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Abstract
Sparse regression has recently been applied to
enable transfer learning from very limited data.
We study an extension of this approach to unsu-
pervised learning—in particular, learning word
embeddings from unstructured text corpora using
low-rank matrix factorization. Intuitively, when
transferring word embeddings to a new domain,
we expect that the embeddings change for only a
small number of words—e.g., the ones with novel
meanings in that domain. We propose a novel
group-sparse penalty that exploits this sparsity to
perform transfer learning when there is very lit-
tle text data available in the target domain—e.g.,
a single article of text. We prove generalization
bounds for our algorithm. Furthermore, we empir-
ically evaluate its effectiveness, both in terms of
prediction accuracy in downstream tasks as well
as the interpretability of the results.1

1. Introduction
While machine learning algorithms have proven to be
tremendously effective at solving supervised and unsuper-
vised problems, achieving good performance typically re-
quires large training datasets. Yet, in many domains, there
is very little data available for training. Thus, there has been
a great deal of interest in transfer learning, where the goal
is to leverage knowledge in a data-rich source domain to
improve performance in a data-poor target domain.

A surprisingly effective transfer learning strategy is to sim-
ply fine-tune a model trained on data from the source do-
main (which we call the proxy data) on data from the tar-
get domain (which we call the gold data). For instance,
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this strategy has been used in transferring image classifi-
cation models (Esteva et al., 2017), healthcare decision-
making (Bastani, 2020), and word embeddings (Dingwall
& Potts, 2018). Intuitively, stochastic gradient descent has
regularization properties similar to `2 regularization (Ali
et al., 2020), so this strategy can be interpreted as regulariz-
ing the parameters towards those of the proxy model—i.e.,
adopting a loss function of the form

˜̀(θ;Xg, θ̂p) = `(θ;Xg) + ‖θ − θ̂p‖22,

where Xg is the gold training data, `(θ;Xg) is the unregu-
larized loss, and θ̂p are the parameters estimated using the
proxy training data.

With this viewpoint, a natural strategy is to leverage alter-
native regularization strategies towards the source domain,
instead of the `2 norm. Recent work has investigated using
the `1 norm in the setting of (generalized) linear regres-
sion (Bastani, 2020)—i.e.,

˜̀(θ;Xg, Yg, θ̂p) = ‖Yg −Xgθ‖22 + λ · ‖θ − θ̂p‖1.

Intuitively, `1 regularization enables efficient learning in
domains with very little data (Tibshirani, 1996; Chen et al.,
1995; Candes & Tao, 2007; Bickel et al., 2009). The key
assumption for this approach to work is that the values of
the true parameters θg (for the target domain) must differ
from θp (for the source domain) in only a few components—
i.e., θg − θp is sparse. If this assumption holds, then they
prove that their strategy can learn from O(s log d) samples
instead of O(d) samples, where d is the dimension of θg
and s = ‖θg − θp‖0 is the sparsity. A natural question
is whether these techniques can be leveraged beyond the
setting of generalized linear regression.

In this paper, we apply this approach to matrix factorization,
which underlies one of the most basic unsupervised learning
algorithms—namely, learning word embeddings from large-
scale unlabeled text corpora such as Wikipedia (Pennington
et al., 2014). While more sophisticated techniques have
been developed (Devlin et al., 2018), approaches based on
generalizations of matrix factorization remain competitive
and widely used, and also tend to be more interpretable since
we can visualize vector embeddings of individual words.
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The key question is identifying a notion of sparsity that we
can leverage in this setting. Intuitively, we expect that only
a small number of words in the target domain may change
meaning compared to the source domain. For instance, in
computer science, the term “object” (as in “object oriented”)
has a very different meaning than the usual English defini-
tion. Thus, we might expect very few word embeddings to
change from the source domain to the target domain. More
formally, let U�p denote the proxy word embedding matrix,
whose ith row U�ip is the true word embedding of word
i ∈ [d] = {1, · · · , d} based on the proxy data; analogously,
U�g denotes the gold word embedding matrix. Then, we
expect that the word embeddings for most words are equal
in both domains—i.e., U�ig = U�ip for most i ∈ [d].

Based on this intuition, we formulate an objective that en-
codes a group-sparse penalty (Friedman et al., 2010; Simon
et al., 2013), where each row is a group. Intuitively, a group
sparse penalty partitions the parameters into groups, and en-
codes that only a small number of groups contain non-zero
parameters; it does so by encoding an `1 norm over the `2
norm of each group. We propose a two-stage estimator that
uses this penalty to solve the transfer learning problem. The
first stage estimates the proxy word embeddings using only
proxy data. Then, the second stage estimates the word em-
beddings of the gold data using `2,1 regularization to impose
group sparsity compared to the proxy word embeddings:

‖Ug − Ûp‖2,1 =

d∑
i=1

‖U ig − Û ip‖2,

where Ûp is the estimated proxy word embedding matrix.

We prove sample complexity bounds for our estimator,
demonstrating how it can substantially improve the quality
of the word embeddings for the gold data. In particular,
assuming that most word vectors are preserved between the
source and the target domains, we show that our estimator
requires exponentially less gold data to achieve the same
accuracy compared to using the gold data alone. Our proof
relies on a tail inequality for the group lasso (Lounici et al.,
2011), combined with an error bound for low-rank matrix
problems (Ge et al., 2017).

While our main results are for word embeddings trained
using matrix factorization, we show that our approach also
applies to nonlinear extensions of matrix factorization. In
particular, we show how our group sparse penalty term can
be leveraged in conjunction with the GloVe word embedding
objective (Pennington et al., 2014).

We evaluate our approach to learn word embeddings for
Wikipedia articles in domains such as finance, math, com-
puting etc. In particular, we demonstrate that our approach
identifies words with novel meanings in this domain at a
high rate. These results demonstrate the interpretability of

word embeddings learned using our algorithm. Finally, we
demonstrate the efficacy of our approach in a downstream
task where the goal is to predict clinical trial eligibility based
on unstructured clinical statements regarding inclusion or
exclusion criteria.

Related work. Typically, transfer learning refers to learn-
ing with a large amount of data in the source domain, and a
small amount of data in the target domain. Broadly speak-
ing, the two domains must be connected in some way: they
can either have the same covariate distribution p(x) but dif-
ferent label distributions p(y | x) and q(y | x) (called label
shift), or vice versa (called covariate shift). Approaches tar-
geting the latter setting are typically referred to as domain
adaptation.

Recently, Bastani (2020) applied sparse regression to handle
label shift, when the shift is sparse—i.e., y = xTβp + ε vs.
y = xTβg + ε, where ‖βp − βg‖0 is much smaller than the
dimension of βp, βg; here p refers to proxy data from the
source domain, and g refers to gold data from the target
domain. When the parameters βg are sparse (i.e., s = ‖βg‖0
is small), existing theory shows that the sample complexity
of estimating βg is O(s log d) instead of O(d), where d is
the dimension of βg (Bühlmann & Van De Geer, 2011).
Their key theoretical result is that the sample complexity
of estimating βg scales as s even though βg itself may not
be sparse. Instead, relative sparsity between βg and βp
is sufficient to enable efficient transfer learning in high
dimensions. A key limitation of their work is that they are
limited to the supervised learning setting. Our motivation
is to study the sample complexity of transfer learning in
settings beyond supervised learning.

Given multiple proxy datasets as well as their “disparities”
from the source domain, Crammer et al. (2008) study which
proxy sources to use in supervised learning to minimize gen-
eralization error. Zhang et al. (2013) propose importance
reweighting and sample transformation to correct the data
distribution shift, and Ganin & Lempitsky (2015) add a do-
main classifier into their deep feed-forward neural network
framework to fine-tune the source model. More relatedly,
there has been work proving generalization bounds for unsu-
pervised domain adaptation (Ben-David et al., 2007; 2010);
unlike our work, they assume a large number of unlabeled
examples from the target domain.

For word embedding models, a standard approach is to fine-
tune the pre-trained word embeddings end-to-end. A closely
related approach is to add an `2 penalty to the objective to
regularize the word embeddings towards the existing ones
Dingwall & Potts (2018); Yang et al. (2017). Other ap-
proach combines domain-specific word embeddings with
pre-trained ones through Canonical Correlation Analysis
(CCA) or the related kernelized version (KCCA) (Sarma
et al., 2018). However, these approaches do not provide
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theoretical guarantees on their performance. In contrast, we
prove theoretical bounds on the performance of our esti-
mator under sparsity assumptions motivated by the domain
distinction of word embeddings. We show that in the very
low-data regime (e.g., a single article), using `1 regulariza-
tion outperforms `2 regularization.

Another approach is to train contextual embeddings that
capture different meanings of the same word based on their
context (Devlin et al., 2018). Assuming the training cor-
pus contains some data that covers the target domain, then
one can automatically tailor word embeddings based on
the given context. However, such techniques lack the inter-
pretability of traditional word embeddings, since we cannot
examine or visualize the embedding of a single word in
isolation. Also, they may not work when the training corpus
altogether omits content from the target domain.

We build on approaches to word embeddings based on low-
rank matrix factorization. Given a few observations Xi

about a matrix Θ ∈ Rd1�d2 with rank r, the goal is to
compute a low-rank estimate Θ̂. Recent work has provided
an algorithm based on nuclear norm regularization, and
proves a bound ‖Θ̂−Θ‖F = O(

√
d/n) on the estimation

error (Negahban & Wainwright, 2011). A more practical
algorithm is the Burer-Monteiro approach (Burer & Mon-
teiro, 2003), which replaces Θ explicitly with a low-rank
representation UV T , with U ∈ Rd1�r and V ∈ Rd2�r, and
minimizes the objective in terms of U and V . This approach
is nonconvex but is simpler to implement and computation-
ally efficient. Ge et al. (2017) show that the local minima of
this nonconvex problem are also global minima under the
restricted isometry property (RIP).

A simple way to construct word embeddings is to take Θ
to encode the relationships between words (e.g., the co-
occurrence matrix, in which Θij counts how many times
words i and j occur together in a fixed-length window), run
low-rank matrix factorization to compute UV T ≈ Θ, and
then choose the ith row of U to be the embedding of word
i. Levy & Goldberg (2014) shows that skip-gram with neg-
ative sampling implicitly factorizes a word-context matrix,
described by pointwise mutual information (PMI) matrix.
GloVe (Pennington et al., 2014), which can be thought of as
a nonlinear version of this approach, was a state-of-the-art
technique until recently. We show how our approach can
be extended to GloVe, although our theoretical guarantees
only hold for the linear setting. Recently, contextual em-
beddings have been shown to outperform GloVe. However,
they assign vectors to sequences of words, not to individual
words, making them less widely applicable as well as less
interpretable.

2. Problem Formulation
In this section, we formalize the problem of group sparse
transfer learning for word embeddings. We begin by giving
background on matrix factorization, and then formalize the
transfer learning problem along with our assumptions on
the group sparse structure of the word embeddings.

Notation. For any vector v ∈ Rd, we use ‖v‖ to denote its
`2 norm. For a matrix Θ ∈ Rd1�d2 of rank r, we denote its
singular values by σ1(Θ) ≥ σ2(Θ) ≥ · · · ≥ σr(Θ) > 0, its

Frobenius norm by ‖Θ‖F =
√∑r

j=1 σ
2
j (Θ), its operator

norm by ‖Θ‖ = σ1(Θ), its vector `1 norm by |Θ|1 =
maxi,j |Θij |, its vector `1 norm by |Θ|1 =

∑
i,j |Θij |, its

jth row by Θj , and

‖Θ‖2,1 =

d1∑
j=1

‖Θj‖

to denote its matrix `2,1 norm. Given Θ,Θ0 ∈
Rd1�d2 , we denote the matrix dot product by 〈Θ,Θ0〉 =∑d1

i=1

∑d2

j=1 ΘijΘ
0
ij . We let [k] = {1, 2, · · · , k}.

Matrix sensing. In our formalism, we consider the general
setting of matrix sensing—i.e., given noisy observations Xi

of linear projections Θ� = U�U�T , recover the underlying
matrix U�. In the case of word embeddings, Xi are simply
noisy observations of entries of Θ�; we give details below.

Formally, consider an unknown matrix U� ∈ Rd�r, and
let Θ� = U�U�T ; note that Θ� ∈ Rd�d is symmetric and
has rank r. The goal is to estimate U� given observations
Ai ∈ Rd�d and Xi ∈ R, for i ∈ [n], where

Xi = 〈Ai,Θ�〉+ εi (1)

and ε1, · · · , εn are independent σ-subgaussian random vari-
ables. For instance, in the application to word embeddings,
the A1, · · · , Ad2 are the basis matrices—i.e., Ai+j�d equals
1 in position (i, j) and equals 0 elsewhere.

In this formulation, we can only compute U� up to or-
thogonal change-of-basis since Θ� is preserved under this
transformation—i.e., if Ũ� = U�R for an orthogonal ma-
trix R ∈ Rr�r, then we have Ũ�Ũ�T = U�RRTU�T =
U�U�T = Θ�. Thus, the goal is to compute Û such that
Û ≈ U�R for some orthogonal matrix R.

To simplify notation, we define the linear operator A :
Rd�d → Rn, where A(Θ)i = 〈Ai,Θ〉. Then, (1) becomes

X = A(Θ�) + ε,

where X =
[
X1 · · · Xn

]T
and ε =

[
ε1 · · · εn

]T
.

Now, given an estimator Û , we measure the estimation error
using the `2,1 norm. We use this norm instead of the more
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typical Frobenius norm since it is more naturally compatible
with the group-sparse structure. It is analogous to the fact
that thè 1 error of`1 regularized linear regression is more
natural to bound; bounding the`2 norm requires additional
regularity assumptions. We refer the reader to Chapter 6
of Bühlmann & Van De Geer (2011) for a discussion. In
addition, since we can only identifyU � up to orthogonal
change-of-basis, we consider the error in a speci�c direction
as in Ge et al. (2017).

De�nition 1. Given bU; U� 2 Rd� r , the error of bU is

`( bU; U� ) = k bU � U � R( bU;U � ) k2;1;

whereR( bU;U � ) = arg min R :R T R = RR T = I k bU � U � RkF .

This de�nition of error is invariant under rotation.

Transfer learning. Consider unknown parametersU �
p 2

Rd� r for the source domain, and unknown parametersU �
g 2

Rd� r for the target domain. Our goal is to use data from the
source domain to help estimateU �

g . In particular, we assume
givenproxy observationsA p : Rd� d ! Rn p andX p 2 Rn p

from the source domain, along withgold observationsA g :
Rd� d ! Rn g andX g 2 Rn g from the target domain, where

X p = A p(� �
p) + � p

X g = A g(� �
g) + � g;

and� p 2 Rn p and� g 2 Rn g are vectors of independent� p

and� g-subgaussian random variables, respectively.

We are interested in the setting(ng=� 2
g) � (np=� 2

p). Intu-
itively, this condition says that either we have many more
proxy observations than gold observations (i.e.,ng � np),
or that the proxy observations are much lower variance
than the gold observations (i.e.,� p � � g). The latter case
sometimes arises in low-data settings due to the observation
structure; for instance, as we describe below, this is the case
for our application to word embeddings.

Group sparse structure. To leverage the proxy observa-
tions to help estimate the gold parametersU �

g , we need to
assume some relationship between the two. Letting

� �
U = U �

g � U �
p ;

we assume that� �
U has a row-sparse structure—i.e., most

of its rows are 0. More precisely, letting

J = f j 2 [d] j k� � j
U k 6= 0g;

the group sparsityof � �
U is s = jJ j. Then, an accurate

estimate of� �
U can help to recoverU �

g , since estimating
� �

U requires less data to recover due to its sparse structure.

Importantly, note that the row-sparse structure of� �
U is

preserved undersimultaneousorthogonal transformations

of U �
g andU �

p —i.e., if eU �
p = U �

p R and eU �
g = U �

g R for an

orthogonal matrixR, thene� �
U = ( U �

g � U �
p )R = � �

U R has
the same row sparsity as� � .

Application to word embeddings. To apply matrix fac-
torization to compute word embeddings, we begin by con-
structing theword co-occurrencematrix b� 2 Rd� d, where
b� ij counts the number of times the two words indexed byi
andj appear together (e.g., in some �xed-length window of
text); here,d is the total number of the words. In addition,
we normalizeb� (i.e., divide by the total count

P
i;j

b� ij ).

Intuitively, we think of b� as an empirical estimate of� � ,
and take the observationsX i to be the entries ofb� . In
particular, letA1; � � � ; Ad2 2 Rd� d such thatA i + j �d =
1(i = j ). Then, we take

X i = hA i ; b� i ;

in which case� i = hA i ; b� i � � � is the error. This error is
bounded (sinceb� is normalized) and zero mean (by de�ni-
tion), so it is subgaussian. Thus, we can use matrix factoriza-
tion onX i 's andA i 's to computebU such that� � � bU bUT .
Finally, we takebU i to be the word vector for wordi 2 [d].

As discussed above, in this setting, the number of observa-
tionsn scales the subgaussian parameter of� i rather than the
number of observations, which is alwaysd2. In particular,
as more observations become available, the variance of our
estimateb� of � � becomes smaller.

3. Nä�ve Estimators

We begin by describing two na�̈ve strategies for estimat-
ing U �

g : one based on only using the gold data, and one
based on only using the proxy data. Our proposed estimator
(described in Section 4) builds on these ones.

3.1. Gold Estimator

First, we consider estimatingU �
g using only the gold data:

bUg = arg min
Ug

1
ng

kX g � A g(UgUT
g )k2: (2)

Now, we analyze the sample complexity ofbUg under stan-
dard regularity assumptions. In particular, we assume re-
stricted well-conditionedness (RWC) (Li et al., 2019).

De�nition 2. A linear operator A satis�es the r -
RWC(�; � ) condition if

� kZ k2
F �

1
n

kA(Z )k2 � � kZ k2
F ;

with 3� > 2� and for anyZ 2 Rd� d with rank(Z ) � r .
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This property is a generalization of the restricted isometry
property (RIP), which is a common assumption in matrix
sensing problems. Under the RIP condition, common low-
rank matrix problems have no spurious local minima—i.e.,
all local minima are also global minima (Bhojanapalli et al.,
2016; Ge et al., 2017). However, the RIP condition is very
restrictive as it requires all the eigenvalues of the Hessian
matrix to be within a small range of 1. The RWC condition
applies to more general situations and also guarantees the
statistical consistency for all local minima (Li et al., 2019).
Theorem 1. AssumeA g satis�es2r -RWC. Then, we have

`( bUg; U �
g ) = O

0

@

s
� 2

g(d2 + d log( 1
� ))

ng

1

A

with probability at least1 � � .

The full statement and proof are given in our extended paper
(Xu et al., 2021).

3.2. Proxy Estimator

Next, we consider a strategy that estimatesU �
g by estimating

U �
p and ignoring the bias term� �

U :

bUp = arg min
Up

1
np

kX p � A p(UpUT
p )k2: (3)

We have the following result:
Theorem 2. AssumeA p satis�es2r -RWC. Then, we have

`( bUp; U �
g ) = O

0

@k� �
U k2;1 + ! +

s
� 2

p(d2 + d log( 1
� ))

np

1

A ;

with probability at least1 � � , where

! = kU �
p (R( bUp ;U �

p ) � R( bUp ;U �
g ) )k2;1: (4)

SinceU �
p may not be aligned withU �

g , the estimation er-

ror using bUp as an estimator ofU �
g includes a term! ac-

counting for the difference betweenU �
p and U �

g . When
R( bUp ;U �

p ) = R( bUp ;U �
g ) , we have! = 0 . In this case, the

error decomposes into the bias termk� �
U k2;1 plus the error

of bUp compared toU �
p . The full statement and proof are

given in our extended paper (Xu et al., 2021).

4. Group Sparse Transfer Learning

In this section, we describe our proposed estimator that com-
bines gold and proxy data. Then, we state the quadratic com-
patibility condition, which extends the standard compatibil-
ity condition from the sparse regression literature (Lounici
et al., 2011) to the matrix factorization setting, and prove
sample complexity bounds assuming this condition holds.
Finally, we describe how our group-sparse penalty term can
be leveraged in conjunction with the GloVe objective.

4.1. Estimation Procedure

We de�ne our proposed joint estimator for gold task as
through the following two steps:

bUp = arg min
Up

1
np

kX p � A p(UpUT
p )k2

bUg = arg min
g(Ug ) � 2L

1
ng

kX g � A g(UgUT
g )k2 + � kUg � bUpk2;1

(5)

Since our problem is nonconvex, we follow Loh & Wain-
wright (2015) and de�ne a compact search region forUg:
g(Ug) = kUg � bUpk2;1 � 2L . L is a tuning parame-
ter that should be chosen carefully to makeUg feasible—
speci�cally, kU �

g � U �
p k2;1 � L .

4.2. Quadratic Compatibility Condition

We make the following key assumption, which generalizes
the compatibility condition required in the traditional sparse
regression setting:

De�nition 3. The quadratic compatibility condition is

s
ng

kA g(� U � T
g + U �

g � T + �� T )k2 � �

0

@
X

j 2 J

k� j k

1

A

2

for any� 2 Rd� r that satis�es

X

j 2 J c

k� j k � 7
X

j 2 J

k� j k:

Compared to the standard compatibility condition in the
group sparse setting (Lounici et al., 2011), we have an extra
quadratic term�� T since we are considering the noncon-
vex matrix factorization setting. In our extended paper (Xu
et al., 2021), we show that restricted strong convexity (com-
monly assumed in high-dimensional settings) implies the
quadratic compatibility condition in our context.

4.3. Main Result

Our main result characterizes the estimation error of our
joint estimatorbUg.

Theorem 3. AssumeA p satis�es2r -RWC,A g satis�es the
quadratic compatibility condition. Supposenp = 
( d2 +
d log( 1

� )) , and

� = O

0

@

s
� 2

g log( d2

� )

ng

1

A :
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Table 1.Error bound for nä�ve estimators and joint estimator.! is de�ned in Equation (4).

Estimator Joint Gold Proxy

Error Bound O
� q

s2 log d
n g

+
q

d2

n p

�
O

� q
d2

n g

�
O

�
k� �

U k2;1 + ! +
q

d2

n p

�

Then, we have

`( bUg; U �
g )

= O

0

@

s
� 2

gs2 log( d2

� )

ng
+

s
� 2

p(d2 + d log( 1
� ))

np

1

A ;

with probability at least1 � � .

The full statement and proof are given in our extended paper
(Xu et al., 2021). We note that the required condition on
np in Theorem 3 is easily satis�ed in our “gold-scarce and
proxy-rich” setting—i.e.,ng � log(d) andnp � d2.

We summarize the estimation error bounds we derived for
the three different estimators in Table 1. In the regime of
interest—we have access to lots of proxy data (np � d2) but
limited gold data (ng � d2)—the upper bound of our joint
estimator is much smaller in contrast to the typical proxy and
gold estimators. In particular, takingnp ! 1 , our bound
scales as

p
s2 logd=ng whereas the gold bound scales asp

d2=ng, which is an improvement ofs=d. Alternatively,
the proxy bound scales as at leastk� �

U k2;1, which does not
go to zero withng; in contrast, our bound does.

4.4. Application to GloVe

The original GloVe method solves the following optimiza-
tion problem (Pennington et al., 2014):

min
U i ;V j ;bi ;c j

X

i;j 2 [d]

f (X ij )(log(X ij ) � (U i V jT + bi + cj ))2;

whereX ij is the total number of co-occurrences of wordi
andj , f U i g andf V j g are the two sets of word embeddings,
andd is the vocabulary size;f (X ij ) is a weighting function
that is non-decreasing in co-occurrence;bi ; cj 2 R are bias
terms. In practice, GloVe takes the sum of the two sets of
embeddings as the �nal embeddings, i.e.,U i + V i is the
word vector for wordi . To leverage our approach, we add a
group lasso penalty to this objective:

min
U i ;V j ;bi ;c j

X

i;j 2 [d]

f (X ij )(log(X ij ) � (U i V jT + bi + cj ))2

+ �
X

i 2 [d]

k(U i + V i ) � bU i
pk; (6)

wherebUp is the pre-trained GloVe embedding matrix.

5. Experiments

We evaluate our joint estimator on both synthetic and real
data. On the synthetic data, we compare the error of our
estimator with the ground truth parameters. Then, we con-
sider two real datasets; in this case, we leverage our penalty
in conjunction with the GloVe objective. First, we apply
it to Wikipedia articles from speci�c domains (e.g., math),
and evaluate whether it can identify words with novel mean-
ings in that domain; this experiment demonstrates the in-
terpretability of our approach. Second, we evaluate the
downstream prediction accuracy of our word embeddings
on a clinical trial eligibility data.

5.1. Experiments on Synthetic Data

Data. We focus on the low-data setting; in particular, we
let ng = 50, np = 5 ; 000, andd = 20. We consider the
exact low-rank case withr = 5 . The observation matrices
Ap;i 's (andAg;i 's) are independent Gaussian random ma-
trices whose entries are i.i.d.N (0; 1). We generate� �

p by
choosingU �

p with i.i.d. N (0; 1) elements. To construct the
gold data, we set the row sparsity of� �

U to 10% (s = 2 ).
Then, we randomly picks rows and set the value of each en-
try to 1. We take both noise terms to be� p;i ; � g;i � N (0; 1).

Setup.We compute the gold, proxy, and joint estimators by
solving optimization problems (2), (3), and (5), respectively.
To construct the joint estimator, we also need to pick a
proper value for the hyperparameter� . We use 5-fold cross
validation to tune� and we keep 20% of the gold data as
the cross validation set. As all the �nal estimates ofUg are
invariant under an orthogonal change-of-basis, we instead
report the Frobenius norm of the estimation error of� g. We
average this error over 100 random trials.

Results.Figure 1 shows the Frobenius error of the na�̈ve es-
timators (i.e., the gold and proxy estimators from Section 3)
and our joint estimator, with a 95% con�dence interval.
Our joint estimator signi�cantly outperforms the other two
estimators—in particular, the Frobenius error of our joint
estimator is only around 4% of the proxy estimator and 2%
of the gold estimator.

5.2. Experiments on Wikipedia

One advantage of our method is that it is more interpretable—
in particular, we show that it can be used to identify the
domain words (i.e., words that have a special meaning in
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Figure 1.Frobenius norm estimation error of� g over 100 trials,
along with 95% con�dence interval. They-axis is in log scale.

a certain domain). We apply our method to GloVe and
evaluate its performance on single domain Wikipedia arti-
cles in terms of the accuracy at identifying domain-speci�c
words. We additionally compare our joint estimator with
state-of-the-art �ne-tuning heuristics Mittens (Dingwall &
Potts, 2018) and CCA/KCCA (Sarma et al., 2018), as well
as randomly selecting words.

Data. We manually curated 37 Wikipedia articles from the
following four domains: �nance, math, computer science,
and politics. The articles selected all have a domain-speci�c
word in their title—e.g., “put” in the article “put option”
(in �nance), “closed” in “closed set” (in math), “object” in
computing, and “left” in “left wing politics” (in politics).
All the Wikipedia text data were downloaded from English
Wikipedia database dumps2 in January 2020. We preprocess
the text by splitting and tokenizing sentences, removing
short sentences that contain less than 20 characters or 5
tokens, and removing stopping words.

We download the pre-trained word embeddings from
GloVe's of�cial website.3 We take those trained using the
2014 Wikipedia dump and Gigaword 5, which contains
around 6 billion tokens and 400K vocabulary words.

Setup.We solve the optimization problem (6) to construct
our joint estimator for each single article. We take the pre-
trained GloVe word embedding as described above. Sim-
ilar to GloVe, we create the co-occurrence matrix using
a symmetric context window of length 5. We choose the
dimension of the word embedding to be 100 and use the
default weighting function of GloVe. The Mittens word
embeddings are obtained solving a similar problem as (6),
but with the Frobenius norm penalty—i.e.,

X

i 2 [d]

k(U i + V i ) � bU i
pk2:

2https://dumps.wikimedia.org/enwiki/
latest/

3https://nlp.stanford.edu/projects/glove/

Figure 2.Weighted F1-score versus top percentage of the rank set
for the threshold in the �nance domain.

We �x � = 0 :05 for both approaches; we found our results
to be robust to this choice. To construct the CCA estimator,
we take a simple average of the aligned domain-speci�c
word embeddings and the pre-trained word embedding. We
set the standard deviation of the Gaussian kernel to be1 to
construct the KCCA estimator. Then, to identify domain-
speci�c words, we score each wordi by the`2 distance
between its new embedding (e.g., our joint estimator or Mit-
tens) and its pre-trained embedding; a higher score indicates
a higher likelihood of being a domain-speci�c word.

To evaluate the accuracy of domain-speci�c word identi�ca-
tion, we select and compare the top 10% of words selected
by this score for each estimator—i.e., we treat all words
in the top 10% as positives. We de�ne a word to be a do-
main word if any of its de�nitions on Wiktionary is labeled
with key words from that domain—i.e., “�nance” or “busi-
ness” for �nance, “math”, “geometry”, “algebra”, or “group
theory” for math, “computing” or “programming” for com-
puter science, and “politics” for politics. We compute the
F1-score of the selected domain words across articles in
each domain. For theF1-score of random selection, we
compute the precision and recall in closed form (the preci-
sion is the fraction of domain words among all vocabulary
words, and the recall is the top fraction we set, i.e., 10%).

Results. Table 2 shows theF1-score of each domain
weighted by article length for each estimator. Our ap-
proach consistently outperforms the baselines across all
domains. While we observe that other approaches also
identify domain-speci�c words, our approach does so more
effectively, most likely since our sparsity assumption is sat-
is�ed by these datasets.

Next, we evaluate how our result varies with the value of se-
lection threshold; in particular, we consider 10%, 20%, and
30%. Figure 2 shows the weightedF1-score versus the top
percentage set for the threshold in the �nance domain. Our
approach consistently outperforms the baselines. Finally,


