash (CTA, ours) 9.16±4.31 4.78±0.12 4.13±0.06 44.83±1.36 27.85±0.19 22.77±0.21
FixMatch (RA) 13.81±3.37 5.07±0.65 4.26±0.05 48.85±1.75 28.29±0.11 22.60±0.12

Dash (RA, ours) 13.22±3.75 4.56±0.13 4.08±0.06 44.76±0.96 27.18±0.21 21.97±0.14

Assumption 1 (i) assures that the stochastic gradient of the
objective function is unbiased and the gradient of f(w; ξ)
in terms of w is upper bounded. Assumption 1 (ii) says
the objective function is L-smooth, and it has an equivalent
expression which is ∀w,u ∈ Rd,

F (w)− F (u) ≤ 〈∇F (u),w − u〉+
L

2
‖w − u‖2.

We now introduce an important property regarding F (w),
i.e. the Polyak-Łojasiewicz (PL) condition (Polyak, 1963)
of F (w).

Assumption 2. There exists µ > 0 such that

2µ(F (w)− F (w∗)) ≤ ‖∇F (w)‖2,∀w ∈ Rd.

This PL property has been theoretically and empirically ob-
served in training deep neural networks (Allen-Zhu et al.,
2019; Yuan et al., 2019). This condition is widely used to
establish convergence in the literature of non-convex opti-
mization, please see (Yuan et al., 2019; Wang et al., 2019;
Karimi et al., 2016; Li & Li, 2018; Charles & Papailiopou-
los, 2018) and references therein.

Now, we are ready to provide the theoretical result for Dash.
Without loss of generality, let F (w∗) = 0 in the analysis.
Please note that this is a common property observed in train-
ing deep neural networks (Zhang et al., 2017; Allen-Zhu
et al., 2019; Du et al., 2019; Arora et al., 2019; Chizat et al.,
2019; Hastie et al., 2019; Yun et al., 2019). The following
theorem states the convergence guarantee of the proposed
Dash algorithm. We include its proof in the Appendix.

Theorem 1. Under Assumptions 1 and 2, suppose that C >
1 and F (w∗) = 0, for any δ ∈ (0, 1), η0L ≤ 1, ηL ≤ 1, let

T0 = log(2F (w0)/a)
log(1/(1−η0µ)) , m0 = 4G2

δµa ,

m =

⌈
max

(√
log(2/δ)

q2
,

√
log(2/δ)

(1− q)2
,

√
log(2/δ)

q(1− C−1)2

)⌉
,

(24)

ρ̂ = max

{
a,

4G2 (1 + δb0m)

δµa0m

}
(25)

in Algorithm 1, then with a probability 1− (4T + 1)δ, we
have F (wT+1) ≤ ρ̂γ−T .

Remark. We can see from the above result that one can
set the iteration number T to be large enough to ensure
the convergence of Dash. Specifically, in order to have an
ε optimization error, one can set T = log(ρ̂/ε)/ log(γ),
then F (wT+1) ≤ ε. The total sample complexity of Dash is
T0m0+

∑T
t=1mγ

t−1 ≤ T0m0+mγT

γ−1 = T0m0+ mρ̂
ε(γ−1) =

O(1/ε). This rate matches the result of supervised learning
in (Karimi et al., 2016) when analyzing the standard SGD
under Assumptions 1 and 2.

6. Experiments
In this section, we present some experimental results for
image classification tasks. To evaluate the efficacy of Dash,
we compare it with several state-of-the-art (SOTA) baselines
on several standard SSL image classification benchmarks
including CIFAR-10, CIFAR-100 (Krizhevsky & Hinton,
2009), SVHN (Netzer et al., 2011), and STL-10 (Coates
et al., 2011) data sets. Specifically, SOTA baselines are Mix-
Match (Berthelot et al., 2019b), UDA (Xie et al., 2020a),
ReMixMatch (Berthelot et al., 2019a), FixMatch (Sohn



Dash: Semi-Supervised Learning with Dynamic Thresholding

Table 2. Comparison of top-1 testing error rates for different methods using Wide ResNet-28-2 for SVHN and Wide ResNet-37-2 for
STL-10 (in %, mean ± standard deviation).

SVHN STL-10

Algorithm 40 labels 250 labels 1000 labels 1000 labels
Π-Model - 18.96±1.92 7.54±0.36 26.23±0.82

Pseudo-Labeling - 20.21±1.09 9.94±0.61 27.99±0.83
Mean Teacher - 3.57±0.11 3.42±0.07 21.43±2.39

MixMatch 42.55±14.53 3.98±0.23 3.50±0.28 10.41±0.61
UDA 52.63±20.51 5.69±2.76 2.46±0.24 7.66±0.56

ReMixMatch 3.34±0.20 2.92±0.48 2.65±0.08 5.23±0.45
RYS (UDA) - 2.45±0.08 2.32±0.06 -

RYS (FixMatch) - 2.63±0.23 2.34±0.15 -
FixMatch (CTA) 7.65±7.65 2.64±0.64 2.36±0.19 5.17±0.63

Dash (CTA, ours) 3.14±1.60 2.38±0.29 2.14±0.09 3.96±0.25
FixMatch (RA) 3.96±2.17 2.48±0.38 2.28±0.11 7.98±1.50

Dash (RA, ours) 3.03±1.59 2.17±0.10 2.03±0.06 7.26±0.40

et al., 2020) and the algorithm RYS from (Ren et al., 2020)3.
Besides, other SSL algorithms such as Π-Model (Ras-
mus et al., 2015), Pseudo-Labeling (Lee, 2013) and Mean
Teacher (Tarvainen & Valpola, 2017) are included in the
comparison.

6.1. Data-sets

The original CIFAR data-sets have 50,000 training im-
ages and 10,000 testing images of 32×32 resolutions, and
CIFAR-10 has 10 classes containing 6,000 images each,
while CIFAR-100 has 100 classes containing 600 images
each. The original SVHN data-set has 73,257 digits for
training and 26,032 digits for testing, and the total number
of classes is 10. The original STL-10 data set has 5,000 la-
beled images from 10 classes and 100,000 unlabeled images,
which contains out-of-distribution unlabeled images.

Following by (Sohn et al., 2020), we train ten benchmarks
with different settings: CIFAR-10 with 4, 25, or 400 la-
bels per class, CIFAR-100 with 4, 25, or 100 labels per
class, SVHN with 4, 25, or 100 labels per class, and the
STL-10 data set. For example, the benchmark CIFAR-10
with 4 labels per class means that there are 40 labeled im-
ages in CIFAR-10 and the remaining images are unlabeled,
and then we denote this data set by CIFAR-10 with 40 la-
bels. For fair comparison, same sets of labeled images from
CIFAR, SVHN and STL-10 were used for the proposed
Dash method and other baselines in all experiments.

3Since the authors did not name their algorithm, we use RYS
to denote their algorithm for simplicity, where RYS is the combi-
nation of initials for last names of the authors.

6.2. Models and Hyper-parameters

We use the Wide ResNet-28-2 model (Zagoruyko & Ko-
modakis, 2016) as the backbone for CIFAR-10 and SVHN,
Wide ResNet-28-8 for CIFAR-100, and Wide ResNet-37-2
for STL-10. In the proposed Dash, we use FixMatch 4 as
our pipeline to generate pseudo labels and to construct su-
pervised and unsupervised losses. We employ CTAugment
(CTA) (Cubuk et al., 2019) and RandAugment (RA) (Cubuk
et al., 2020) for the strong augmentation scheme following
by (Sohn et al., 2020). Similar to (Sohn et al., 2020), we
use the same training protocol such as optimizer, learning
rate schedule, data preprocessing, random seeds, and so on.

The total number of training epochs is set to be 1024 and
the mini-bach size is fixed as 64. For the value of weight
decay, we use 5 × 10−4 for CIFAR-10, SVHN and STL-
10, 1 × 10−3 for CIAR-100. The SGD with momentum
parameter of 0.9 is employed as the optimizer. The cosine
learning rate decay schedule (Loshchilov & Hutter, 2017) is
used as (Sohn et al., 2020). The initial learning rate is set to
be 0.06 for all data-sets. We use (18) to compute stochastic
gradients.

At the first 10 epochs, we do not implement the selection
scheme and thus the algorithm uses all selected training ex-
amples, meaning that the threshold is infinite, i.e., ρt =∞.
After that, we use the threshold to select unlabeled exam-
ples, and we choose γ = 1.27 in ρt to reduce the dynamic
threshold until its value to be 0.05. That is to say, in practice
we give a minimal value of dynamic threshold, which is
0.055. We fix the constant C as 1.0001 and estimate the

4In our experiments, the FixMatch codebase is used: https:
//github.com/google-research/fixmatch

5In practice, we use ρt = max{ρt, 0.05}.

https://github.com/google-research/fixmatch
https://github.com/google-research/fixmatch
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Table 3. Comparison of top-1 testing error rates for different values
of γ on CIFAR-10 (in %).

γ 1.01 1.1 1.2 1.3
250 labels 4.85 4.76 4.99 4.82
4000 labels 4.39 4.28 4.11 4.31

value of ρ̂ by using (17). We decay the dynamic threshold
every 9 epochs. We use the predicted label distribution as
soft label during the training and it is sharpened by adjusting
its temperature of 0.5, which is similar to MixMatch. Once
the dynamic threshold is reduced to 0.05, we turn it to one-
hot label in the training since the largest label probability is
close to 1.

6.3. Results

We report the top-1 testing error rates of the proposed
Dash along within other baselines for CIFAR in Table 1
and for SVHN and STL-10 in Table 2, where all the results
of baselines are from (Sohn et al., 2020) except that the
results of RYS are from (Ren et al., 2020). All top-1 testing
error rates are averaged over 5 independent random trails
with their standard deviations using the same random seeds
as baselines used.

We can see from the results that the proposed Dash method
has the best performance on CIFAR-10, SVHN and STL-
10. For CIFAR-100, the proposed Dash is comparable to
ReMixMatch, where ReMixMatch performs a bit better
on 400 labels and Dash using RA is a bit better on 2500
labels and 10000 labels. This reason is that the proposed
Dash uses FixMatch as its pipeline, and ReMixMatch uses
distribution alignment (DA) to encourages the model to
predict balanced class distribution (the class distribution
of CIFAR-100 is balanced), while FixMatch and Dash do
not use DA. We further conduct Dash with DA technique
on CIFAR-100 with 400 labels, and the top-1 testing error
rate is 43.31%, which is better than ReMixMatch (44.28%).
We also find that Dash performs well on the data set with
out-of-distribution unlabeled images, i.e., STL-10. The
result in Table 2 shows that Dash with CTA has the SOTA
performance of 3.96% on top-1 testing error rate.

Besides, the proposed Dash can always outperform Fix-
Match, showing that the use of dynamic threshold is im-
portant to the overall performance. We find the proposed
Dash has large improvement when the labeled examples is
small (the data-sets with 4 labels per classes), comparing
to FixMatch. By using CTA, on CIFAR-100 with 400 la-
bels, on CIFAR-10 with 40 labels, and on SVHN with 40
labels, the proposed Dash method outperforms FixMatch
result more than 19%, 10%, and 58% in the terms of top-1
testing error rate, respectively. While by using RA, the corre-
sponding improved rates are 4%, 8%, and 23% respectively.

Table 4. Comparison of top-1 testing error rates for PL and Dash
with PL on CIFAR-10 (in %).

Algorithm PL Dash-PL
250 labels 49.78 46.90
4000 labels 16.09 15.59

These results reveal that the dynamic unlabeled example
selection is an important term in SSL when the labeled data
is small.

6.4. Ablation study

In this subsection, we provide two ablation studies using
data sets CIFAR-10 with 250 labels and CIFAR-10 with
4000 labels. The first one is to use different γ in the dynamic
threshold, and the second one is to change FixMatch to
Pseudo-Labeling as the pseudo label generator in Dash.

Different values of γ. Since γ is a key component of the
dynamic threshold, we conduct an ablation study on dif-
ferent values of γ in Dash. For simplicity, we only im-
plement the CTA case. We try four different values of
γ ∈ {1.01, 1.1, 1.2, 1.3} and summarize the results in Ta-
ble 3. Comparing these results with that in Table 1, we will
find that the choice of γ = 1.27 in the previous subsection
is not the best one. The results also show that Dash is not
so sensitive to γ in a certain range.

Dash with Pseudo-Labeling. Since Dash can be integrated
with many existing SSL methods, we use Pseudo-Labeling
(PL) (Lee, 2013) as the pipeline to generate pseudo labels
in Dash. The results are listed in Table 4, showing that
Dash can improve PL, especially when the labeled images
is small.

7. Conclusion
We propose a method Dash that dynamically selects unla-
beled data examples to train learning models. Its selection
strategy keeps the unlabeled data whose loss value does not
exceed a dynamic threshold at each optimization step. The
proposed Dash method is a generic scheme that can be easily
integrated with existing SSL methods. We demonstrate the
use of dynamically selecting unlabeled data can help to the
performance of existing SSL method FixMatch in the semi-
supervised image classification benchmarks, indicating the
importance of dynamic threshold in SSL. The theoretical
analysis shows the convergence guarantee of the proposed
Dash under the non-convex optimization setting.
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