
Supplementary Material to

Learner-Private Convex Optimization

In this supplementary material, we complete the proofs of the main results Theorems 1,2 in the
paper. An extension of the results to multi-dimensional separable functions is also included.

1 Proof of Main Results

1.1 Proof of Theorem 2 (Bayesian Setting)

1.1.1 Proof of the lower bound

To complete the lower bound proof of Theorem 2, it remains to prove Lemma 1, 2. We repeat here
the statements of the two lemmas.

Lemma 1. For all z ≥ 1/2, J, y, i, ρ(i), ρ− < 1/2, ρ+ > 1/2, for the event B = B(z, J, y, i, ρ(i), ρ−, ρ+)
defined as

B =
{
Az, X∗ ∈ J, Y = y, r(i) = ρ(i), F (q−) = ρ−, F (q+) = ρ+

}
,

we have
L (X∗ | B) = Unif[q−, q+],

where L(·) denotes the (conditional) distribution.

Lemma 2. For all i, we have that

E
(

log
|Ii+1 ∩ J∗|
|Ii ∩ J∗|

∣∣∣A) ≥ −P {qi+1 ∈ J∗ | A} . (1)

Proof of Lemma 1. Since the gradient of the convex function f∗ is defined with (f∗)′ = γ− + (γ −
γ−)F , the minimizer of f∗ is at the median of F , i.e.,

X∗ = inf

{
x : F (x) ≥ −γ−

γ+ − γ−
=

1

2

}
.

Under our prior construction, the distribution of F follows a Dirichlet process with the uniform
base distribution on [0, 1] and scale parameter α. Therefore with probability 1, F is a distribution
function with countably many points of discontinuity, which we will refer to as jumps. If we
characterize F with the stick breaking process, then the locations of the jumps are at X1, X2, ...
where the Xk’s are independently and uniformly distributed on [0, 1]. The sizes of the jumps
β1, β2, ... correspond to the lengths of the sticks from the stick-breaking process. We have

∑
βk = 1,

and the two sequences {Xk}k≥1 and {βk}k≥1 are independent.
To proceed, we first show that if the size of the largest jumps is larger than 1/2, then X∗ must

occur at the largest jump. That is,

A ⊂ ∪i≥1

{
X∗ = Xk, β(1) = βk

}
. (2)
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Figure 1: Conditional on X∗ ∈ J and the responses to the first i queries, the range of X∗ is
narrowed down to Ii∩J = [q−, q+]. Further conditioning on F (q−) = ρ− and F (q+) = ρ+, we show
that F restricted to [q−, q+] also follows a Dirichlet process after appropriate scaling.

To see why, recall that X∗ is the median of F . Thus F (X∗) ≥ 1/2 and supx<X∗ F (x) ≤ 1/2.
Suppose β(1) = βk. We consider two cases:

1. if X∗ < Xk, then F (Xk) ≥ F (X∗) + β(1) > 1;

2. if, on the other hand, X∗ > Xk, then F (Xk) ≤ supx<X∗ F (x)− β(1) ≤ 1/2− β(1) < 0.

In neither case can F be a distribution function. Therefore we must have X∗ = Xk is the location
of the largest jump.

For z ≥ 1/2, conditional on Az and X∗ ∈ [q−, q+], we know that X∗ is at the largest jump
in [q−, q+]. Moreover, since the learner would not have submitted any queries between q− and q+

at time i, the events conditioned on do not contain any information on the location of the largest
jump. Therefore the conditional distribution of X∗ is uniform. To prove the claim rigorously, we
need to invoke the self-similarity property of the Dirichlet process.

Recall that F follows a Dirichlet Process is supported on [0, 1] with base distribution λ[0,1]. The
self-similarity property asserts that for any finite partition 0 = x0 ≤ x1 ≤ ... ≤ xn−1 ≤ xn = 1 of
[0, 1], conditional on the realization of F on x1, ..., xn, the restriction of F onto each subinterval is
also a Dirichlet process scaled. In particular, for each j ≤ n, we have

L
(

[F ][xj ,xj+1] − tj
tj+1 − tj

∣∣∣ F (x1) = t1, ..., F (xn−1) = tn−1

)
= DP

(
λ[xj ,xj+1], αλ ([xj , xj+1])

)
,

where [F ]I denotes the function F restricted to interval I, λI denotes the uniform probability
measure on I, and λ(I) denotes the Lebesgue measure of I. This property is well-known, and
follows from the definition of the Dirichlet process. See Section 1.3 for a proof.

Importantly, the following is a direct consequence of the self-similarity property. For each
interval [a, b] ⊂ [0, 1], conditional on the value of F (a) and F (b), the distribution of F restricted to
[a, b] is independent of the realization of F outside of [a, b]. As a result, for each interval I ⊂ [0, 1],
given X∗ ∈ I, the learner cannot gain any additional information on X∗ without querying in I.
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This property ensures that the posterior distribution of X∗ conditional on A and the responses is
uniform between the two closest queries that sandwich X∗. Therefore, the learner cannot beat the
bisection search on the event A.

By definition of the learner’s interval Ii, none of the first i queries q1, ..., qi can be in Ii ∩ J =
[q−, q+]. Since X∗ is determined by the values of F inside [q−, q+], by the self-similarity property
of the Dirichlet process, X∗ is independent of the responses to the first i queries conditioning on
the values of F (q−) and F (q+). Therefore the event {r(i) = ρ(i)} can be dropped from B without
changing the conditional distribution of X∗. The indicator 1{X∗ ∈ J} is completely determined
by whether ρ− and ρ+ are above or below 1/2; and the outside randomness Y is independent of F .
Therefore we can drop both events {X∗ ∈ J} and {Y = y}, and obtain

L (X∗ | B) = L (X∗ | Az, F (q−) = ρ−, F (q+) = ρ+) .

By the self-similarity property of the Dirichlet process, given F (q−) = ρ− and F (q+) = ρ+,the
conditional distribution of (F − ρ−)/(ρ+− ρ−) restricted to [q−, q+] is also a Dirichlet process with
the uniform base distribution on [q−, q+] and scaling parameter α′ = α(q+ − q−). See Figure 1 for
an illustration of this step. In other words, there exist ancillary random vectors {X ′k}k≥1, {β′k}k≥1

generated from a stick-breaking process that characterize the distribution function

F̃ = (F − ρ−)/(ρ+ − ρ−)

on [q−, q+]. In addition, X ′k
i.i.d.∼ Unif[q−, q+], and ({X ′k}k≥1, {β′k}k≥1) is independent of (F (q−), F (q+)).

We claim that for all z ≥ 1/2, the event Az = {β(1) = z} is equivalent to {β′(1) = z/(ρ+− ρ−)}.
Suppose Az holds, and say β(1) = βj . Then by (2), X∗ = Xj . Thus [q−, q+] contains the largest

jump in F . Since F̃ is a scaled version of F restricted to [q−, q+], the largest jump of F̃ must be
of size z/(ρ+ − ρ−). Conversely, if β′(1) = z/(ρ+ − ρ−), then F contains a jump of size z. When

z ≥ 1/2, this must be the largest jump in F , i.e. β(1) = z.
Note that conditional on Az for z ≥ 1/2, X∗ can be written as the location of the largest jump

in F̃ . We have shown that X∗ and Az can both be expressed as functions that only depend on
{X ′k, β′k}. As a result,

L(X∗ | Az, F (q−) = ρ−, F (q+) = ρ+)

=L
(

location of the largest jump in F ′ | β′(1) =
z

ρ+ − ρ−
, F (q−) = ρ−, F (q+) = ρ+

)
(a)
=L

(
location of the largest jump in F ′ | β′(1) =

z

ρ+ − ρ−

)
(b)
=L

(
location of the largest jump in F ′

)
(c)
=L(X ′1) = Unif[q−, q+],

where (a) is from the independence between ({X ′k}k≥1, {β′k}k≥1) and (F (q−), F (q+)); (b) holds
because by the stick-breaking characterization of the Dirichlet process, the locations of the jumps
{βk}k≥1 and the sizes of the jumps {Xk}k≥1 are independent. More specifically, let j be the index of
the largest jump, i.e., β′(1) = β′j . Then j is only a function of {βk}k≥1 and is therefore independent

of {X ′k}k≥1. We have X ′j is independent of {β′k}k≥1, thus we can drop the conditional event which
only depends on {β′k}k≥1; (c) is again from the independence of j and {β′k}k≤1. Since {X ′k}k≥1 are
distributed i.i.d. Unif q−, q+, we have L(X ′j) = L(X ′1) = Unif[q−, q+].
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Proof of Lemma 2. From Lemma 1, we have L(X∗ | B) = Unif[Ii ∩ J ]. We claim that as a conse-
quence,

E
(

log
|Ii+1 ∩ J |
|Ii ∩ J |

∣∣∣B) ≥ −1{qi+1 = φi(ρ
(i), y) ∈ Ii ∩ J

}
. (3)

(3) can be interpreted as follows. Firstly, the interval Ii∩J∗ is only shortened when querying within
Ii ∩ J∗. Secondly, conditional on all instances of the behavior of F outside of Ii ∩ J∗, on average,
no query can reduce the length of Ii ∩ J∗ by more than a half. By taking the union of the events B
over all the variables z > 1/2, y ∈ [−0, 1], ρ− < 1/2, ρ+ > 1/2, ρ(i), and J ranging over J1, ..., J2/δ,
we arrive at the event A. Therefore, Lemma 2 follows from (3) by integrating over these variables.

We now prove (3). If qi+1 /∈ Ii ∩ J , then Ii+1 ∩ J = Ii ∩ J and the claim (3) trivially holds. If
qi+1 ∈ Ii ∩ J , we have

log
|Ii+1 ∩ J |
|Ii ∩ J |

= 1{X∗ ≤ qi+1} log
qi+1 − q−
q+ − q−

+ 1{X∗ > qi+1} log
q+ − qi+1

q+ − q−
.

Since the conditional distribution of X∗ is uniform, we have

E
(

log
|Ii+1 ∩ J |
|Ii ∩ J |

∣∣∣B) ≥ inf
t∈[0,1]

[t log t+ (1− t) log(1− t)] = −1.

We have finished the proof of (3) and, by consequence, Lemma 2.

1.1.2 Proof of the upper bound

To prove the upper bound in Theorem 2, we repeat here our proposed querying strategy under
the Bayesian setting. Recall that ν denotes the distribution of X∗. For an interval I ⊂ [0, 1], νI
denotes the probability distribution of ν conditioned on I, i.e., dνI

dν (x) = 1{x ∈ I}/ν(I).

Algorithm 1 Querying Strategy under the Bayesian Setting

1: Recursively query the median of the posterior distribution of X∗, until it is supported on an
interval I with ν(I) ∈ [2δLHα, 4δLHα].

2: Let κ` be the `/L quantile of νI for ` = 0, 1, ..., L and let I` = [κ`−1, κ`] for ` ∈ [L]. Query
κ1, ..., κL−1 and identify j∗ for f ′(κj−1) ≤ 0 and f ′(κj) > 0 so that Ij∗ contains X∗.

3: Query the median mj of νIj for j ∈ [L]. If f ′(mj∗) > 0, let Jj = [κj−1,mj ] for all j; otherwise
let Jj = [mj , κj ].

4: For all j 6= j∗, sample Xj ∼ νJj independently. Denote Xj∗ = X∗. For j = 1, ..., L, run the
regular bisection search on Jj to locate Xj up to ε-accuracy.

See Figure 2 for an illustration of Algorithm 1. Algorithm 1 is clearly ε-accurate by design. In
the paper, we proved that it is also (δ, L)-private, assuming that the following claims hold.

(i) X∗ | X1, ..., XL ∼ Unif{X1, ..., XL}.

(ii) With probability 1, |Xi −Xj | > δ for all i 6= j.

It remains to prove the two claims.
Proof of (i): Recall that the index of the subinterval containing X∗ is j∗. Since ν(Ij) are equal

for all j, j∗ is distributed uniformly in {1, ..., L}. Therefore the desired claim X∗ | X1, ..., XL ∼
Unif{X1, ..., XL} is equivalent to j∗ and (X1, ..., XL) being independent.
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Figure 2: Example of phases 2 to 4 of the querying strategy under the Bayesian setting with L = 3.
In phase 2, the learner queries the 1/3 and 2/3 quantile of νI (represented by the dashed lines),
and learns that X∗ ∈ I2. In phase 3, she queries the medians m1,...mL, and learners that X∗ is to
the left of m2. Therefore J1,...,JL are defined to be the shaded intervals. In phase 4, X1 and X3

are sampled from νJ1 and νJ3 respectively and X2 is defined to be X∗. Note that the separation of
X1,...,XL are guaranteed by the separation of J1,...,JL.

To show j∗ |= (X1, ..., XL), first note that j∗ |= (J1, ..., JL), because conditional on j∗, either
Jj = [κj−1,mj ] for all j or Jj = [mj , κj ] for all j, with equal probability. Second, conditional on
(J1, . . . , JL), Xj ’s are independently distributed according to νJj across all j. Therefore, we arrive
at the conclusion j∗ |= (X1, ..., XL).

Proof of (ii): It suffices to show that the intervals J1, ..., JL are δ-separated, or equivalently,
|Ij\Jj | ≥ δ for all j ≤ L. Since phase 2 of the querying strategies queries all the medians of I1, ..., IL,
we have ν(Ij\Jj) = ν(Ij)/2 = ν(I)/(2L) ≥ δHα. Let m = dν/dλ be the density of ν. Then

|Ij\Jj | ≥
ν (Ij\Jj)
suptm(t)

=
δHα

suptm(t)
. (4)

To finish proof of this claim, we only need to bound the density of ν from above. Recall that ν is
the distribution of X∗, which is the median of F . Thus the distribution function of ν has the form

ν([0, t]) = P {X∗ ≤ t} = P {F (t) ≥ 1/2} .

Since F ∼ DP(α, λ[0,1]), we have (F (t), 1−F (t)) ∼ Dir(αt, α(1−t)). Therefore F (t) ∼ Beta(αt, α(1−
t)). We will use the following Lemma 3 to bound the density of ν. The proof of Lemma 3 is deferred
to Section 1.4.

Lemma 3. Suppose X ∼ Beta(αt, α(1− t)) for some α > 0, then for all t ∈ (0, 1),

hα ≤
d

dt
P {X ≥ 1/2} ≤ Hα,

where hα = 1
32−α−2 and Hα = (3 + 2e−1)α+ 14.

By Lemma 3,

m(t) =
d

dt
P {F (t) ≥ 1/2} ≤ Hα, (5)

for all t ∈ [0, 1]. Combining (4) and (5) yields that

|Ij\Jj | ≥
δHα

Hα
≥ δ.

We have shown that νj1 , ... νjL are continuous distributions supported on L intervals that are
δ-separated from each other. Therefore |Xi −Xj | > δ for all i 6= j with probability 1.

5



Finally, we show that Algorithm 1 attains the query complexity upper bound stated in Theorem
2. The number of queries submitted in phase 1 is at most log(1/(2δLHα)). Phase 2 and phase 3
involve L− 1 and L queries respectively. The number of queries submitted in phase 4 equals

∑
j≤L

⌈
log
|Jj |
ε

⌉
≤ L+

∑
j≤L

log
|Jj |
ε

= L+ log

∏
j≤L
|Jj |

+ L log
1

ε
,

To bound the above, note that from Lemma 3 we have∑
j≤L
|Jj | ≤

ν(∪j≤LJj)
hα

≤ 2δLHα

hα
.

Therefore
∏
j≤L |Jj | ≤ (2δHα/hα)L. Thus the total number of queries submitted by the learner is

at most

log
1

2δLHα
+ (L− 1) + L+ L

(
log

δ

ε
+ log

4Hα

hα

)
=L

(
log

δ

ε
+ log

16Hα

hα

)
+ log

1

δL
+ log

1

4Hα

≤L
(

log
δ

ε
+ c2

)
+ log

1

δL

for c2 = log(16Hα/hα). The inequality is from Hα > 14 for all α > 0.

1.2 Proof under the Minimax Setting

1.2.1 Proof of the lower bound

As a first step, we prove that if F satisfies Assumption 1, then the learner cannot search faster than
the bisection method on any interval I ⊂ [0, 1]. The lemma below contains a formal statement of
this claim. Note that by taking I = [0, 1], Lemma 4 immediately implies a lower bound of log(1/ε)
on the optimal query complexity.

Lemma 4. Suppose F satisfies Assumption 1. Let φ be an ε-accurate querying strategy. Then for
each f ∈ F , each interval I ⊂ [0, 1] that contains the minimizer of f , and each realization of the
random seed y, there exists f̃ ∈ F , such that

(1) under φ, the query sequence q(f̃ , y) contains at least log(|I|/ε) queries in I;

(2) the gradient of f̃ and f coincide outside of I.

Next, we prove the lower bound in Theorem 1 assuming correctness of Lemma 4. The proof of
Lemma 4 is deferred to after the lower bound proof.

A key step in this proof is to connect the definition of (δ, L)-privacy with the covering numbers
of the information sets. We claim that for a strategy to be (δ, L)-private in the minimax sense,
there must be one information set with a large covering number.

Let φ be a querying strategy that is both ε-accurate and (δ, L)-private. Define the information
set of a query sequence q as

I(q) = {x ∈ [0, 1] : ∃f ∈ F and y, s.t. x = arg min f, and q(f, y) = q} .
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Denote the δ/2-covering number of I(q) as Nc(I(q), δ/2). Fix the adversary’s strategy to be one
that samples uniformly from a δ-covering set of I(q). Since φ is (δ, L)-private, there must exist
some f minimized at x, for which

1/L > Pf
{∣∣∣X̃ − x∣∣∣ ≤ δ/2} = E

[
Pf
{∣∣∣X̃ − x∣∣∣ ≤ δ/2 ∣∣∣ q}] ,

where the first integration is over q and the second is over the randomness from the adversary’s
estimation scheme conditional on q. Since x is in I(q), it must be δ/2-close to at least one of the
points in the covering set. Therefore for all q,

Pf
{∣∣∣X̃ − x∣∣∣ ≤ δ/2 ∣∣∣ q} ≥ 1

Nc(I(q), δ/2)
.

Taking expected value over q on both sides, we have E(1/Nc(I(q), δ/2)) < 1/L. Hence there must
exist some query sequence q̄ for which Nc(I(q̄), δ/2) > L. As a result, I(q̄) contains L points
x1, ..., xL that are at least δ/2-apart.

By definition of the information set, there exist f1, ..., fL ∈ F and y1, ..., yL ∈ [0, 1], such that
fi is minimized at xi, and q(fi, yi) = q̄ for all i. Notice that for each i, q̄ must contain a pair of
queries at most ε-apart that sandwiches xi. Otherwise suppose the closest pair of queries in q̄ that
contains xi forms an interval I of size larger than ε. Under Assumption 1, for each x ∈ I, there
exists f ∈ F for which f is minimized at x and q(f, yi) is also q̄. By taking x to be arbitrarily
close to the endpoints of I, the ε-accuracy requirement is violated since no estimator X̂ can ensure
|X̂ − x| ≤ ε/2 for all x ∈ I. Therefore, the length of I is at most ε. Combined with the fact that
x1, ..., xL are δ-separated, and the assumption δ ≥ 2ε, we have shown that q̄ contains L pairs of
distinct queries. Thus the optimal query complexity is lower bounded by 2L.

To improve the lower bound to the desired 2L + log(δ/ε), we would like to argue that aside
from the L pairs of queries in q̄, the learner must submit enough queries elsewhere to search for
X∗ in order to fulfill the accuracy requirement. Indeed, the worst-case query complexity is lower
bounded by log(1/ε) for any strategy that is ε-accurate. However, the worst-case instance may not
be one of f1, ..., fL. To combine the 2L queries used to ensure privacy with the queries used to
ensure accuracy therefore becomes the main challenge of the lower bound proof. To address this
difficulty, we will again utilize Assumption 1 on the richness of F . On a high level, Assumption 1
allows us to find a large class of functions in F which can also lead to the query sequence q̄. Out
of these functions, we show that for at least one of them it takes log(δ/ε) extra queries to search
for its minimizer. Next we give the rigorous proof of the existence of such a function.

Firstly, note that q̄ contains L pairs of ε-close queries that sandwich x1, ..., xL. Since δ ≥ ε, we
have that for all i, q̄ contains at least one query in [xi − δ/2], and one query in [xi + δ/2]. Once at
least one query has appeared in each of [xi− δ/2, xi] and [xi, xi + δ/2], we say xi is “δ/2-localized”.
Let xj be the last one to be δ/2-localized out of x1, ..., xL, and suppose it is δ/2-localized at time T .
Without loss of generality, assume a query in [xj− δ/2, xj ] appears first, so that q̄T ∈ [xj , xj + δ/2].
Let I = [a, b] with a defined as the query in q̄1, ..., q̄T to the left of xj that is the closest to xj , and
b = xj + δ/2. See Figure 3 for an illustration.

Apply Lemma 4 with I = [a, b], f = fj and y = yj . We can find some f̃ ∈ F that satisfies

the two criteria in the statement of Lemma 4. Criterion (2) ensures that the gradient of f̃ and fj
coincide outside of I. Since xj is δ/2-localized at time T , q̄1, ..., q̄T−1 do not contain any queries

between a and b. Thus q(f̃ , yj) and q(fj , yj) = q̄ agree completely up to time T − 1, and contain at
least the 2L− 1 queries outside of I used to sandwich x1, ..., xL. The reason we need to subtract 1
is because the T ’th queries in q̄ is in I.
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Figure 3: An illustration of the lower bound argument with L = 3. The ticks represent all queries
in q̄. The L pairs of ε-close queries that sandwich x1, ..., xL are colored red. Suppose x2 is the
last one out of x1, ..., xL to be δ/2-localized, and the query in [x2 − δ/2, x2] appears before the
one in [x2, x2 + δ/2], then I is defined as the shaded interval. Note that until all of x1, ..., xL are
δ/2-localized, no query is submitted in I.

By criterion (1) in the statement of Lemma 4, q(f̃ , yj) contains at least log(|I|/ε) ≥ log(δ/(2ε))
queries in I. Combined with the 2L− 1 queries outside of I, we arrive at the desired lower bound
2L+ log(δ/ε)− 2.

Proof of Lemma 4. The lemma is proved by constructing an f̃ that satisfies both criteria. Our
construction scheme in inspired by that of Nemirovski’s (See Section 2.1.2 in lecture notes by
Iouditski [5])With the querying strategy φ fixed, we construct a sequence of functions {gi}i≥0 ⊂ F
adapted to the queries and the responses. The construction ensures that for each i ≥ 0, there is an
interval ∆i ⊂ I with |∆i| ≥ |I|/2i, such that

1. gi is minimized at the midpoint of ∆i;

2. in the query sequence q(gi, y), the first i queries in I are outside of ∆i.

By Assumption 1, there exists a function in F whose gradient of f agrees with that of f outside
of I, and is minimized at the midpoint of I. Let this function be g0 and let ∆0 = I.

Inductively construct the rest of {gi}. Given g0, ..., gi, by the induction hypothesis in q(gi, y),
the first i queries in I are all outside of ∆i = [ai, bi]. Let q be the (i+ 1)’th query of q(gi, y) in I.
If q is not in ∆i, then we can simply let gi+1 = gi and ∆i+1 = ∆i to complete the (i + 1)’th step
of the induction. If q ∈ ∆i, depending on whether q lands to the left or right of the midpoint of
∆i, let ∆i+1 be either [q, bi] or [ai, q], so that |∆i+1| ≥ |∆i|/2. Let gi+1 ∈ F be a function whose
gradient agrees with gi outside of ∆i, and is minimized at the midpoint of ∆i+1. By Assumption
1 such a gi+1 always exists.

The construction can be carried out until for some integer K, we cannot find the (K + 1)’th
query of q(gK , y) in I. That is, q(gK , y) contains only K queries in I. By construction, q(gK , y)
does not contain any queries in ∆K . Therefore under Assumption 1, the learner cannot rule out
any member of ∆K being X∗. For the strategy to be ε-accurate, we must have |∆K | < ε; hence
K > log(|I|/ε). Taking f̃ = gK finishes the proof of the lemma.

1.2.2 Proof of the upper bound

Define a guess at q as a pair of queries placed at q and q + ε. The guess allows the learner to
test whether X∗ is contained in the ε-length interval [q, q + ε]. To ensure privacy, we create L
potential locations for X∗ that are at least δ-separated but induce the same querying sequence.
That is achieved by submitting L guesses that are δ-separated. Once guessed correctly, the learner’s
accuracy requirement is automatically fulfilled and the remaining queries can be used to conceal
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X∗ from the adversary. We consider the cases δ ≤ 2−L and δ > 2−L separately. The querying
strategy is contained in Algorithm 2.

Algorithm 2 Querying Strategy under the Minimax Setting

1: Let I = [0, 1].
2: if δ ≤ 2−L then
3: Submit the first guess at 1/2.
4: Recursively submit the remaining L − 1 guesses via bisection: if none of the submitted

guesses is correct, update I = [a, b] according the gradient (f∗)′(q) at the previous guess q.
If (f∗)′(q) ≤ 0, then X∗ ≥ q, so we let the updated I be [q, b]; otherwise update I to be [a, q].
Submit the next guess at the midpoint of the updated I.

5: Once a guess is found to be correct, always (do this also for all the remaining guesses) update
I to be the right half of I, and submit the next guess at the midpoint of the updated I.

6: else
7: Submit the first guess at 0.
8: Let K be an integer solution in {0, 1, ..., L−1} such that `K := 2−K/(L−K) ∈ [δ, 2δ]. When

δ > 2−L, a solution always exists.
9: Submit the next K guesses via bisection. Update I accordingly. As in the δ ≤ 2−L case,

once any guess is found to be correct, always update I to its right half.
10: Divide I into L − K equal length subintervals. Submit the next L − K − 1 queries at the

endpoints of the subintervals (excluding the 2 endpoints of I).
11: end if
12: if none of the guesses is correct then
13: Run bisection search on I until reaching ε-accuracy.
14: else
15: Fill the remaining query sequence with trivial queries at 1.
16: end if

We first prove the upper bound in the case δ ≤ 2−L. In total, L+log(1/ε) queries are submitted
under Algorithm 2. The strategy is clearly ε-accurate. To see that it is also (δ, L)-private, note that
all f∗ whose minimizer lies in one of the L intervals [1/2, 1/2+ε], [3/4, 3/4+ε], ..., [1−2−L, 1−2−L+ε]
share exactly the same query sequence. Under Assumption 1, for each i there exists at least one
function fi minimized at some xi ∈ [1 − 2−i, 1 − 2−i + ε]. When δ ≤ 2−L, the xi’s are at least δ
apart from each other. Therefore no adversary can achieve inff∈{f1,...,fL} Pf{|X̃−x| ≤ δ/2} > 1/L.

When δ > 2−L, the total number of queries is at most log(δ/ε)+2L+1. Note that the first guess
at 0 always contains a trivial query at 0. Removing the trivial query yields a query complexity of
log(δ/ε) + 2L. To prove (δ, L)-privacy, note that for if f∗ is minimized in one of the L intervals
[0, ε], [1− 2−i, 1− 2−i + ε] for i ≤ K, or [1− 2−K + i`K

L−K , 1− 2−K + i`K
L−K + ε] for i ≤ L−K, then

they induce the same query sequence. This completes the proof of the upper bound.

1.3 Self-similarity property of the Dirichlet Process

Proposition 1. Let µ be a random probability measure on X that follows a Dirichlet Process with
base distribution function µ0 and concentration parameter α. Let X = ∪i≤nBi be an arbitrary finite
partition of X . Then for all i ≤ n, we have

µBi | µ(B1), ..., µ(Bn) ∼ DP (µ0,Bi , αµ0 (Bi)) ,

9



where µBi and µ0,Bi denote the conditional probability measures of µ and µ0 respectively, conditioned
on Bi.

Proof. For simplicity we present the proof only for i = 1. The proof for general i is identical. Let
B1 = ∪j≤mAj be an arbitrary finite partition of B1. Then (A1, ..., Am, B2, ..., Bn) is a partition of
X . Therefore from the definition of the Dirichlet Process, we have

(µ (A1) , ..., µ (Am) , µ (B2) , ..., µ (Bn)) ∼ Dir (αµ0 (A1) , ..., αµ0 (Am) , αµ0 (B2) , ..., αµ0 (Bn)) .

From the density function of the Dirichlet distribution, we can derive that

(µ (A1) , ..., µ (Am))

1−
∑

i≥2 µ(Bi)

∣∣∣∣ µ (B2) , ..., µ (Bn) ∼ Dir (αµ0 (A1) , ..., αµ0 (Am)) .

Again by definition of the Dirichlet Process, we have

µB1 | µ (B2) , ..., µ (Bn) ∼ DP (µ0,B1 , αµ0 (B1)) .

Consider the special case where X = [0, 1]. As a corollary of Proposition 1, we have for any
finite partition 0 = x0 ≤ x1 ≤ ... ≤ xn−1 ≤ xn = 1 of [0, 1],

L
(

[F ][xi,xi+1] − ti
ti+1 − ti

∣∣∣ F (x1) = t1, ..., F (xn−1) = tn−1

)
= DP

(
µ0,[xi,xi+1], αµ0 [xi, xi+1]

)
.

1.4 Proof of Lemma 3

In this section we prove the technical result Lemma 3 on the Beta distribution.

Proof. We can assume WOLG that t ∈ (0, 1/2]. That is because for t > 1/2, 1−X ∼ Beta(α(1−
t), αt) and

d

dt
P {X ≥ 1/2} =

d

d(1− t)
P {1−X ≥ 1/2} .

Let φt(x) = xαt−1(1−x)α(1−t)−1 be the unnormalized density of the Beta(αt, α(1− t)) distribution.
Since d

dtφt(x) = α ln x
1−xφt(x), we have

d

dt
P {X ≥ 1/2} =

d

dt

∫ 1
1/2 φt(x)dx∫ 1
0 φt(x)dx

=α

∫ 1
1/2 ln x

1−xφt(x)dx
∫ 1

0 φt(x)dx−
∫ 1

1/2 φt(x)dx
∫ 1

0 ln x
1−xφt(x)dx(∫ 1

0 φt(x)dx
)2

=α

[
E
(
1{X ≥ 1/2} ln

X

1−X

)
− P{X ≥ 1/2}E

(
ln

X

1−X

)]
.

To prove the lemma, we claim that for t ≤ 1/2,

2−α−2t ≤ αE
(
1{X ≥ 1/2} ln

X

1−X

)
≤ max{3α, 12}; (6)
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[
2−α−2

(
1
2 −

t
1−t

)]
+
≤ −αP{X ≥ 1/2}E

(
ln

X

1−X

)
≤ 2e−1α+ 2, (7)

where [·]+ = max{·, 0} stands for the positive part.
The upper bound d

dtP{X ≥ 1/2} ≤ Hα follows easily from adding up the two upper bounds.
For the lower bound on the derivative, the two lower bounds in (6) and (7) yield

d

dt
P {X ≥ 1/2} ≥ 2−α−2

(
t+

(
1

2
− t

1− t

)
+

)
≥ 1

3
2−α−2 = hα,

where the last equality is achieved at t = 1/3.
It remains to prove (6) and (7). Let us start from the cross-product term (6). Since 1{X ≥

1/2} ln X
1−X ≥ 0, by Tonelli’s theorem,

E
(
1{X ≥ 1/2} ln

X

1−X

)
=

∫ ∞
0

P
{
1{X ≥ 1/2} ln

X

1−X
> s

}
ds =

∫ ∞
0

P
{
X ≥ es

1 + es

}
ds.

The density function of X allows us to write

E
(
1{X ≥ 1/2} ln

X

1−X

)
=

∫∞
0

∫ 1
es

1+es
xαt−1(1− x)α(1−t)−1dxds

B(αt, α(1− t))
, (8)

where B(α, β) =
∫ 1

0 s
α−1(1− s)β−1ds is the Beta function. First we prove the upper bound in (6).

For the numerator, since αt− 1 > −1 and x ≥ es

1+es ≥ 1/2, we have xαt−1 ≤ 2, and∫ 1

es

1+es

xαt−1(1− x)α(1−t)−1dx ≤ 2

∫ 1

es

1+es

(1− x)α(1−t)−1dx =
2(1 + es)−α(1−t)

α(1− t)
.

Therefore the numerator of (8) is upper bounded by

2

∫ ∞
0

e−α(1−t)s

α(1− t)
ds =

2

α2(1− t)2
≤ 8

α2

for all t ≤ 1/2. Moreover,

B(αt, α(1− t)) =
Γ(αt)Γ(α(1− t))

Γ(α)

is minimized at t = 1/2 by the log-convexity of the Gamma function Γ(z) [3], where Γ(z) =∫∞
0 sz−1e−sds satisifying Γ(z+ 1) = zΓ(z) for z > 0. Hence it follows from (8) that for all t ≤ 1/2,

αE
(
1{X ≥ 1/2} ln

X

1−X

)
≤ 8Γ(α)

αΓ(α/2)2
. (9)

We claim that the right-hand side of (9) is a non-decreasing function in α on (0,∞). To see that,
let g(α) = 8Γ(α)/(αΓ(α/2)2). We have

d

dα
(ln g(α)) =

Γ′(α)

Γ(α)
− 1

α
− Γ′(α/2)

Γ(α/2)
= ψ(α)− ψ(α/2)− 1

α
. (10)

Here ψ(·) = Γ′(·)/Γ(·) is the digamma function with expansion [1, 6.3.16]

ψ(1 + z) = −γ +

∞∑
n=1

z

n+ z
,
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where γ is the Euler-Mascheroni constant. Applying the expansion on (10) yields

d

dα
(ln g(α)) =

∞∑
n=1

(
α− 1

n+ α− 1
− α/2− 1

n+ α/2− 1

)
− 1

α
≥ α− 1

1 + α− 1
− α/2− 1

1 + α/2− 1
− 1

α
= 0.

We have shown that g is a non-decreasing function on R+. It follows from (9) that for all α ≤ 4,
αE(1{X ≥ 1/2} ln X

1−X ) ≤ g(4) = 12.
Next we show that for all α > 4, the cross-product term in (6) is upper bounded by 3α. By

Markov’s inequality,

P
{
X ≥ es

1 + es

}
= P

{
1−X ≤ 1

1 + es

}
= P

{
1

1−X
≥ 1 + es

}
≤ 1

1 + es
E
[

1

1−X

]
.

Since 1−X ∼ Beta(α(1− t), αt), we have

E
[

1

1−X

]
=

∫ 1
0 x

α(1−t)−2(1− x)αt−1dx∫ 1
0 x

α(1−t)−1(1− x)αt−1dx
.

For all α ≥ 4 and t ≤ 1/2, α(1− t)− 1 ≥ 0, hence both integrals converge, and

E
[

1

1−X

]
=
B(α(1− t)− 1, αt)

B(α(1− t), αt)
=

Γ(α(1− t)− 1)Γ(αt)/Γ(α− 1)

Γ(α(1− t))Γ(αt)/Γ(α)
=

α− 1

α(1− t)− 1
≤ 3

when α ≥ 4. Therefore

αE
(
1{X ≥ 1/2} ln

X

1−X

)
≤ 3α

∫ ∞
0

1

1 + es
ds ≤ 3α.

That finishes the proof of the upper bound in (6). Next we prove the lower bound in (6). Since
xαt−1 ≥ min{(1/2)αt−1, 1} for all x ≥ es/(1 + es) ≥ 1/2, we have that the numerator in (8) is lower
bounded by

min
{(

1
2

)αt−1
, 1
}∫ ∞

0

∫ 1

es

1+es

(1− x)α(1−t)−1dxds

=
min

{(
1
2

)αt−1
, 1
}

α(1− t)

∫ ∞
0

(
1

1 + es

)α(1−t)
ds

≥
min

{(
1
2

)αt−1
, 1
}(

1
2

)α(1−t)

α(1− t)

∫ ∞
0

e−sα(1−t)ds

=

(
1
2

)max{α−1,α(1−t)}

α2(1− t)2
≥ 2−α

α2
. (11)

To handle the denominator in (6), note that (1− x)α(1−t)−1 ≤ 2 for all x ≤ 1/2 and xαt−1 ≤ 2 for
all x ≥ 1/2. Therefore the denominator in (6)

B(αt, α(1− t)) ≤ 2

∫ 1/2

0
xαt−1dx+ 2

∫ 1

1/2
(1− x)α(1−t)−1dx = 2

[
2−αt

αt
+

2−α(1−t)

α(1− t)

]
≤ 2

αt(1− t)
.

(12)

12



Combining (8), (11) and (12) yields

αE
(
1{X ≥ 1/2} ln

X

1−X

)
≥ α2−ααt(1− t)

2α2
≥ 2−α−2t.

Next let us prove (7). Firstly, write

E
(

ln
X

1−X

)
= ψ(αt)− ψ(α)− (ψ(α(1− t))− ψ(α)) = ψ(αt)− ψ(α(1− t))

where we recall that ψ(z) = d
dz ln Γ(z) is the digamma function. Since Γ is log-convex on R+, ψ is

non-decreasing. Therefore for all t ≤ 1/2, we have

−αP{X ≥ 1/2}E
(

ln
X

1−X

)
≥ 0.

Furthermore, it has been shown in [2, Eq (2.2)] that for all z > 0, the digamma function satisfies

1

2z
< ln z − ψ(z) <

1

z
. (13)

Therefore

−E
(

ln
X

1−X

)
= ψ(α(1− t))−ψ(αt) ≥ ln(α(1− t))− 1

α(1− t)
− ln(αt) +

1

2αt
≥ 1

α

(
1

2t
− 1

1− t

)
(14)

when t ≤ 1/2.
We still need to bound P{X ≥ 1/2} from below. As in the proof of (6), we can write

P
{
X ≥ 1

2

}
=

∫ 1
1/2 x

αt−1(1− x)α(1−t)−1dx

B(αt, α(1− t))
. (15)

Again from xαt−1 ≥ min{(1/2)αt−1, 1} for all x ≥ 1/2, we have that the numerator of (15) is
bounded from below by

max
{(

1
2

)αt−1
, 1
}∫ 1

1/2
(1− x)α(1−t)−1dx ≥ 2−α

α
.

Combining the last displayed equation with (12) and (15) yields that

P
{
X ≥ 1

2

}
≥ 2−α

α
× αt(1− t)

2
≥ 2−α−2t

for all t ≤ 1/2. In view of (14), it follows that

−αP
{
X ≥ 1

2

}
E
(

ln
X

1−X

)
≥ 2−α−2

(
1

2
− t

1− t

)
.

That concludes the proof of the lower bound in (7). Next we move to the upper bound in (7). By
Markov’s inequality,

P{X ≥ 1/2} ≤ 2EX = 2t. (16)
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Again from (13) we have that for all t ≤ 1/2,

−E
(

ln
X

1−X

)
=ψ(α(1− t))− ψ(αt)

≤ ln(α(1− t))− 1

2α(1− t)
−
(

ln(αt)− 1

αt

)
= ln

1− t
t

+
2− 3t

2αt(1− t)
.

Combining the last displayed equation with (16) yields that

−αP{X ≥ 1/2}E
(

ln
X

1−X

)
≤2αt

(
ln

1− t
t

+
2− 3t

2αt(1− t)

)
≤(2t ln(1/t))α+

2− 3t

1− t
≤ 2e−1α+ 2.

We have thus established the inequalities (6) and (7).

2 Extension to Multidimensions

In this section we extend our results under the minimax setting to optimization of convex separable
functions in Rd. Separable convex optimization arises in a variety applications such as inventory
control in operation research, resource allocation in networking, and distributed optimization in
multi-agent networks [6, 7, 4], when the global objection function is a sum of the local objective
functions and each local objective function depends only on one component of the decision vari-
able. Here, separability ensures that there is no cross-coordinate information leakage. Further
generalizing our result to allow for general (non-separable) functions in Rd is left as future work.

Suppose the true function f∗ : [0, 1]d → R belongs to a family of convex separable functions

F =

{
f : f(x) =

d∑
i=1

fi(xi), fi ∈ Fi

}
,

where each Fi is a family of one-dimensional convex functions. For each query q ∈ [0, 1]d submitted,
the learner receives the gradient vector ∇f(q) = (f ′1(q1), ..., f ′d(qd)) as the response. We say a
querying strategy is ε-accurate if

inf
f∈F

Pf
{∥∥∥X̂ − x∥∥∥

∞
≤ ε/2

}
= 1,

where x is the minimizer of f . We say φ is (δ, L)-private if

sup
X̃

inf
f∈F

Pf
{∥∥∥X̃ − x∥∥∥

∞
≤ δ/2

}
≤ 1/L.

In other words, we declare privacy breach if the adversary’s estimator is within a δ/2-neighborhood
around the true minimizer with probability higher than 1/L. As in the one-dimensional case, we
need to impose some assumption on the complexity of the function class F . Since F contains
only separable functions, we can simply impose the one-dimensional assumption onto each of the
d one-dimensional function classes F1, ...,Fd. Below is the extension of our one-dimensional result
to d dimensions.
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Theorem 3. Let Nd(ε, δ, L) denote the optimal query complexity in dimension d under the minimax
setting. Suppose Fi all satisfy Assumption 1 for all i = 1, ..., d. If 2ε ≤ δ ≤ L−1/d, then

2L1/d + log
δ

ε
− 2 ≤ Nd(ε, δ, L) ≤

{
2L1/d + log δ

ε if L1/d ≥ log 1
δ

L1/d + log 1
ε o.w.

.

Remark 1. We choose to quantify the error of the learner and the adversary with respect to the
‖ · ‖∞ norm because ‖x − y‖∞ ≤ ε/2 is equivalent to |xi − yi| ≤ ε/2 for all i ≤ d, so the analysis
can be elegantly reduced to the one-dimensional case. However our result does not crucially depend
on the choice of the norm. From the basic inequality ‖x‖∞ ≤ ‖x‖2 ≤

√
d‖x‖∞, we have that the

optimal query complexity can differ by at most a d-dependent additive constant if the Euclidian
norm were used instead.

Proof of the upper bound. Under the minimax privacy framework, to make a strategy private, we
only need to find L functions f (1), .., f (L) ∈ F whose minimizers are δ-apart, such that the query
sequence for f (1), ..., f (L) are identical. That would ensure that the adversary who only observes
the query sequence cannot succeed with probability higher than 1/L.

To construct such L functions, we design a querying strategy that submits L1/d guesses δ-apart
along each dimension. To recap, in Section 1.2 we defined a guess at x to be a pair of ε-apart
queries (x, x+ ε). The guesses across the d dimensions intersect with each other in [0, 1]d to create
(L1/d)d = L cubes of diameter ε that potentially contain the minimizer of the true function f∗.
The guesses are submitted following the same algorithm as in the one-dimensional case (see the
upper bound proof of Theorem 1), except with L replaced by L1/d.

Note that since each query is a d-dimensional vector and the function f∗ is separable, we can run
the search algorithms along the d directions in parallel. More concretely, write f∗(x) =

∑
i≤d f

∗
i (xi),

and let q = (q1, q2, ..., qn) be the query sequence where qj = (qj,1, ..., qj,d) ∈ [0, 1]d. Each time the
learner submits a query qj , she receives the gradient vector

∇f∗(qj) =
(
(f∗1 )′(qj,1), ..., (f∗d )′(qj,d)

)
.

For each dimension i, the learner leverages the gradient information (f∗i )′(qj,i) and constructs the
next query qj+1,i in dimension i, as if she were learning the minimizer of f∗i in one-dimension.

In particular, fix any dimension 1 ≤ i ≤ d. The first 2L1/d queries q1,i, ..., q2L1/d,i consist of L1/d

pairs of queries (guesses) that are δ-apart. When δ ≤ 2−L
1/d

, these guesses are submitted along
the bisection search path:

1. The first guess is at 1/2, i.e., q1,i = 1/2 and q2,i = 1/2+ε. The learner’s interval I is initialized
to be [0, 1].

2. For each 1 ≤ j ≤ L1/d − 1, submit the (j + 1)’th guess at follows: if none of the previous
guesses is correct, then inspect the gradient (f∗i )′(q2j−1,i) from the j’th guess to deduce which
half of I contains the minimizer X∗i of f∗i . Update the learner’s interval I accordingly so that
it contains X∗i . Submit the (j + 1)’th guess at the midpoint of the updated I. If one of the
first j guesses is correct, then update I to its right half, and submit the (j + 1)’th guess at
its midpoint.

When δ > 2−L
1/d

, only the firstK guesses are submitted along the bisection path, and the remaining
L1/d−K guesses are submitted via a grid search on the interval I generated from the first K guesses.
Here K is the largest integer for which all the guesses are δ-apart. Under the assumption δ ≤ L−1/d

such a K always exists.
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After all the guesses are submitted, if none of the guesses is correct, the learner runs a simple
bisection search on a max{2−L1/d

, δ}-length interval until reaching ε-accuracy; otherwise the learner
simply fills the remaining queries along this dimension with trivial queries qi,j = 1 for all j ≥ 2L1/d.

The total number of queries is exactly the desired upper bound 2L1/d + log(max{2−L1/d
, δ}/ε).

Next we show this querying strategy is (δ, L)-private. Here we give the proof in the δ ≤ 2−L
1/d

case. The proof for the δ > 2−L
1/d

case follows analogously. For each i, it is easy to see that if

X∗i ∈ ∪j≤L1/d [1− 2−j , 1− 2−j + ε]

then the queries along the i’th dimension would always be L guesses at 1/2, 3/4, ..., 1 − 2L
1/d

,
followed by trivial queries at 1. As a result, for all f∗ ∈ F such that

X∗ ∈
∏
i≤d

(
∪j≤L1/d [1− 2−j , 1− 2−j + ε]

)
∆
= J,

share the same query sequence. Clearly J contains (L1/d)d members that are separated by at least
δ in ‖ · ‖∞ distance. Hence the strategy is (δ, L)-private.

Proof of the lower bound. Let φ be a querying strategy that is ε-accurate and (δ, L)-private. Via
the same argument in one-dimension, we can show that there is at least one query sequence q whose
information set I(q) has a δ/2-covering number at least L. For each i = 1, ..., d, let

Ii(q) =
{
xi : x = (x1, ..., xi, ..., xd) ∈ I(q) for some x ∈ [0, 1]d

}
be the projection of I(q) to dimension i. Then we have I(q) ⊂

∏
i≤d Ii(q), thus

L ≤ Nc (I(q), δ/2, ‖ · ‖∞) ≤ Nc

∏
i≤d
Ii(q), δ/2, ‖ · ‖∞

 =
∏
i≤d

Nc (Ii(q), δ/2, | · |) .

Therefore for at least one i ≤ d, we must have that the δ/2-covering number of the projection

Ii(q) is no less than L1/d. It follows that Ii(q) contains x
(1)
i , ..., x

(L1/d)
i that are at least δ/2-apart.

For the strategy to be ε-accurate, the queries in q along this dimension i must contain at least

L1/d pairs of ε-apart queries sandwiching x
(1)
i , ..., x

(L1/d)
i . The rest of the proof exactly follows the

one-dimensional case.
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